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Abstract

Clusteringanalysis,anautomaticprocessto find similar groupsof
objectsfrom adatabase,hasbeenstudiedfor many years.With the
increasingdatasizegeneratedrecently, clusteringlarge databases
posesa challengingtaskthatmustsatisfyboththerequirementsof
thecomputationefficiency andresultquality. Amongtheexisting
clusteringalgorithms,grid-basedalgorithmsgenerallyhave a fast
processingtime, which first employ a uniform grid to collect the
regionalstatisticdataand,then,performtheclusteringon thegrid,
insteadof thedatabasedirectly. Theperformanceof grid-basedap-
proachnormally dependson the sizeof the grid which is usually
much lessthan the database.However, for highly irregular data
distributions,usinga singleuniform grid may not be sufficient to
obtaina requiredclusteringquality or fulfill the time requirement.
In this paper, we proposea grid-basedclusteringalgorithmusing
adaptive meshrefinementtechniquethat canapply higherresolu-
tion grids to the denserregions. With the hierarchicalAMR tree
constructedfrom the multi-grain meshes,this algorithmcan per-
form clusteringat different levels of resolutionsanddynamically
discovernestedclusters.Ourexperimentalresultsalsoshow theef-
ficiency andeffectivenessof the proposedalgorithmcomparedto
themethodsusingsingleuniformgrids.

1 Intr oduction.

Clusteringis a processto discover thegroupsof similar ob-
jects from a databasethat canhelp characterizethe under-
lying datadistribution. Clusteranalysishasbeenstudied
extensively for many years,especiallyfor spatial-distance
baseddataobjects. In general,theexisting clusteringalgo-
rithms can be classifiedinto four categories: partitioning-
based, hierarchical-based,density-based,and grid-based
methods[12]. Among them, the grid-basedmethodshave
thefastestprocessingtime thattypically dependson thesize
of the grid insteadof the dataobjects. Thesemethodsuse
a singleuniform grid meshto partition the entireproblem
domaininto cells andthe dataobjectslocatedwithin a cell
arerepresentedby thecell usinga setof statisticalattributes
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Figure 1: (a) An exampleof datadistribution with nested
clusters. (b) A single uniform mesh is applied to the
spatialdomain,whichmaynotbesufficient for goodquality
clustering.

from theobjects.Clusteringis, then,performedon thegrid
cells,insteadof thedatabaseitself. Sincethesizeof thegrid
is usuallymuchlessthanthenumberof thedataobjects,the
processingspeedcanbe significantly improved. However,
for highly irregularor concentrateddatadistributions,a grid
meshwith very fine granularitywill be requiredin orderto
sustaina certainclusteringquality, for example,to discover
nestedclusters.As illustratedin Figure1, it canbehardfor
a singleresolutiongrid to identify or representnestedclus-
ters. In this case,anadditionalmeshwith higherresolution
is needed.To meetarequiredclusteringquality, usingafiner
grid cannotbeavoided,but thesizeof a fine grid caneasily
overwhelmthe numberof dataobjectsand, hence,break-
down thecomputationalefficiency.

Adaptive MeshRefinement(AMR) is a type of multi-
scalealgorithmthatachieveshigh resolutionin localizedre-
gionsof dynamic,multidimensionalnumericalsimulations
[4, 3]. It has beensuccessfullyapplied to model large-
scalescientificapplicationsin a rangeof disciplines,such
ascomputationalfluid dynamics,astrophysics,meteorolog-
ical simulations,structuraldynamics,magnetics,and ther-
mal dynamics.Basically, thealgorithmcanplaceveryhigh-
resolutiongridspreciselywherethehighcomputationalcost
requires. Its adaptabilityallows simulatingmultiscaleres-
olutions that areout of reachwith methodsusinga global
uniformfinegrid.

In this paper, we proposea grid-basedclusteringalgo-
rithm thatemploystheAMR techniquefor dataminingprob-



lemwith highly irregulardatadistributions.Insteadof using
asingleresolutionmeshgrid, theAMR clusteringalgorithm
first adaptivelycreatesdifferentresolutiongridsbasedonthe
regional densityand thesegrids comprisea hierarchytree
thatrepresentstheproblemdomainasnestedstructuredgrids
of increasingresolution.Secondly, the algorithmconsiders
eachleaf as the centerof an individual clusterand recur-
sively assignsthemembershipfor thedataobjectslocatedin
the parentnodesuntil the root nodeis reached.The deter-
minationof themembershipof a dataobjectis basedon the
minimumdistanceto theclustersdiscoveredunderneaththe
treebranch. Using a hierarchicaltree,the AMR clustering
algorithmcandetectnestedclustersatdifferentlevelsof res-
olutions. Sinceit is a grid-basedmethod,it alsosharesthe
commoncharacteristicsof all grid-basedmethods,suchas
fastprocessingtime, insensitive to the orderof input data,
andtheability to separatefrom thenoise.TheAMR cluster-
ing algorithmis alsoapplicableto any collectionof attributes
with numericalvalues.Most importantly, sincemany large-
scaleapplicationstodayhavebeenprogrammedusingAMR
techniquesin theirdatastructures,embeddingAMR cluster-
ing into theseapplicationsto performon-line dataanalysis
canbe morestraightforward thanother typesof clustering
algorithms.

Recently, datamining techniquesarefrequentlyusedto
help discover the patternsfrom the simulation outputsas
in the post-simulationapplications. Thesepost-simulation
applicationsusuallyareimplementedby differentprogram-
mersasindependentapplicationsandit is not easyto inte-
grateto thesimulationapplications.In many cases,themin-
ing processis requiredperformon line suchthat the min-
ing resultscanbedirectly fed backto thesimulationto tune
theparametersandguidethesubsequentsimulationprocess.
Thedirectfeedbackrequirestheseamlessembeddingof data
mining processinto the applications.By reusingthe AMR
structurealreadyconstructedin thesimulationapplications,
our proposedAMR clusteringalgorithmpresentsa straight-
forwardsolutionfor on-linedataanalysisanda greatpoten-
tial for performanceenhancement.

Therestof thepaperis organizedasfollows. Wediscuss
relatedwork in Section2. Theconceptof theAMR method
is describedin Section3. The AMR clusteringalgorithm
proposedin this work is presentedin Section4. In Section
5, we presentexperimentalresultsandSection6 discusses
thesensitivity of thealgorithmto theinput parameters.The
paperis concludedin Section7.

2 RelatedWork.

Generally, clusteringalgorithmscanbe classifiedinto four
categories: partitioning-based,hierarchical-based,density-
based,and grid-basedmethods. The representatives for
partitioning-basedclusteringalgorithmsarek-means[17], k-
medoid[16], andexpectationmaximization(EM) algorithms

[8]. Both k-meansand k-medoid algorithmsrepresenta
clusterusing a single point, while EM usesa probability
distribution to representa cluster. The partitioning-based
algorithmsrequireuserprovidetheparameter, k, thenumber
of clusters, and perform iterative membershiprelocation
until the membershipis no longer changedor the change
is within a tolerablerange. The clusteringquality highly
dependson the valueof k and,in general,the partitioning-
basedalgorithmscannotfind arbitrarilyshapedclusterswell.

Hierarchical-basedclusteringalgorithmsusea hierar-
chicaltreeto representtheclosenessof thedataobjects.The
tree is constructedin either bottom-upor top-down. The
bottom-upapproachstartswith eachobjectformingacluster
andrecursively mergestheclustersbasedon their closeness
measure.On thecontrary, thetop-down approachstartswith
all the objectsin a singleclusterand recursively splits the
objectsinto smallergroups.Therepresentativehierarchical-
basedclusteringalgorithmsare BIRCH [22], CURE [11],
andCHAMELEON [15].

Density-basedclusteringalgorithmsconsiderclustersas
denseregionsof objectsin the dataspaceandclustersare
separatedby regionsof low density. Thesealgorithmsasso-
ciateeachobjectwith a densityvaluedefinedby the num-
berof its neighborobjectswithin a givenradius.An object
whosedensityis greaterthanaspecifiedthresholdis defined
asa denseobjectandinitially is formeda clusteritself. Two
clustersare merged if they sharea commonneighborthat
is also dense. The representative density-basedclustering
algorithmsareDBSCAN [10], OPTICS[2], HOP [9], and
DENCLUE[13]. Thesemethodscanseparatethenoise(out-
liers),find arbitraryshapeclusters,anddo not make any as-
sumptionsabouttheunderlyingdatadistribution. However,
they are computationallyvery expensive, especiallyat the
stagesof generatingthedensityandsearchingfor thedense
neighbors.More efficient approachesrely on spatialindex-
ing, suchas R* tree, X tree, and KD tree, to identify the
neighborswithin thegivenradius.

Grid-basedclusteringalgorithmsfirst cover the prob-
lem spacedomainwith a uniform grid mesh.Statisticalat-
tributesarecollectedfor all thedataobjectslocatedin each
individual meshcell and clusteringis, then, performedon
the grid, insteadof dataobjectsthemselves. Thesealgo-
rithms typically have a fastprocessingtime, sincethey go
throughthe dataset onceto computethe statisticalvalues
for thegridsandtheperformanceof clusteringdependsonly
on thesizeof thegridswhich is usuallymuchlessthanthe
dataobjects.Therepresentative grid-basedclusteringalgo-
rithmsareSTING[21], WaveCluster[19], andCLIQUE [1].
All thesemethodsemploy a uniform grid meshto cover the
wholeproblem.For theproblemswith highly irregulardata
distributions, the resolutionof the grid meshmust be fine
enoughto obtainagoodclusteringquality. A finermeshcan
resultin themeshsizecloseto or evenexceedthesizeof the



dataobjects,which cansignificantincreasethecomputation
loadfor clustering.

In thiswork, weproposeanAdaptiveMeshRefinement
clusteringalgorithm,whichis alsoagrid-basedapproachbut
usingmultiple mesheswith differentsizesandresolutions.
Theproposedapproachemploys low-resolutionmeshesfor
sparseregions and high-resolutionmeshesfor denserre-
gions. In otherwords,the computationis performedat the
regionsthatneedthemost.

3 AdaptiveMeshRefinement.

In many applicationsthat processlarge amountof spatial
data, structuredmeshesare often used to avoid directly
operatingon the data objects. The meshespartition the
spatialdomaininto cellsin whichdataobjectslocatedwithin
a cell’s subdomainarerepresentedby thestatisticaldataof
theobjects,suchasmeans,maximum,minimum,variance,
and distribution type. An example is the particle-in-cell
(PIC) algorithm[20] that is widely usedto simulateplasma
and hydrodynamics[14, 5]. In PIC, the movementof a
particleis determinedby theinteractionbetweentheparticle
itself andall othersin a self-consistentsystem. Insteadof
directly calculatingthe interactionof particles,which can
resultin amuchlargercomputationalcost,thePICalgorithm
employs a uniform meshandassignsthe particleattributes
to nearbygrid pointsof the mesh. The field equationsare,
then,solved on the meshto calculatethe force that moves
the particles. However, a tradeoff exists on most of the
applicationsthat employ a single uniform mesh. Using a
finer-grain (higher-resolution)meshcan result in a more
accuratemoving force but incurshighercomputationcost.
Onthecontrary, acoarsemeshreducesthecomputationcost
but maygenerateunsatisfiedlow quality results.

AdaptiveMeshRefinement(AMR) hasbecomepopular
in thefield of computationalphysicsandbeenusedin a va-
riety of applicationsin computationalfluid dynamics[6, 7].
AMR is a techniquethat startswith a coarseuniform grid
coveringtheentirecomputationalvolumeandautomatically
refinescertainregionsby addingfiner subgrids.New child
gridsarecreatedfrom theconnectedparentgrid cellswhose
attributes,densityfor instance,exceedgiventhresholds.Re-
finementis performedon eachgrid separatelyand recur-
sively until all regionsarecapturedwith the desiredaccu-
racy. AMR gridscomprisea hierarchytreethatrepresentsa
spatialdomainasnestedstructuredgridsof increasingreso-
lution, andprovidestheability to increaseresolutionlocally
only whereit is needed.Figure2 shows an exampleof an
AMR treein whicheachtreenodeusesadifferentresolution
mesh.Theroot grid with thecoarsestgranularitycoversthe
entiredomain,which containstwo subgrids,grids 1 and2.
Grid 2 at level 1 alsocontainstwo subgridsthatarediscov-
eredusinga finer mesh. The deeperthe nodeis locatedin
thetree,thefiner themeshis used.

grid 4grid 3

grid 0

grid 2grid 1

AMR tree

mesh of grid 1

mesh of grid 0

mesh of grid 2

mesh of grid 4mesh of grid 3

Level 1

Level 2

Level 0

Figure2: A 2-dimensionalAMR examplewith 2 levels of
refinement.A finer resolutionmeshis appliedeachtime a
subgridis created.

4 AMR Clustering Algorithm.

Themotivationof combiningtheAMR conceptinto theclus-
teringcomesfrom theobservationthata very fine meshcan
be requiredfor clusteringon a highly irregular or concen-
trateddatadistribution if a grid-basedclusteringalgorithm
thatemploysa singleuniformmeshis used.A fine meshre-
sultsin high computationcostand,in somecases,themesh
sizecanevenoverwhelmthenumberof thedataobjects.On
theotherhand,AMR’s adaptabilityon irregulardatadistri-
bution cansignificantlyreducethe amountof the grid size
and,hence,thecomputationcostwithout losingthecluster-
ing quality. In addition,themeshesin differentgranularities
generatedin theAMR treearenaturallysuitablefor discov-
ering the nestedclusters. Sincethe AMR methodis also
grid-based,the clusteringalgorithm using AMR approach
sharesthecharacteristicsof all grid-basedalgorithms,such
asfastprocessingtimesinceclusteringis performedongrids
insteadof dataobjectsandthe ability to separatefrom the
noise.

Let usconsiderthedensity-basedclusteringalgorithms
thatassociateeachobjectto its densestneighborandobjects
associatedto thesameneighborsaremergedto form a clus-
ter. TakingtheHOPalgorithm[9] for example,theassocia-
tion of adataobject”hops” from its currentdensestneighbor
to thatneighbor’s densestneighborandthis processcontin-
uesuntil thedensestneighborof anobjectis itself. Theob-
jectshopto thesamedensestobjectareconsideredto belong
to thesameclusterandthedensestobjectbecomesthepivot
of the cluster. In general,the density-basedalgorithmstry
to find the denseregionsandthe numberof the discovered
denseregionsdeterminesthe numberof clusters.If the re-
finementis basedon the density, the AMR methodcanre-
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Figure3: ThealgorithmconstructstheAMR tree.

cursively identify the denseregions and representthem in
a hierarchicaltreestructurein which thetreenodesnearthe
leavesindicatethedenserregionsandthenodesclosedto the
roothave lower densities.Similar to thedensity-basedalgo-
rithmsthatanobject’s densityis determinedby thenumber
of neighborsin a givenradiusandobjectsspatiallyadjacent
to eachotherhaveapproximatelythesamedensity, theAMR
methodcangenerategridsin which thedataobjectslocated
in a grid alsohave approximatelythe samedensity. There-
fore,theleavesof theAMR treecannaturallyberegardedas
clusterpivotsandclusteringfor theobjectsin theupper-level
(parent)nodescanbe basedon the distanceto the clusters
formedin thelower levels.

Our proposedAMR clusteringalgorithmconnectsthe
grid-basedand density-basedapproachesthrough AMR
techniqueand,hence,preservestheadvantagesof bothtype
algorithms.Thealgorithmconsistsof two stages:construct-
ing the AMR treeanddataclustering. TheAMR treecon-
structionis a top-down processstartingfrom the root node
that coversthe entireproblemvolume. The dataclustering
stageis abottom-upprocesswhichstartsatagiventreelevel
(depth)andworks toward to the root. Note that, although
the AMR clusteringalgorithm employs a hierarchicaltree
andclusteringis performedon thetreenodes,thisalgorithm
shouldnotbeclassifiedasahierarchical-basedclusteringal-
gorithm.This is becauseclustersgeneratedat thelower lev-
elswill not bemergedwhentheclusteringis processingto-
wardthetreeroot.

4.1 Constructing AMR Tree. Figure 3 shows the algo-
rithm of constructinganAMR treebasedon thespatialden-
sity refinement.Given a database,the AMR treeconstruc-
tion startsat theroot grid (node)thatusesa meshgrid with
aninitial granularity(resolution)to cover theentireproblem

domain. Thealgorithmcalculatesthemeshcell id for each
dataobjectusingits spatialcoordinatesandupdatestheden-
sity valueof the cells wherethe objectsarelocated. Mesh
cellsare,then,examinedto checkif thedensityexceedsthe
given threshold.The cells whosedensityis larger thanthe
thresholdaremarkedto berefined.A new subgridis created
from all markedcellsthatareconnected(adjacent)with each
other. Thealgorithmrecursivelygoesto thechild gridswhile
a hierarchicaltreeis built. Therefinefactorthatdefinesthe
meshresolutionratio of a child grid to its parentis usedto
createfiner meshesat the child grids. The algorithmstops
whenthe maximumlevel of treedepthis reachedor there
areno meshcellswith densitythat is largerthanthethresh-
old. Theprocessof constructingtheAMR treeis atop-down
operation.This is alsothemaindifferenceof our AMR ap-
proachfrom the othergrid-basedalgorithmswhosehierar-
chical treesare built in a bottom-upfashion. In addition,
the AMR methodwill revisit the datalocatedin the dense
regionswhile othergrid-basedalgorithmsreadthedatabase
only once.

Assumingn is the numberof the data objects, d is
the dimensionality, t is the numberof attributes in each
dimension,h is the AMR treeheight,and p representsthe
averagepercentageof dataobjectsto berefinedateachlevel,
thecomplexity for scanningthedatabaseis O � dtn � dtnp �
dtnp2 �����	�
� dtnph � 1 ��
 O � dtn 1 � ph

1 � p
��� O � dtn

1 � p
� . When

p 
 0 � 5, the complexity is O � 2dtn � . The complexity of
finding thesubgridshighly dependson thesizeof themesh
in eachgrid. We assumethe meshsize at the root is m
andq is theaverageratio of meshsizesbetweentwo levels
of grids. The complexity for marking the meshcells that
exceedthethresholdandconnectingthemarkedcellsto form
thesubgridsis O � 2d3dmq � 2d3dmq2 ���	���	� 2d3dmqh � 1 ��

O � 6dm 1 � qh

1 � q
� , assumingthe refinementfactoris 2 andeach

cell mustcheckits � 3d � 1� neighborsfor connectedsubgrid.
If q 
 0 � 5, thecomplexity becomesO � 2 � 6dm � . Thereforethe

complexity for constructingthe AMR tree is O � dtn 1 � ph

1 � p �
6dm 1 � qh

1 � q
� .

4.2 Data Clustering. The stageof dataclusteringis per-
formed on the AMR tree. The clusteringstartsfrom the
leavesof theAMR treeandconsidersall leavesasindividual
clusters.Next, theclusteringgoesup to theparentgridsof
theleaves.For theparentgridsthatcontainonly onecluster
(onechild grid), themembershipsof thedataobjectsin these
gridsareautomaticallyassignedto theonly cluster. For the
parentgrids containingmorethanonecluster, the dataob-
jects are assignedbasedon the shortestdistancefrom the
clusters.Therearemany optionsfor themembershipassign-
ment. The simplestone is to assignmembershipfor each
dataobject independently. For the performanceconsidera-



(b) Data objects assigned to the
3 clusters in root grid

(a) Data objects in root grid

Figure 4: In root grid, the data objects are assignedto
the nearestclustersbasedon their distanceto the cluster’s
outlines.

tion, wecanlet all dataobjectslocatedwithin thesamecells
have the samemembershipand, then, assignthe member-
shipin theunit of cells. In thelatterapproach,a cell canbe
representedby its center. Therearealsomany optionsfor
representinga cluster. Oneoptionis to usethecenterof the
clusterasin k-meansandk-medoidclusteringmethods.The
distanceof adataobjectto aclusteris, then,calculatedfrom
the centerof the cluster. However, usinga singlepoint to
representaclusteris known for its splittingproblemthatcan
split large clusters. This problemis commonlyseenin the
partition-basedmethodsandusingmorethanonerepresen-
tativepointsusuallycanimprovetheproblem[11].

In our approach,we choosethe cluster outlines to
representthecluster. Wedefineacluster’soutlinesasalist of
its meshcells thathave at leastoneof its adjacentneighbor
cells belongingto a differentcluster. If the numberof the
outlinesis too large,a fix numbercanbeusedto reducethe
costfor distancecomputation.We, then,refer the distance
of a dataobject to a clusteras the shortestspatialdistance
betweenthe object and the cluster’s outlines. Figure 4(a)
shows the data objectsleft in the root grid after the first
level of AMR treeis constructedusingtheexampleshown in
Figure1. Therootgrid contains3 child gridsandeachchild
grid forms a clusterin this example. Figure4(b) presents
theclusteringresultsof dataobjectsin therootgrid in which
objectsareassignedto oneof the threeclusters. Figure5
describesthealgorithmfor thestageof dataclustering.The
clusteringalgorithmis performedbottom-uprecursively and
stopswhenit reachestheroot.

Dataclusteringcanalsostartat any level betweenthe
root andthe maximumdepthof the tree. Given a starting
clusteringlevel, λ, every internal tree nodeat the level λ
is also consideredas a clusterand all its descendantgrids
are regardedas part of the cluster. In other words, the
treebrancheswith depthgreaterthanλ areprunedandall
leavesof theprunedAMR treeareconsideredasindividual
clusters.Thoseleaf nodeswhosedepthsarebetween0 and
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return
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14.

if grid’s level < λ

Figure5: Thedataclusteringalgorithm. λ is thegiventree
level thatclusteringbeginswith.

λ are also consideredas individual clusters. Hence, the
numberof clustersequalsto the numberof leaves of the
prunedAMR tree. This startingclusteringlevel determines
the computationcostof the clusteringstageaswell as the
clusteringquality.

Consideringtheexamplegivenin Figure1, theprocess
sequenceof the dataclusteringstageis describedin Figure
6. Figure6(a)and(b) illustratesthegridsandtheAMR tree
generatedfrom our AMR clusteringalgorithm,respectively.
Figure6(c) shows the dataobjectassignmentinsidegrid 3
andthis clusteringresultis extendedupwardto grid 0. The
dataobjectsin grid0 areassignedto4 clustersin Figure6(d).
The final clusteringresultof 4 clustersis shown in Figure
6(e).

Thecomplexity of thedataclusteringstagedependson
theoptionsusedin representingtheclusters(e.g.theoutlines
or centersof theclusters)andtheAMR treestructure.

Assumingk is the numberof leaf nodes(k clusters)
in the AMR tree, the meshsize at the root is m, and q is
the averageratio of meshsizesbetweentwo consecutive
levelsof grids, thecomplexity for clusteringthemeshcells
insidethe grids basedon the distanceto the clustercenters

is O � dtkmq � dtkmq2 ���	����� dtkmqh � 1 ��
 O � dtkm 1 � qh

1 � q
� ,

whered is the dimensionality, t is the numberof attributes
in eachdimension,and h is the AMR tree height. When
q 
 0 � 5, the complexity becomesO � 2dtkm � . Combining
with thecomplexity of theconstructingAMR treestage,the

complexity of theAMR clusteringalgorithmis O � dtn 1 � ph

1 � p �
� dtk � 6d � m 1 � qh

1 � q
� .



(d) Clustering extends to level 0 (e) Final clustering result 
has 4 clusters 

(a) Root grid contains 3 subgrids
grid 3 contains 2 subgrids

(c) Clustering within grid 3
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(b) The AMR hierarchical tree
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Figure6: AMR clusteringappliedto the datasetof the exampleshown in Figure1. (a) Six grids in total arecreatedin
whichgrids0 and3 contains3 and2 subgrids,respectively. (b) TheAMR treestructurethatconnectsall gridscreated.(c)
Clusteringinsidegrid 3 assignsdataobjectsto theclustersc3 or c4 basedon theobject’s distanceto thecluster’s outlines.
(d) Clusteringin grid 0. Clusteringis extendedfrom level 1 to level 0. (e)Thefinal clusteringresultcontains4 clusters.

5 Experimental Results.

To evaluate the proposedAMR clusteringalgorithm, we
usethe starparticledatasetsgeneratedfrom a large-scale
productioncosmologicalapplication,namedENZO, which
is currentlyin useonatleastsixdifferentsites[6, 18]. ENZO
simulatestheformationof a clusterof galaxiesconsistingof
gasandstars.Thesimulationstartsnearthebeginningof the
universewhenthe galaxy is in a relative uniform radiation
distribution,andcontinuesuntil thepresentdaywhenthestar
particlesarein a highly irregulardistribution. TheENZO’s
outputsare periodical checkpointingdata dumpsthat are
usedto illustratetheevolution of thegalaxyformation. We
pick two of ENZO simulationoutputdatasetsthatarenear
theendof thesimulation,which contain61440and491520
star particles,respectively. We refer the two datasetsas
data set 1 and 2 in this section. To visualize the data
distributionandclusteringresults,wealsorun thesamesets
of dataprojectedin two dimensions.Figure7(a)shows the
spatialdistribution of the smallerdatasetprojectedin two
dimensions.

Theninesubgridsdiscoveredby thefirst level of AMR
areshown in Figure7(b). Figure7(c)presentstheclustering
resultsby assigningtherootgrid’sdataobjectsto oneof the
clustersformedby its subgrids.This clusteringoutputalso
representsthe sameresultsobtainedfrom othergrid-based
clusteringalgorithmsthatuseasingleuniformmesh.Figure
7(d) shows five nestedsubgridsdiscoveredby AMR at the
secondlevel of refinement,which canonly be detectedby
usinga meshwith finer granularity. Dataclusteringinside
grid 5 assignstheobjectsof grid 5 to oneof thefiveclusters
(subgrids),asillustratedin Figure7(e). Then,theclustering
resultsof grid 5 is extendedto theupperlevel at root grid in
which 13 clustersaregeneratedin total, asshown in Figure
7(f).

We comparetheperformanceresultsof usingtheAMR
clusteringalgorithmwith thegrid-basedclusteringalgorithm

thatemploysasingleuniformmeshfor thetwo setsof ENZO
particledata. The projecteddatasetsweremadefrom the
three-dimensionaldatainto X-Y dimensions.For dataset1
in 2D projection,we usea uniform meshof size128 � 128
for theuniformgrid algorithmanda32 � 32initial meshfor
theAMR clusteringalgorithm. A refinefactorof 4 is used
in the AMR algorithm so that the meshgranularityat the
secondlevel is thesameastheuniformmeshcase.For data
set1 in 3D, the meshsizesfor the uniform grid algorithm
and AMR algorithm are 64 � 64 � 64 and 16 � 16 � 16,
respectively. For dataset2 projectedin 2D, themeshof size
is setto 64 � 64 � 64for theuniform grid algorithmandan
initial meshof size16 � 16 � 16 anda refinefactorof 4 are
chosenfor theAMR clusteringalgorithm. For dataset2 in
3D, themeshsizesfor theuniformgrid algorithmandAMR
algorithmare64 � 64 � 64 and16 � 16 � 16, respectively.
Table1 gives the performancetimings of our experiments
that wererun on an AMD Athlon XP 1700+machinewith
the CPU speedof 1.47 GHz and512 MB memory. These
resultsclearly show a betterperformancewhen using the
AMR clusteringalgorithmover the methodsusinga single
uniformmesh.

6 Sensitivity to Parameters.

For all clusteringalgorithms,theclusteringquality is sensi-
tive to theinputparameters,besidesthesizeof thedatabase,
in a certain degree. Examplesare the cluster numberto
thepartition-basedmethods,the merge/splitdecisionto the
hierarchical-basedmethods,and the density radius to the
density-basedmethods.A goodquality clusteringresultof-
tenrelieson theproperselectionof theseinput parameters.
Generally, all grid-basedclusteringalgorithmsaresensitive
to the parametersof the meshsize,filtering threshold,and
theratioof meshgranularitybetweentwo consecutivelevels
in thehierarchicaltree.

Theinputparametersto theAMR clusteringalgorithms



(a) Star particle distribution

(d) Second level grids identified by AMR
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Figure7: ENZO datasetandits clusteringresults.(a) Thedatadistribution of thedataset1 projectedin two dimensions
thathas61440particles.(b) Nine subgridsareidentifiedat rootgrid level. (c) Clusteringresultwhenonly a singlemeshis
used.(d) Five additionalnestedclustersarediscoveredby thesecondlevel refinementin grid 5. (e) Clusteringinsidegrid
5. (d) Final clusteringresultsfor theentiredatabase.

besidesthedatabasesizeincludethemaximumrefinelevel,
initial meshgranularity, densitythreshold,andrefinefactor.
The maximum refine level is the upper bound value that
stops constructingdeeperAMR tree brancheswhen the
refinementreachesthis level. Goodchoiceof initial mesh
granularityand refine factor can minimize the size of the
AMR treeandreducethenumberof visits to thedatabase.A
properdensitythresholdis alsoimportantthatcaneffectively
identify thedenserregionsto form deeperlevelsof subgrids
and potentiallynestedclusters. An automaticapproachto
find asuitablethresholdvaluecanuseadensityhistogramon
themeshcellsandscanfor thefirst numberwith alargejump
from its previous numberin the histogram. This number
indicatesthe densitygapat the boundaryof a new cluster
from thesurroundings.

During the constructionof the AMR tree,whenever a

new grid is created,thedataobjectslocatedin thatgrid need
to berevisited to fill in thenew grid’s mesh.For very large
databases,anout-or-coreimplementationfor managingdata
objectslocatedin theAMR treenodescanbeadopted.Each
grid can allocatepagesof buffer for storing data objects
locatedin this grid’s domain. A scanto the databasewill
sequentiallyaddthe dataobjectsto the buffer pagesof the
gridsin which theobjectsarelocated.Oncea pageis full, it
is writtento afile or appendedto thefile if thegrid hasmore
thanonepagefilled. After a datascanis completedat one
level of refinement,thefile containstheonly necessarydata
to be processedfor the next level andno unnecessarydata
will berevisited.

The depthof the AMR tree determinesthe frequency
of datarevisit and, therefore,it is critical to selectproper
input parametersthat determinethe tree depth, such as



Table1: Performanceresultsof clusteringon two setsof data.Theresultsof using2D projecteddataarepresentedin the
secondtable.Thetiming comparestheperformanceof theAMR clusteringalgorithmandthemethodusingasingleuniform
mesh.

dataset1 in 3D dataset2 in 3D
stage build mesh clustering total time build tree clustering total time

uniformgrid 0.3709 0.2780 0.6489 0.8403 0.8525 1.6929
AMR 0.0730 0.1801 0.2531 0.3187 0.5595 0.8782

dataset1 projectedin 2D dataset2 projectedin 2D
stage build mesh clustering total time build tree clustering total time

uniformgrid 0.1032 0.0791 0.1823 0.3293 0.1553 0.4846
AMR 0.0390 0.0269 0.0659 0.2529 0.0578 0.3107

initial meshresolution,refinefactor, anddensitythreshold.
Tradeoff betweenthe efficiency and quality exists in the
AMR clusteringalgorithm as in all clusteringalgorithms.
For theclusteringalgorithmsthatuseasingleuniformmesh,
databaseis only visitedonce,but cansuffer from obtaining
low qualityoutput,asdiscussedearlier. AMR clusteringcan
generatea goodquality results,but if the AMR treegrows
toodeep,theoverheadof datarevisit canbecomesignificant.

Theadvantageof our AMR clusteringalgorithmis that
the different levels of clusteringqualitiescan be obtained.
The clusteringcanstartat any level of treedepthandper-
form upward. It canalsobeperformedwithin a treebranch
for clusteringon a specificproblemsubdomain.The com-
binationof the AMR techniqueandclusteringis especially
helpful for many modernscientificapplicationsthatarepro-
grammedusingAMR datastructures.Recently, datamin-
ing techniquesarefrequentlyusedto helpdiscover thepat-
ternsfrom the simulationoutputsas the stand-alonepost-
simulationapplications.In many cases,themining process
is desiredto performon line sothemining resultscanbedi-
rectly fed backto thesimulationto tunetheparametersand
guide the subsequentsimulationprocess.The direct feed-
backrequirestheseamlessintegrationof dataminingprocess
into theapplication’sdatastructures.EmbeddingAMR clus-
teringinto theAMR applicationsis obviouslymorestraight-
forwardthanothertypesof clusteringalgorithms.By reusing
the AMR structurealreadyconstructedin the applications,
our proposedAMR clusteringalgorithmshows a greatpo-
tentialon performanceenhancementfor on-linedataanaly-
sis that is generallydifficult for otherclusteringalgorithms
to achieve.

7 Conclusions.

In thispaper, wepresentedagrid-basedclusteringalgorithm
usingadaptive meshrefinementtechniquethatcandynami-
cally applymesheswith differentgranularitiesto theregions

with differentdensities.For highly irregularor concentrated
datadistributions,a uniform grid cannotperformefficiently
or sufficiently to generatethe requiredclusteringquality.
The adaptabilityof AMR techniquelets the clusteringper-
form at theregionsrequiringhighresolutionusingfinergrid
meshes.This approachpartitionsthe problemdomaininto
regions that are representedby the grids in a hierarchical
tree. Eachgrid representsthe datain a spatialsubdomain
andgridsatdifferentlevelsof thetreeemploy meshesof the
differentgranularity. Dataclusteringcanbe startat differ-
ent levels of the tree that gives a certainresolutionof the
clusteringresultor it canperformwithin a treebranch.This
algorithmcandynamicallydiscover nestedclusters,which
is very usefulfor highly irregulardatadistributions. Exper-
imentalresultspresentedin this paperalsoshowedtheeffi-
ciency andeffectivenessof theproposedalgorithmcompared
to thegrid-basedmethodsusingsingleuniformmeshes.
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