
1
Parallel Data Mining Algorithms for

Association Rules and Clustering

Jianwei Li
Northwestern University

Ying Liu
DTKE Center and Grad. Univ. of CAS

Wei-keng Liao
Northwestern University

Alok Choudhary
Northwestern University

1.1 Introduction . 1-1
1.2 Parallel Association Rule Mining 1-2

Apriori-based Algorithms • Vertical Mining •

Pattern-Growth Method • Mining by Bitmaps •
Comparison

1.3 Parallel Clustering Algorithms . 1-14
Parallel k-means • Parallel Hierarchical Clustering •

Parallel HOP: Clustering Spatial Data • Clustering
High-Dimensional Data

1.4 Summary . 1-22

1.1 Introduction

Volumes of data are exploding in both scientific and commercial domains. Data mining
techniques that extract information from huge amount of data have become popular in
many applications. Algorithms are designed to analyze those volumes of data automatically
in efficient ways, so that users can grasp the intrinsic knowledge latent in the data without
the need to manually look through the massive data itself. However, the performance of
computer systems is improving at a slower rate compared to the increase in the demand
for data mining applications. Recent trends suggest that the system performance has been
improving at a rate of 10-15% per year, whereas the volume of data collected nearly doubles
every year. As the data sizes increase, from gigabytes to terabytes or even larger, sequential
data mining algorithms may not deliver results in a reasonable amount of time. Even worse,
as a single processor alone may not have enough main memory to hold all the data, a lot
of sequential algorithms could not handle large scale problems or have to process data out
of core, further slowing down the process.

In recent years, there is an increasing interest in the research of parallel data mining
algorithms. In parallel environment, by exploiting the vast aggregate main memory and
processing power of parallel processors, parallel algorithms can have both the execution
time and memory requirement issues well addressed. However, it is not trivial to paral-
lelize existing algorithms to achieve good performance as well as scalability to massive data
sets. First, it is crucial to design a good data organization and decomposition strategy
so that workload can be evenly partitioned among all processes with minimal data depen-
dence across them. Second, minimizing synchronization and/or communication overhead
is important in order for the parallel algorithm to scale well as the number of processes

X-XXXX-XXXX-X/XX/$0.00+$1.50
c© 2006 by CRC Press, LLC 1-1

1-2

TID Items

a d b

f d b e

a e f c

a c f e

a d e

f e b

Database

a:67% b:50% c:33% d:50% e:83% f:67%

Frequent Itemsets : supportk

1

4

3 ace:33% acf:33% aef:33%
bef:33% cef:33%

acef:33%

2

Frequent Itemsets (minsup = 33%)

ce:33% cf:33% de:33% ef:67%
bd:33% be:33% bf:33%

ac:33% ad:33% ae:50% af:33%

1

2

3

4

5

6

FIGURE 1.1: Example database and frequent itemsets.

increases. Workload balancing also needs to be carefully designed. Last, disk I/O cost must
be minimized.

In this chapter, parallel algorithms for association rule mining and clustering are pre-
sented to demonstrate how parallel techniques can be efficiently applied to data mining
applications.

1.2 Parallel Association Rule Mining

Association rule mining (ARM) is an important core data mining technique to discover
patterns/rules among items in a large database of variable-length transactions. The goal
of ARM is to identify groups of items that most often occur together. It is widely used
in market-basket transaction data analysis, graph mining applications like substructure
discovery in chemical compounds, pattern finding in web browsing, word occurrence analysis
in text documents, and so on. The formal description of ARM can be found in [AIS93, AS94].
And most of the research focuses on the frequent itemset mining subproblem, i.e., finding
all frequent itemsets each occurring at more than a minimum frequency (minsup) among all
transactions. Figure 1.1 gives an example of mining all frequent itemsets with minsup =
33% from a given database. Well-known sequential algorithms include Apriori [AS94],
Eclat [ZPOL97a], FP-growth [HPY00], and D-CLUB [LCJL06]. Parallelizations of these
algorithms are discussed in this section, with many other algorithms surveyed in [Zak99].

1.2.1 Apriori-based Algorithms

Most of the parallel ARM algorithms are based on parallelization of Apriori that iteratively
generates and tests candidate itemsets from length 1 to length k until no more frequent
itemsets are found. These algorithms can be categorized into Count Distribution, Data
Distribution and Candidate Distribution methods [AS96, HKK00]. The Count Distribution
method follows a data-parallel strategy and statically partitions the database into horizontal
partitions that are independently scanned for the local counts of all candidate itemsets on
each process. At the end of each iteration, the local counts will be summed up across all pro-
cesses into the global counts so that frequent itemsets can be found. The Data Distribution
method attempts to utilize the aggregate main memory of parallel machines by partitioning
both the database and the candidate itemsets. Since each candidate itemset is counted by
only one process, all processes have to exchange database partitions during each iteration
in order for each process to get the global counts of the assigned candidate itemsets. The
Candidate Distribution method also partitions candidate itemsets but selectively replicates
instead of partition-and-exchanging the database transactions, so that each process can

Parallel Data Mining Algorithms for Association Rules and Clustering 1-3

2

2

1

0

2

0

1

1

1

1

1

2

1

2

1

1

0

2

4

5

3

2

3

4

TID Items

a d b

f d b e

a e f c

a c f e

a d e

f e b

P1

P2

P0

Process Number

(a) Database Partitioning

Item
P0 P1 P2

Global

Count

Local Counts

f

e

d

c

b

a

P0 P1 P2

Global

Count

Local Counts
4−itemset

0 1 1 2acef

P0 P1 P2

Global

Count

Local Counts
2−itemset

(b) Mining Frequent 1−itemsets (c) Mining Frequent 2−itemsets

(e) Mining Frequent 4−itemsets
P0 P1 P2

Global

Count

Local Counts
3−itemset

(d) Mining Frequent 3−itemsets

1

0

1

1

1

0

0

0

0

0

1

2

1

0

0

0

0

0

2

ef

df

de

cf

ce

cd

bf

bd

bc

be

af

ae

2

1

1

0

0

0

2

1

0

2

0

0

1

0

0

1

1

0

0

1

0

0

1

1

4

1

2

2

2

0

2

2

0

2

2

3

2

2

0

1

1

1

1

0

0

bde

aef

acf

ace

cef

ade

bef

0

1

1

1

1

1

0

1

2

2

2

2

1

2

1

1

ad

ac

0

0

1

1

100 1ab

1

2

3

4

5

6

FIGURE 1.2: Mining frequent itemstes in parallel using the Count Distribution algorithm
with 3 processes. The itemset columns in (b), (c), (d) and (e) list the candidate itemsets.
Itemsets that are found infrequent are grayed out.

proceed independently. Experiments show that the Count Distribution method exhibits
better performance and scalability than the other two methods. The steps for the Count
Distribution method are generalized as follows for distributed-memory multiprocessors.

(1) Divide the database evenly into horizontal partitions among all processes;
(2) Each process scans its local database partition to collect the local count of

each item;
(3) All processes exchange and sum up the local counts to get the global counts

of all items and find frequent 1-itemsets;
(4) Set level k = 2;
(5) All processes generate candidate k-itemsets from the mined frequent (k-1)-

itemsets;
(6) Each process scans its local database partition to collect the local count of

each candidate k-itemset;
(7) All processes exchange and sum up the local counts into the global counts

of all candidate k-itemsets and find frequent k-itemsets among them;
(8) Repeat (5) - (8) with k = k + 1 until no more frequent itemsets are found.

As an example, to mine all frequent itemsets in Figure 1.1, the Count Distribution algo-
rithm needs to scan the database 4 times to count the occurrences of candidate 1-itemsets,
2-itemsets, 3-itemsets, and 4-itemsets respectively. As illustrated in Figure 1.2, the counting
workload in each scan is distributed over 3 processes in such a way that each process scans
only an assigned partition (1/3) of the whole database. The three processes proceed in
parallel and each one counts the candidate itemsets locally from its assigned transactions.
Summation of the local counts for one itemset generates the global count that is used to

1-4

determine the support of that itemset. The generation and counting of candidate itemsets
is based on the same procedures as in Apriori.

In the Count Distribution algorithm, communication is minimized since only the counts
are exchanged among the processes in each iteration, i.e., in step (3) and (7). In all other
steps, each process works independently, relying only on its local database partition. How-
ever, since candidate and frequent itemsets are replicated on all process, the aggregate
memory is not utilized efficiently. Also, the replicated work of generating those candidate
itemsets and selecting frequent ones among them on all processes can be very costly if there
are too many such itemsets. In that case, the scalability will be greatly impaired when the
number of processes increases. If on a shared-memory machine, since candidate/frequent
itemsets and their global counts can be shared among all processes, only one copy of them
needs to be kept. So the tasks of getting global counts, generating candidate itemsets
and finding frequent ones among them, as in steps (3), (5) and (7), can be subdivided
instead of being repeated among all processes. This actually leads to another algorithm,
CCPD [ZOPL96], which works the same way as the Count Distribution algorithm in other
steps. Nevertheless, both algorithms cannot avoid the expensive cost of database scan and
inter-process synchronization per iteration.

1.2.2 Vertical Mining

To better utilize the aggregate computing resources of parallel machines, a localized al-
gorithm [ZPL97] based on parallelization of Eclat was proposed and exhibited excellent
scalability. It makes use of a vertical data layout by transforming the horizontal database
transactions into vertical tid-lists of itemsets. By name, the tid-list of an itemset is a sorted
list of ID’s for all transactions that contain the itemset. Frequent k-itemsets are organized
into disjoint equivalence classes by common (k-1)-prefixes, so that candidate (k+1)-itemsets
can be generated by joining pairs of frequent k-itemsets from the same classes. The support
of a candidate itemset can then be computed simply by intersecting the tid-lists of the two
component subsets. Task parallelism is employed by dividing the mining tasks for different
classes of itemsets among the available processes. The equivalence classes of all frequent
2-itemsets are assigned to processes and the associated tid-lists are distributed accordingly.
Each process then mines frequent itemsets generated from its assigned equivalence classes
independently, by scanning and intersecting the local tid-lists. The steps for the parallel
Eclat algorithm are presented below for distributed-memory multiprocessors.

(1) Divide the database evenly into horizontal partitions among all processes;
(2) Each process scans its local database partition to collect the counts for all

1-itemsets and 2-itemsets;
(3) All processes exchange and sum up the local counts to get the global counts

of all 1-itemsets and 2-itemsets, and find frequent ones among them;
(4) Partition frequent 2-itemsets into equivalence classes by prefixes;
(5) Assign the equivalence classes to processes;
(6) Each process transforms its local database partition into vertical tid-lists

for all frequent 2-itemsets;
(7) Each process exchanges the local tid-lists with other processes to get the

global ones for the assigned equivalence classes;
(8) For each assigned equivalence class on each process, recursively mine all

frequent itemsets by joining pairs of itemsets from the same equivalence
class and intersecting their corresponding tid-lists.

Parallel Data Mining Algorithms for Association Rules and Clustering 1-5

3 4
6

3
5

4
5
6

1
3

1
2

1
2

4
6

4
6

1
5

1 1
2
4
6

5 4
6

4
6

4
6

1 1 1
2

4
6

4
6

1
2
3

4
6

1
3
5

1
2
4
6

1
2
4
5
6

3
4
5
6

4
6

acd

ab ac ad ae af bc bd be bf cd ce cf de df ef

ace acf ade adf aef bde bdf bef cef

acef

b c da e f

P0 P1

FIGURE 1.3: Mining frequent itemsets using the parallel Eclat algorithm. Each itemset is
associated with its tid-list. Itemsets that are found infrequent are grayed out.

Step (1) through (3) works in a similar way as in the Count Distribution algorithm. In
step (5), the scheduling of the equivalence classes on different processes needs to be carefully
designed in a manner of minimizing the workload imbalance. One simple approach would
be to estimate the workload for each class and assign the classes in turn in descending
workload order to the least loaded process. Since all pairs of itemsets from one equivalence
class will be computed to mine deeper level itemsets,

(
s
2

)
can be used as the estimated

workload for an equivalence class of s itemsets. Other task scheduling mechanisms can also
be applied once available. Steps (6) and (7) construct the tid-lists for all frequent 2-itemsets
in parallel. As each process scans only one horizontal partition of the database, it gets a
partial list of transaction ID’s for each itemset. Concatenating the partial lists of an itemset
from all processes will generate the global tid-list covering all the transactions. In many
cases, the number of frequent 2-itemsets can be so large that assembling all their tid-lists
may be very costly in both processing time and memory usage. As an alternative, tid-
lists of frequent items can be constructed instead and selectively replicated on all processes
so that each process has the tid-lists of all the member items in the assigned equivalence
classes. However, this requires generating the tid-list of a frequent 2-itemset on the fly in
the later mining process, by intersecting the tid-lists of the two element items. Step (8)
is the asynchronous phase where each process mines frequent itemsets independently from
each of the assigned equivalence classes, relying only on the local tid-lists. Computing on
each equivalence class usually generates a number of child equivalence classes that will be
computed recursively.

Taking Figure 1.1 as an example, Figure 1.3 illustrates how the algorithm mines all
frequent itemsets from one class to the next using the intersection of tid-lists. The frequent
2-itemsets are organized into 5 equivalence classes that are assigned to 2 processes. Process

1-6

P0 will be in charge of the further mining task for one equivalence class, {ac, ad, ae, af},
while process P1 will be in charge of two, {bd, be, bf} and {ce, cf}. The rightmost classes,
{de} and {ef}, do not have any further mining task associated. The two processes then
proceed in parallel, without any data dependence across them. For example, to mine the
itemset “ace”, process P0 only needs to join the two itemsets, “ac” and “ae”, and intersect
their tid-lists, “46” and “456”, to get the result tid-list “46”. At the same time, process
P1 can be independently mining the itemset “bef” from “be”, “bf” and their associated
tid-lists that are locally available.

There are four variations of parallel Eclat - ParEclat, ParMaxEclat, ParClique, and Par-
MaxClique - as discussed in [ZPOL97b]. All of them are similar in parallelization and only
differ in the itemset clustering techniques and itemset lattice traversing strategies. ParE-
clat and ParMaxEclat use prefix-based classes to cluster itemsets, and adopt bottom-up
and hybrid search strategies respectively to traverse the itemset lattice. ParClique and
ParMaxClique use smaller clique-based itemset clusters, with bottom-up and hybrid lattice
search, respectively.

Unlike the Apriori-based algorithms that need to scan the database as many times as
the maximum length of frequent itemsets, the Eclat-based algorithms scan the database
only three times and significantly reduces the disk I/O cost. Most importantly, the depen-
dence among processes is decoupled right in the beginning so that no communication or
synchronization is required in the major asynchronous phase. The major communication
cost comes from the exchange of local tid-lists across all processes when the global tid-lists
are set up. This one time cost can be amortized by later iterations. For better parallelism,
however, the number of processes should be much less than that of equivalence classes (or
cliques) for frequent 2-itemsets, so that task assignment granularity can be relatively fine to
avoid workload imbalance. Also, more effective workload estimation functions and better
task scheduling or workload balancing strategies are needed in order to guarantee balanced
workload for various cases.

1.2.3 Pattern-Growth Method

In contrast to the previous itemset generation-and-test approaches, the pattern-growth
method derives frequent itemsets directly from the database without the costly generation
and test of a large number of candidate itemsets. The detailed design is explained in
the FP-growth algorithm. Basically, it makes use of a novel frequent-pattern tree (FP-
tree) structure where the repetitive transactions are compacted. Transaction itemsets are
organized in that frequency-ordered prefix tree such that they share common prefix part as
much as possible, and re-occurrences of items/itemsets are automatically counted. Then the
FP-tree is traversed to mine all frequent patterns (itemsets). A partitioning-based, divide-
and-conquer strategy is used to decompose the mining task into a set of smaller subtasks
for mining confined patterns in the so-called conditional pattern bases. The conditional
pattern base for each item is simply a small database of counted patterns that co-occur
with the item. That small database is transformed into a conditional FP-tree that can be
processed recursively.

Due to the complicated and dynamic structure of the FP-tree, it may not be practical to
construct a single FP-tree in parallel for the whole database. However, multiple FP-trees
can be easily built in parallel for different partitions of transactions. And conditional pattern
bases can still be collected and transformed into conditional FP-trees for all frequent items.
Thereafter, since each conditional FP-tree can be processed independently, task parallelism
can be achieved by assigning the conditional FP-trees of all frequent items to different
processes as in [ZEHL01, PK03]. In general, the FP-growth algorithm can be parallelized

Parallel Data Mining Algorithms for Association Rules and Clustering 1-7

root

b:2

d:1

a:1e:2

b:1

d:1

f:2

root

e:3

a:3

f:2 d:1

c:2

1
2
3

TID Items (sorted)

e f b d
e f b
a b d

4
5
6

TID Items (sorted)

e a f c
e a d
e a f c

e:5

a:4

f:4

b:3

d:3

c:2

a:4

f:4

b:3

d:3

c:2

e:5

Header TableHeader Table

Local
Database
Partition

Local
FP−tree

P0 P1

FIGURE 1.4: Construction of local FP-trees from local database partitions over 2 processes.
In the transactions and header tables, items are sorted by frequencies in descending order.

in the following steps, assuming distributed-memory multiprocessors.

(1) Divide the database evenly into horizontal partitions among all processes;
(2) Scan the database in parallel by partitions and mine all frequent items;
(3) Each process constructs a local FP-tree from its local database partition

with respect to the global frequent items (items are sorted by frequencies
in descending order within each scanned transaction);

(4) From the local FP-tree, each process generates local conditional pattern
bases for all frequent items;

(5) Assign frequent items (hence their associated conditional FP-trees) to pro-
cesses;

(6) For each frequent item, all its local conditional pattern bases are accu-
mulated and transformed into the conditional FP-tree on the designated
process;

(7) Each process recursively traverses each of the assigned conditional FP-trees
to mine frequent itemsets in the presence of the given item.

Like its sequential version, the parallel algorithm also proceeds in two stages. Step (1)
through (3) is the first stage to construct the multiple local FP-trees from the database
transactions, Using the transactions in the local database partition, each process can build
its own FP-tree independently. For each transaction, global frequent items are selected
and sorted by frequency in descending order, and then fed to the local FP-tree as follows.
Starting from the root of the tree, check if the first item exists as one of the children of the
root. If it exists then increase the counter for this node, or else add a new child node under
root for this item with 1 count. Then, taking the current item node as the new temporary
root, repeat the same procedure for the next item in the sorted transaction. The nodes
of each item are linked together with the head in the header table. Figure 1.4 shows the
parallel construction of the multiple local FP-trees on 2 processes for the example database
in Figure 1.1.

The second stage is to mine all frequent itemsets from the FP-trees, as in step (4) to (7).
The mining process starts with a bottom-up traversal of the local FP-trees to generate the

1-8

root
root root root

root

Conditional

Conditional
Pattern
Base

Number
Process

FP−tree

e:5 f:4

(e:2)

(e:2, a:2)

e:3
a:2
e:4

f:2
e:2 b:2

e:2

a:2

e:3
e:4

a:2

e:2 b:1

e:1

a:2

b:1 e:1

Item

P0

f:2

(e:2, f:2)

(a:1)

b:3a:4

(e:3)

d:3

(e:1, f:1, b:1)
(a:1, b:1)
(e:1, a:1)

e:5 a:4
ea:3

f:4
ef:4 af:2
eaf:2

fb:2eb:2
b:3

efb:2
bd:2ad:2

c:2
ac:2
afc:2 aec:2efc:2

fc:2ec:2

aefc:2

f:2
e:2
a:2

a:2

e:2

f:2

(e:2, a:2, f:2)

c:2

P1

Itemsets
Frequent
Mined d:3

ed:2

FIGURE 1.5: Mining frequent itemsets from conditional pattern bases and conditional
FP-trees in parallel.

conditional pattern bases starting from their respective items in the header tables. Each
entry of a conditional pattern base is a list of items that precede a certain item on a path
of a FP-tree up to the root, with the count of each item set to be that of the considered
item node along that path. The assignment of items among processes will be based on
some workload estimation heuristic, which is part of ongoing research. For simplicity,
the size of the conditional pattern base can be used to estimate the workload associated
with an item, and items in the header table can be assigned to processes consecutively.
Transforming the conditional pattern bases into conditional FP-trees is no different than
constructing FP-trees from database transactions, except that the counter increment is the
exact count collected for each item instead of 1. For each frequent item, as each local FP-
tree will derive only part of the conditional pattern base, building the global conditional
FP-tree needs the accumulation of local conditional pattern bases from all processes. Then
a call to the recursive FP-growth procedure on each conditional FP-tree will generate all
the conditional patterns on the designated process independently. If on a shared-memory
machine, since the multiple FP-trees can be made accessible to all processes, the conditional
pattern base and conditional FP-tree can be generated on the fly for the designated process
to mine the conditional patterns, for one frequent item after another. This can largely
reduce memory usage by not generating all conditional pattern bases and conditional FP-
trees for all frequent items at one time. Figure 1.5 gives the conditional pattern bases and
conditional FP-trees for all frequent items. They are assigned to the two processes. Process
P0 computes on the conditional FP-trees for items a, f and b, while process P1 does those
for d and c. Item e has an empty conditional pattern base and does not have any further
mining task associated. Frequent itemsets derived from the conditional FP-tree of each
item are listed as the conditional patterns mined for the item.

In parallel FP-growth, since all the transaction information is compacted in the FP-trees,
no more database scan is needed once the trees are built. So the disk I/O is minimized
by scanning the original database only twice. The major communication/synchronization
overhead lies in the exchange of local conditional pattern bases across all processes. Since
the repetitive patterns are already merged, the total size of the conditional pattern bases

Parallel Data Mining Algorithms for Association Rules and Clustering 1-9

is usually much smaller than the original database, resulting in relatively low communica-
tion/synchronization cost.

1.2.4 Mining by Bitmaps

All previous algorithms work on ID-based data that is either organized as variable-length
records or linked by complicated structures. The tedious one-by-one search/match oper-
ations and the irregular layout of data easily become the hurdle for higher performance
which can otherwise be achieved as in fast scientific computing over well-organized matrices
or multi-dimensional arrays.

Based on D-CLUB, a parallel bitmap-based algorithm PD-CLUB can be developed to
mine all frequent itemsets by parallel adaptive refinement of clustered bitmaps using a dif-
ferential mining technique. It clusters the database into distributed association bitmaps,
applies a differential technique to digest and remove common patterns, and then indepen-
dently mines each remaining tiny bitmaps directly through fast aggregate bit operations
in parallel. The bitmaps are well organized into rectangular two-dimensional matrices and
adaptively refined in regions that necessitate further computation.

The basic idea of parallelization behind PD-CLUB is to dynamically cluster the itemsets
with their associated bit-vectors, and divide the task of mining all frequent itemsets into
smaller ones, each to mine a cluster of frequent itemsets. Then the subtasks are assigned to
different processes and accomplished independently in parallel. A dynamic load balancing
strategy can be used to reassign clusters from overloaded processes to free ones. The detailed
explanation of the algorithm will be based on a number of new definitions listed below.

• FI-cluster - A FI-cluster is an ordered set of frequent itemsets. Starting from
the FI-cluster (C0) of all frequent 1-itemsets (sorted by supports in ascending
order), other FI-clusters can be defined recursively as follows: from an existing
FI-cluster, joining one itemset with each of the succeeding ones also generates a
FI-cluster if only frequent itemsets are collected from the results. Itemsets can
be reordered in the generated FI-cluster.

• Bit-vector - For a given database of d transactions, each itemset is associated
with a bit-vector, where one bit corresponds to each transaction and is set to 1
iff the itemset is contained in that transaction.

• Clustered Bitmap - For each FI-cluster, the bit-vectors of the frequent itemsets
are also clustered. Laying out these vertical bit-vectors side by side along their
itemsets in the FI-cluster will generate a two-dimensional bitmap, called the
clustered bitmap of the FI-cluster.

• dCLUB - In the clustered bitmap of a FI-cluster, the following patterned bit
rows are to be removed: e-rows (each with all 0’s), a-rows (each with only one
1), p-rows (each with zero or more leading 0’s followed by trailing 1’s), o-rows
(each with only one 0), and c-rows (each with zero or more leading 1’s followed
by trailing 0’s). The remaining rows with different bits mixed disorderly form
the differential clustered bitmap (dCLUB) of the FI-cluster.

Recursively generating FI-clusters from the initial C0 results in a cluster tree that covers
all frequent itemsets exactly once. The root of the tree is C0, each node is a FI-cluster
(or simply a cluster), and the connection between two FI-clusters denotes the generation
relationship. Taking the frequent itemsets in Figure 1.1 as an example, Figure 1.6(a) shows
the cluster tree of all frequent itemsets. For instance, FI-cluster {caf, cae} is generated
from {ca, cf, ce} by joining itemset “ca” with “cf” and “ce” respectively.

1-10

b d a efc

af ae

caecaf

0
0
0
1
0
1

caf cae cfe bfe afe

0
0
0
1
0
1

0
0
0
1
0
1

0
0
0
1
0
1

1
1
0
0
0
0

0
0
0
1
0
1

ca cf ce bd bf be da de af ae fe

0
0
0
1
0
1

0
0
0
1
0
1

0
0
0
1
0
1

1
0
1
0
0
0

1
1
0
0
0
0

1
1
0
0
0
0

0
0
1
0
1
0

1
0
0
0
1
0

0
0
0
1
0
1

0
0
0
1
1
1

1
1
0
1
0
1

c b d a ef

0 1 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 1 1
0 0 11 0 1

1111 0 0

(a) (b)

bf be da de

cfe bfe afe

ce bdca fe

cafe

cafe

cf

FIGURE 1.6: Mining frequent itemsets by clustered bitmaps. (a) Cluster tree of frequent
itemsets. (b) Clustered bitmaps.

Given the initial FI-cluster C0, all frequent itemsets can be generated by traversing the
cluster tree top down. Bit-vectors are used to compute the supports of the generated
itemsets. The count of an itemset in the database is equal to the number of 1’s contained in
its bit-vector. Since the bitwise AND of the bit-vectors for two itemsets results in the bit-
vector of the joined itemset, the clustered bitmap of a given FI-cluster sufficiently contains
the count information for all the itemsets and their combinations. So a subtree of FI-
clusters can be independently mined from the root FI-cluster and its clustered bitmap, by
generating the progeny FI-clusters and their associated clustered bitmaps as follows. When
pairs of itemsets in a parent FI-cluster are joined to generate a child FI-cluster as described
in the definition, the corresponding bit-vectors from the parent’s clustered bitmap are also
operated via bitwise AND to form the child’s clustered bitmap. Figure 1.6(b) shows how
the clustered bitmaps are bound with their FI-clusters so that all frequent itemsets can be
mined with supports computed along the cluster tree hierarchy.

In most cases, the cluster bitmaps may be too big to be processed efficiently, as they
could be very sparse and contain too many obvious patterns as in e-rows, a-rows, p-rows,
o-rows and c-rows. So dCLUB’s are used in place of clustered bitmaps. To make e-rows
and p-rows take the majority in a clustered bitmap, the itemsets in the FI-cluster can be
reordered by ascending counts of 1’s in their bit columns. With most of the sparse as
well as dense rows removed, the size of the bitmap can be cut down by several orders of
magnitude. Generating dCLUB’s along the cluster tree hierarchy is basically the same as
doing clustered bitmaps, except that those patterned rows are to be removed. Removed
rows are digested and turned into partial supports of the itemsets to be mined, through a
number of propagation counters that can carry over from parent to children clusters. The

Parallel Data Mining Algorithms for Association Rules and Clustering 1-11

support of an itemset is then computed by combining the count obtained from the dCLUB
and that from the propagation counters.

In practice, the algorithm starts by building the dCLUB’s for the level-2 clusters (FI-
clusters of frequent 2-itemsets) from the original database. It then recursively refines each
of the dCLUB’s along the cluster tree hierarchy, via bitwise AND of the corresponding bit
columns. After each refinement, only selected rows and columns of the result bitmap are
to be further refined. Selection of rows is achieved by the removal of those patterned rows,
while selection of columns is by retaining only the columns for frequent itemsets. That gives
the result dCLUB actually so that it can be recursively refined. Propagation counters are
incrementally accumulated along the traversing paths of the cluster tree when the patterned
rows are digested and removed. The dCLUB’s are organized into a two-dimensional matrix
of integers, where each bit column is grouped into a number of 32-bit integers. So generating
children dCLUB’s from their parents is performed by fast aggregate bit operations in arrays.
Since the FI-clusters are closely bound to their dCLUB’s and the associated propagation
counters, refinement of the dCLUB’s will directly generate the frequent itemsets with exact
supports. The refinement stops where the dCLUB’s become empty, and all frequent itemsets
in the subtree rooted at the corresponding FI-cluster can then be inferred, with supports
calculated directly from the propagation counters.

The following steps outline the spirit of the PD-CLUB algorithm for shared-memory
multiprocessors.

(1) Scan the database in parallel by horizontal partitions and mine frequent
1-itemsets and 2-itemsets by clusters;

(2) For clusters of frequent 2-itemsets, build their partial dCLUB’s over the local
database partition on each process, recording local propagation counters at
the same time;

(3) Combine the partial dCLUB’s into global ones for the level-2 clusters, and
sum up the local propagation counters to get the global ones for each of the
itemsets;

(4) Sort the level-2 clusters by estimated workloads in descending order;
(5) Assign each level-2 cluster in turn to one of the free processes and recursively

refine its dCLUB to mine all frequent itemsets in the FI-cluster subtree
rooted at that cluster.

In step (1), the count distribution method is used in mining frequent 1-itemsets and 2-
itemsets. The dCLUB’s and propagation counters for the level-2 clusters are initially set up
in steps (2) and (3). The subsequent mining tasks are dynamically scheduled on multiple
processes, as in steps (4) and (5). The granularity of task assignment is based on the
workload associated with mining the whole FI-cluster subtree rooted at each of the level-2
clusters. The workload for each cluster can be estimated as the size of the dCLUB that
is to be refined. Due to the mining independence between subtrees belonging to different
branches of the cluster tree, each of the assigned tasks can be independently performed on
the designated process. Each of the subtrees is mined recursively in a depth-first way on a
single process to better utilize the cache locality. Since tasks are assigned in a manner from
coarse to fine grain, workload balance can be fairly well kept among all processes. However,
it may happen that there are not enough clusters to be assigned to some free processes
while others are busy with some extra work. To address this issue, a fine tune measure can
be taken in step (5) to reassign branches of clusters to be mined on a busy process to a
free one. It works as follows. The initial tasks from step (4) are added to an assignment
queue and assigned to processes as usual. Whenever a process finds the queue empty after

1-12

P1P0

Assignment
Queue

5

2 4

6

2 4

6

1

3

FIGURE 1.7: Dynamic cluster reassignment. Extra cluster subtrees originally to be mined
by process P0 (which is overloaded) are reassigned for the free process P1 to mine, via a
global assignment queue. Clusters in solid lines are mined locally, while those in dotted
lines are mined on remote processes. Clusters are numbered by the order in which they are
generated in full.

it generates a new cluster, it goes on to mine only the leftmost subtree of the cluster. The
further mining task for the right part of that cluster is added to the queue so that it can be
reassigned for some free process to mine all other subtrees. After the queue becomes filled
again, all processes settle back to independent mining of their assigned cluster subtrees in
full in a depth-first way. Figure 1.7 shows such an example of cluster reassignment among 2
processes. At some moment when the assignment queue is empty, process P1 becomes free
while process P0 is mining cluster 1. After generating cluster 1, P0 adds the right part of
it to the queue and continues to mine only its left subtree, i.e., clusters 3, 5 and 6. At the
same time, P1 gets the new assignment to mine clusters 2 and 4, and the queue becomes
empty again. Then cluster 2 and 3 are generated successively on P1 and P0. Cluster 2
does not have subtrees while cluster 3 has some. So P1 continues mining cluster 4, and P0
moves forward to mine cluster 5, adding right part of cluster 3 to the queue for P1 to mine
cluster 6 later. P0 and P1 do approximately equal amounts of work and finish roughly at
the same time.

For distributed-memory multiprocessors, due to the expensive synchronization and com-
munication cost, the algorithm can use a static task scheduling strategy instead to assign
tasks as equally as possible at the very beginning. Then each process can perform their
tasks independently without communicating or being synchronized with other processes.
The basic steps can be expressed as follows.

(1) Scan the database in parallel by horizontal partitions and mine frequent
1-itemsets and 2-itemsets by clusters;

(2) For clusters of frequent 2-itemsets, build their partial dCLUB’s over the
local partition of database on each process;

(3) Initially assign the level-2 clusters to processes;
(4) For the assigned clusters on each process, combine the partial dCLUB’s

from all processes to get the global ones;
(5) Each process recursively refines the dCLUB to mine all frequent itemsets

for each assigned cluster.

Parallel Data Mining Algorithms for Association Rules and Clustering 1-13

The first two steps work the same way as previously. In step (3), the mining tasks for
the cluster subtrees rooted at the level-2 clusters are pre-scheduled on all processes. A
greedy scheduling algorithm can be used to sort the level-2 clusters by estimated workloads
in descending order and then assign the clusters in turn to the least loaded process. Com-
munication is needed in step (4) for all processes to exchange partial dCLUB’s. The global
dCLUBs for the level-2 clusters are constructed only on the designated processes so that
the refinement of each dCLUB in step (5) can be performed independently. For a workload
balancing purpose, cluster reassignment is possible by sending a FI-cluster, its dCLUB and
the associated propagation counters as a unit from one process to another. Then the clus-
ter subtree rooted at that FI-cluster can be mined on the second process instead of on the
originally designated one. However, since the tasks are already pre-scheduled, the ongoing
processes need a synchronization mechanism to detect the moment when cluster reassign-
ment is needed and release some tasks for rescheduling. A communication mechanism is
also needed for the source process to send data to the destination process. A dedicated
communication thread can be added to each process for such purposes.

1.2.5 Comparison

In general performance, experiments show that D-CLUB performs the best, followed by
FP-growth and Eclat, with Apriori doing the worst. Similar performance ranking holds for
their parallel versions. However, each of them has its own advantages and disadvantages.

Among all of the parallel ARM algorithms, the Apriori-based algorithms are the most
widely used because of the simplicity and easy implementation. Also association rules can
be directly generated on the way of itemset mining, because all the subset information
is already computed when candidate itemsets are generated. These algorithms scale well
with the number of transactions, but may have trouble handling too many items and/or
numerous patterns as in dense databases. For example, in the Count Distribution method,
if the number of candidate/frequent itemsets grows beyond what can be held in the main
memory of each processor, the algorithm can not work well no matter how many processors
are added. The performance of these algorithms is dragged behind mainly by the slow
itemset counting procedure that repeatedly searches the profuse itemsets against the large
amount of transactions.

The Eclat-based algorithms have the advantage of fast support computing through tid-list
intersection. By independent task parallelism, they gain very good speedups on distributed-
memory multiprocessors. The main drawback of these algorithms is that they need to
generate and redistribute the vertical tid-lists of which the total size is comparable to that
of the original database. Also, for a long frequent itemset, the major common parts of
the tid-lists are repeatedly intersected for all its subsets. To alleviate this situation, diffset
optimization [ZG03] has been proposed to track only the changes in tid-lists instead of
keeping the entire tid-lists through iterations so that it can significantly reduce the amount
of data to be computed.

Parallel FP-growth handles dense databases very efficiently and scales particularly well
with the number of transactions, benefiting from the fact that repeated or partially repeated
transactions will be merged into paths of the FP-trees any way. However, this benefit
does not increase accordingly with the number of processes, because multiple FP-trees for
different sets of transactions are purely redundant. The benefit is also very limited for
sparse databases with a small number of patterns scattered. The algorithm can handle a
large number of items by just assigning them to multiple processes, without worrying about
the exponentially large space of item/itemset combinations.

The PD-CLUB algorithm is self-adaptive to the database properties, and can handle both

1-14

dense and sparse databases very efficiently. With the data size and representation funda-
mentally improved in the differential clustered bitmaps, the mining computation is also
substantially reduced and simplified into fast aggregate bit operations in arrays. Compared
to parallel Eclat, the dCLUB’s used in PD-CLUB have much smaller sizes than the tid-lists
or even the diffsets, which results in much less communication cost when the dCLUB’s
need to be exchanged among processes. The independent task parallelism plus the dy-
namic workload balancing mechanism gives the algorithm near linear speedups on multiple
processes.

1.3 Parallel Clustering Algorithms

Clustering is to group data objects into classes of similar objects based on their attributes.
Each class, called a cluster, consists of objects that are similar between themselves and
dissimilar to objects in other classes. The dissimilarity or distance between objects is
measured by the given attributes that describe each of the objects. As an unsupervised
learning method, clustering is widely used in many applications, such as pattern recognition,
image processing, gene expression data analysis, market research, and so on.

Existing clustering algorithms can be categorized into partitioning, hierarchical, density-
based, grid-based and model-based methods [HK00], each generating very different clusters
for various applications. Representative algorithms are introduced and their parallelizations
are studied in this section.

1.3.1 Parallel k-means

As a partitioning method, the k-means algorithm [Mac67] takes the input parameter, k, and
partitions a set of n objects into k clusters with high intra-cluster similarity and low inter-
cluster similarity. It starts by randomly selecting k objects as the initial cluster centroids.
Each object is assigned to its nearest cluster based on the distance between the object and
the cluster centroid. It then computes the new centroid (or mean) for each cluster. This
process is repeated until the sum of squared-error (SSE) for all objects converges. The SSE
is computed by summing up all the squared distances, one between each object and its
nearest cluster centroid.

In parallel k-means [DM00], data parallelism is used to divide the workload evenly among
all processes. Data objects are statically partitioned into blocks of equal sizes, one for each
process. Since the main computation is to compute and compare the distances between
each object and the cluster centroids, each process can compute on its own partition of
data objects independently if the k cluster centroids are maintained on all processes. The
algorithm is summarized in the following steps.

(1) Partition the data objects evenly among all processes;
(2) Select k objects as the initial cluster centroids;
(3) Each process assigns each object in its local partition to the nearest cluster,

computes the SSE for all local objects, and sums up local objects belonging
to each cluster;

(4) All processes exchange and sum up the local SSE’s to get the global SSE
for all objects and compute the new cluster centroids;

(5) Repeat (3) - (5) until no change in the global SSE.

The algorithm is proposed on distributed-memory multiprocessors but works similarly on

Parallel Data Mining Algorithms for Association Rules and Clustering 1-15

.
..

.. .

.... . .
..

.. .

.... . .
... .

.
.

.. . .

.
..

.. .

.... . .
..

.. .

.
.. . . .

..
.. .

.
.. . .

.

.

.

.

.

.

FIGURE 1.8: k-means clustering (k = 2) on two processes. One process computes on the
objects in gray color, and the other is in charge of those in black. Cluster centroids, marked
by ‘+’, are maintained on both processes. Circles in solid lines denote the cluster formation
in each iteration, based on the current cluster centroids. Dashed circles mark the previous
cluster formation that is used to compute new cluster centroids.

shared-memory systems as well. Step (3) is the major computation step where clusters are
formed. Objects belonging to one cluster may be distributed over multiple processes. In
step (4), each of the new cluster centroid is computed in the same way as the global SSE
for all objects, except that the summational result will be further divided by the count of
objects in the cluster in order to get the mean. Figure 1.8 shows an example of k-means
clustering for k = 2. The data objects are partitioned among 2 processes and the two
clusters are identified through three iterations.

In parallel k-means, the workloads per iteration are fairly well balanced between processes,
which results in linear speedups when the number of data objects is large enough. Between
iterations, there is a small communication/synchronization overhead for all processes to
exchange the local SSE’s and the local member object summations for each cluster. The
algorithm needs a full scan of the data objects in each iteration. For large disk-resident data
sets, having more processors could result in super-linear speedups as each data partition
then may be small enough to fit in the main memory, avoiding disk I/O except in the first
iteration.

1.3.2 Parallel Hierarchical Clustering

Hierarchical clustering algorithms are usually applied to bioinformatics procedures such as
grouping of genes and proteins with similar structure, reconstruction of evolutionary trees,
gene expression analysis, etc. An agglomerative approach is commonly used to recursively
merge pairs of closest objects or clusters into new clusters until all objects are merged into
one cluster or until a termination condition is satisfied. The distance between two clusters
can be determined by single link, average link, complete link or centroid-based metrics. The
single link metric uses the minimum distance between each pair of inter-cluster objects,
average link uses the average distance, and complete link uses the maximum. The centroid-
based metric uses the distance between the cluster centroids. Figure 1.9 gives an example

1-16

.A
B

C

D

E

F.
.

.
..

ABCDEF

DEF

CA B

EF

ABC

AB

FED

FIGURE 1.9: Example of hierarchical clustering.

of agglomerative hierarchical clustering using the single link metric. The dendrogram on
the right shows which clusters are merged at each step.

The hierarchical mergence of clusters can be parallelized by assigning clusters to differ-
ent processes so that each process will be in charge of a disjoint subset of clusters, as in
[Ols95]. When two clusters are merged, they are released from the owner processes, and
the new cluster will be assigned to the least loaded process. The basic parallel algorithm
for agglomerative hierarchical clustering takes the following steps.

(1) Initially treat each data object as a cluster and assign clusters among all
processes evenly so that each process is responsible for a disjoint subset of
clusters;

(2) Calculate the distance between each pair of clusters in parallel, maintaining
a nearest neighbor for each cluster;

(3) All processes synchronously find the closest pair of clusters, agglomerate
them into a new cluster, and assign it to the least loaded process;

(4) Calculate the distance between the new cluster and each of the remaining old
clusters and update the nearest neighbor for each cluster on the responsible
process;

(5) Repeat (3) - (5) until there is only one cluster remaining or certain termi-
nation conditions are satisfied.

The algorithm works for both shared and distributed memory multiprocessors, though
the latter case requires all processes to exchange data objects in the initialization step of
(2). It is crucial to design an appropriate data structure for the parallel computation of the
all-pair distances between clusters. For steps (2), (3) and (4), a two-dimensional array can
be used to store distances between any two clusters. It is distributed over all processes such
that each one is responsible for those rows corresponding to its assigned clusters. Similarly,
the nearest neighbor of each cluster and the associated distance are maintained in a one-
dimensional array, with the responsibility divided among processes accordingly. The closest
pair of clusters can then be easily determined based on the nearest neighbor distances. Step
(3) is a synchronous phase so that all processes know which two clusters are merged. After
two clusters are merged into a new cluster, each process only updates the assigned rows to
get the distances from the assigned clusters to the new cluster. Specifically, the distance
from cluster i to the new cluster is computed from the distances between cluster i and the
two old clusters that are merged, e.g., by taking the less value when the single link metric

Parallel Data Mining Algorithms for Association Rules and Clustering 1-17

A

B

C

D

E

F

10

38

60

60

41

10

26

60

62

44

38

26

50

66

50

60

60

50

38

39

60

62

66

38

20

41

44

50

39

20 P1

C

D

E

F

P0

A B C D FE

Intercluster Distances

B: 10

A: 10

B: 26

E: 38

F: 20

E: 20

Nearest

P0

P1

50

66

50

50

38

39

66

38

20

50

39

20

C D FE

Intercluster Distances

26
60
60
41

26 60 60 41 C: 26

E: 38
F: 20
E: 20

Nearest
Neighbor

Neighbor

AB: 26
AB

AB

(b) After Merge(a) Before Merge

FIGURE 1.10: Compute/update inter-cluster distances and nearest neighbors in parallel
over 2 process. From (a) to (b), clusters “A” and “B” are merged into a new cluster “AB”.
In (b), only entries in bold font require new computation or update.

is used. The nearest neighbor information is then recomputed, taking into account the
newly computed distances. The assignment of the new cluster requires estimation of the
workload on each process. For simplicity, the number of assigned clusters can be used as
the estimated workload, which is pretty effective. Taking Figure 1.9 as an example, Figure
1.10 illustrates how the all-pair distances between clusters and the neighbor information
are divided for 2 process to compute in parallel, before and after the first merge of clusters.
The new cluster “AB” is assigned to process P0.

By task parallelism and employing a dynamic workload balancing strategy, this algorithm
can achieve good speedups when the number of processes is much less than that of clusters.
However, there is some communication and/or synchronization overhead in every step of
cluster agglomeration, because all processes have to obtain the global information to find
the minimum distance between clusters and also have to keep every process informed after
the new cluster has been formed. The algorithm assumes the data structures being able to
be kept in main memory so that it scans the data set only once.

1.3.3 Parallel HOP: Clustering Spatial Data

HOP [EH98], a density-based clustering algorithm proposed in astrophysics, identifies groups
of particles in N-body simulations. It first constructs a KD tree by recursively bisecting
the particles along the longest axis so that nearby particles reside in the same sub-domain.
Then it estimates the density of each particle by its Ndens nearest neighbors that can be
efficiently found by traverse of the KD tree. Each particle is associated to its densest neigh-
bor within its Nhop nearest neighbors. A particle can hop to the next densest particle
and continues hopping until it reaches a particle that is its own densest neighbor. Finally,
HOP derives clusters from groups that consist of particles associated to the same densest
neighbor. Groups are merged if they share a sufficiently dense boundary, according to some
given density threshold. Particles whose densities are less than the density threshold are
excluded from groups.

Besides the cosmological N-body problem, HOP may find its application in other fields,
such as molecular biology, geology and astronomy, where large spatial data sets are to be
processed with similar clustering or neighbor finding procedures.

To parallelize the HOP clustering process, the key idea is to distribute the data particles
across all processes evenly with proper data placement so that the workloads are balanced
and communication cost for remote data access is minimized. The following steps explain the

1-18

...

.
. . .

.

..
.

. .
.

.

.

.
.

.
.

.

. . .
.
.

.
1st

2nd

2nd

3rd

3rd

3rd

3rd

Local
Tree

Decomposition
Domain

Tree

Tree

P0 P1 P3P2

Global
P1

P0

P3

P2

FIGURE 1.11: Two-dimensional KD tree distributed over 4 processes. Each process con-
tains 6 particles. Bucket size is 3 and the global tree has 3 levels. Local tree can be built
concurrently without communication. Every process maintains the same copy of the global
tree.

parallel HOP algorithm [LLC03] in detail, assuming distributed-memory multiprocessors.

(1) Constructing a Distributed KD Tree: The particles are initially distributed
among all processes in blocks of equal sizes. Starting from the root-node of the
KD tree, the algorithm first determines the longest axis d and then finds the
median value m of all particles’ d coordinates in parallel. The whole spatial
domain is bisected into two sub-domains by m. Particles are exchanged between
processes such that the particles whose d coordinates are greater than m go to
one sub-domain and the rest of the particles to the other one. Therefore, an
equal number of particles are maintained in each sub-domain after the bisection.
This procedure is repeated recursively in every sub-domain till the number of
sub-domains is equal to the number of processes. Then, each process continues
to build its own local tree within its domain until the desired bucket size (number
of particles in each leaf) is reached. Note that inter-process communication is
not required in the construction of the local trees.
A copy of the whole tree is maintained on every process so that the communi-
cation overhead incurred at performing search domain intersection test with the
remote local trees at the stages 2 and 3 can be reduced. Therefore, at the end
of this stage, local trees are broadcasted to all processes. As shown in Figure
1.11, the root-node of the KD tree represents the entire simulation domain while
each of the rest tree nodes represent a rectangular sub-domain of its parent node.
The information contained in a non-leaf tree node includes the aggregated mass,
center of mass, number of particles, and domain boundaries. When the KD tree
is completed, particles are divided into spatially-closed regions of approximately
equal number. The advantage of using a KD tree is not only its simplicity but
also the balanced data distribution.

(2) Generating Density: The density of a particle is estimated by its Ndens near-
est neighbors, where Ndens is a user-specified parameter. Since it is possible
that some of the Ndens neighbors of a particle are owned by remote processes,
communication is required to access non-local neighbor particles at this stage.
One effective approach is, for each particle, to perform an intersection test by
traversing the global tree with a given initial search radius r, while keeping track

Parallel Data Mining Algorithms for Association Rules and Clustering 1-19

.
.

.

.

.
.

. .

.

.
.
.

. .
.

.
.

.
. .

.

.

.

.

intersecting with local bucket
intersecting with non−local bucket

p

r
intersecting with non−local bucket

P1

P0

P3

P2

FIGURE 1.12: Intersection test for particle p on process P2 for Ndens = 7. The neighbor-
hood is a spherical region with a search radius r. The neighborhood search domain of p
intersects with the sub-domains of P0 and P3.

of the non-local intersected buckets, as shown in Figure 1.12. If the total number
of particles in all intersected buckets is less than Ndens, the intersection test is
re-performed with a larger radius. Once tree walking is completed for all local
particles, all the remote buckets containing the potential neighbors are obtained
through communication. Note that there is only one communication request to
each remote process to gather the intersected buckets. No further communication
is necessary when searching for its Ndens nearest neighbors. Since the KD tree
displays the value of spatial locality, particle neighbors are most likely located in
the same or nearby buckets. According to the experimental results, the commu-
nication volume is only 10%-20% of the total number of particles. However, with
highly irregular particle distribution, communication costs may increase.
To calculate the density for particle p, the algorithm uses a PQ tree (priority
queue) [CLR90] to maintain a sorted list of particles that are currently the Ndens

nearest neighbors. The root of the PQ tree contains the neighbor farthest from
p. If a new neighbor whose distance to p is shorter than the root, replace the
root with the second farthest one and update the PQ tree. Finally, the particles
remained in the PQ tree are the Ndens nearest neighbors of p.

(3) Hopping: This stage first associates each particle to its highest density neighbor
among its Nhop nearest neighbors that are already stored in the PQ tree generated
at the previous stage. Each particle, then, hops to the highest density neighbor
of its associated neighbor. Hopping to remote particles is performed by first
keeping track of all the remote particles and then by making a communication
request to the owner processes. This procedure may repeat several times until
all the needed non-local particles are already stored locally. Since the hopping is
in density increasing order, the convergence is guaranteed.

(4) Grouping: Particles linked to the same densest particle are defined as a group.
However, some groups should be merged or refined according to the chosen den-

1-20

(a) (b)

FIGURE 1.13: Identify dense units in two dimensional grids. (a) uses a uniform grid size,
while (b) uses adaptive grid sizes by merging fine bins into adaptive grid bins in each
dimension. Histograms are built for all dimensions.

sity thresholds. Thus, every process first builds a boundary matrix for the groups
constructed from its local particles and then exchanges the boundary matrix
among all processes. Particles whose densities are less than a given threshold are
excluded from groups and two groups are merged if their boundary satisfies some
given thresholds.

The parallel HOP clustering algorithm distributes particle data evenly among all processes
to guarantee balanced workload. It scans the data set only once and stores all the particle
data in the distributed KD tree over multiple processes. This data structure helps to
minimize inter-process communication as well as improves the neighbor search efficiency,
as the spatially closed particles are usually located in the same buckets or a very few
neighbor buckets. The communication cost comes from the particle redistribution during
the KD tree construction and the remote particle access in the neighbor-based density
generation. Experiments showed that it gained good speedups on a number of different
parallel machines.

1.3.4 Clustering High-Dimensional Data

For high-dimensional data, grid-based clustering algorithms are usually used. CLIQUE
[AGGR98] is one of such algorithms. It partitions the n-dimensional data space into
nonoverlapping rectangular units of uniform size, identifying the dense units among these.
Based on a user-specified global density threshold, it iteratively searches dense units in the
subspaces from 1-dimension through k-dimension until no more dense units are found. The
generation of candidate subspaces is based on the Apriori property used in association rule
mining. The dense units are then examined to form clusters.

The pMAFIA algorithm [NGC01] improves CLIQUE by using adaptive grid sizes. The
domain of each dimension is partitioned into variable sized adaptive grid bins that capture
the data distribution. Also variable density thresholds are used, one for each bin. Adaptive
dense units are then found in all possible subspaces. A unit is identified as dense if its
population is greater than the density thresholds of all the bins that form the unit. Each
dense unit of dimension d can be specified by the d dimensions and their corresponding d
bin indices. Figure 1.13 illustrates the dense unit identification for both uniform grid size

Parallel Data Mining Algorithms for Association Rules and Clustering 1-21

and adaptive grid sizes.
PMAFIA is one of the first algorithms that demonstrate a parallelization of subspace

clustering for high-dimensional large-scale data sets. Targeting distributed-memory mul-
tiprocessors, it makes use of both data and task parallelism. The major steps are listed
below.

(1) Partition the data objects evenly among all processes;
(2) For each dimension, by dividing the domain into fine bins, each process

scans the data objects in its local partition and builds a local histogram
indepdently;

(3) All processes exchange and sum up the local histograms to get the global
one for each dimension;

(4) Determine adaptive intervals using the global histogram in each dimension
and set the density threshold for each interval;

(5) Each process finds candidate dense units of current dimensionality (initially
1) and scans data objects in its local partition to populate the candidate
dense units;

(6) All processes exchange and sum up the local populations to get the global
one for each candidate dense unit;

(7) Identify dense units and build their data structures;
(8) Increase the dimensionality and repeat (5) - (8) until no more dense units

are found;
(9) Generate clusters from identified dense units.

The algorithm spends most of its time in making repeated passes over the data objects
and finding out the dense uits among the candidate dense units formed from 1-dimensional
to k-dimensional subspaces until no more dense units are found. Building the histograms
in step (2) and populating the candidate dense units in step (5) are performed by data
parallelism such that each process scans only a partition of data objects to compute the
local histograms and local populations independently. After each of the independent steps,
the local values are collected from all processes and add up to the global values, as in
steps (3) and (6) respectively. In step (4), all processes perform the same adaptive grid
computation from the global histograms they gathered. The adaptive grid bins in each
dimension are then generated, each considered to be a candidate dense unit of dimension
1. Candidate dense units from subspaces of higher dimensions need to be generated in
step (5). Similar to the candidate subspace generation procedure in CLIQUE, pMAFIA
generates candidate dense units in any dimension k by combining dense units of dimension
k-1 such that they share any k-2 dimensions. Since each pair of the dense units needs to be
checked for possible intersection into a candidate dense unit, the amount of work is known
and the task can be easily subdivided among all processes such that each one intersects an
equal number of pairs. Task parallelism is also used in step (7) to identify dense units from
the populated candidates such that each process scans an equal number of candidate dense
units.

pMAFIA is designed for disk-resident data sets and scans the data as many times as the
maximum dimension of the dense units. By data parallelism, each partition of data is stored
in the local disk once it is retrieved from the remote shared disk by a process. That way,
subsequent data accesses can see a much larger I/O bandwidth. It uses fine bins to build the
histogram in each dimension, which results in large sizes of histograms and could add to the
communication cost for all processes to exchange local histograms. Compared to the major

1-22

time spent in populating the candidate dense units, this communication overhead can be
negligible. Also, by using adaptive grids that automatically capture the data distribution,
the number of candidate dense units is minimized, so is the communication cost in the
exchange of their local populations among all processes. Experiments showed that it could
achieve near linear speedups.

1.4 Summary

As data accumulates in bulk volumes and goes beyond the processing power of single-
processor machines, parallel data mining techniques become more and more important for
scientists as well as business decision-makers to extract concise, insightful knowledge from
the collected information in an acceptable amount of time. In this chapter, various algo-
rithms for parallel association rule mining and clustering are studied, spanning distributed
and shared memory systems, data and task parallelism, static and dynamic workload bal-
ancing strategies, and so on. Scalability, inter-process communication/synchronization,
workload balance, and I/O issues are discussed for these algorithms. The key factors that
affect the parallelism varies for different problems or even different algorithms of the same
problem. For example, due to the dynamic nature of association rule mining, the workload
balance is a big issue for many algorithms that use static task scheduling mechanisms. And
for the density-based parallel HOP clustering algorithms, the focus of effort should be put
on minimizing the data dependence across processes. By efficiently utilizing the aggregate
computing resources of parallel processors and minimizing the inter-process communica-
tion/synchronization overhead, high-performance parallel data mining algorithms can be
designed to handle massive data sets.

While extensive research has been done in this field, a lot of new exciting work is being
explored for future development. With the rapid growth of distributed computing systems,
the research on distributed data mining has become very active. For example, the emerging
pervasive computing environment is becoming more and more popular, where each ubiqui-
tous device is a resource-constrained distributed computing device. Data mining research
in such systems is still in its infancy but most algorithm design can be theoretically based
on existing parallel data mining algorithms. This chapter can serve as a reference for the
state of the art for both researchers and practitioners who are interested in building parallel
and distributed data mining systems.

References

References

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for data
mining applications. In Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pages 94–105, June 1998.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association
rules between sets of items in large databases. In Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pages 207–216, May 1993.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ-
ation rules. In Proc. of the 20th Int’l Conf. on Very Large Databases, pages
487–499, September 1994.

Parallel Data Mining Algorithms for Association Rules and Clustering 1-23

[AS96] Rakesh Agrawal and John C. Shafer. Parallel mining of association rules. IEEE
Trans. on Knowledge and Data Engineering, 8(6):962–969, December 1996.

[CLR90] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to algorithms. MIT Press, Cambridge, MA, USA, June 1990.

[DM00] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm
on distributed memory multiprocessors. Large-Scale Parallel Data Mining,
Lecture Notes in Artificial Intelligence, 1759:245–260, 2000.

[EH98] Daniel J. Eisenstein and Piet Hut. Hop: A new group-finding algorithm for
n-body simulations. Journal of Astrophysics, 498:137–142, 1998.

[HK00] Jiawei Han and Micheline Kamber. Data mining: concepts and techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, August 2000.

[HKK00] Eui-Hong Han, George Karypis, and Vipin Kumar. Scalable parallel data min-
ing for association rules. IEEE Trans. on Knowledge and Data Engineering,
12(3):337–352, 2000.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candi-
date generation. In Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, pages 1–12, May 2000.

[LCJL06] Jianwei Li, Alok Choudhary, Nan Jiang, and Wei-keng Liao. Mining frequent
patterns by differential refinement of clustered bitmaps. In Proc. of the SIAM
Int’l Conf. on Data Mining, April 2006.

[LLC03] Ying Liu, Wei-keng Liao, and Alok Choudhary. Design and evaluation of a
parallel HOP clustering algorithm for cosmological simulation. In Proc. of the
17th Int’l Parallel and Distributed Processing Symposium, April 2003.

[Mac67] James B. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Proc. of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297, 1967.

[NGC01] Harsha Nagesh, Sanjay Goil, and Alok Choudhary. Parallel algorithms for clus-
tering high-dimensional large-scale datasets. In Robert Grossman, Chandrika
Kamath, Philip Kegelmeyer, Vipin Kumar, and Raju Namburu, editors, Data
Mining for Scientific and Engineering Applications, pages 335–356. Kluwer
Academic Publishers, 2001.

[Ols95] Clark F. Olson. Parallel algorithms for hierarchical clustering. Parallel Com-
puting, 21:1313–1325, 1995.

[PK03] Iko Pramudiono and Masaru Kitsuregawa. Tree structure based parallel fre-
quent pattern mining on PC cluster. In Proc. of the 14th Int’l Conf. on
Database and Expert Systems Applications, pages 537–547, September 2003.

[Zak99] Mohammed J. Zaki. Parallel and distributed association mining: A survey.
IEEE Concurrency, 7(4):14–25, 1999.

[ZEHL01] Osmar R. Zaiane, Mohammad El-Hajj, and Paul Lu. Fast parallel association
rule mining without candidacy generation. In Proc. of the IEEE Int’l Conf.
on Data Mining, November 2001.

[ZG03] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In
Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pages 326–335, August 2003.

[ZOPL96] Mohammed J. Zaki, Mitsunori Ogihara, Srinivasan Parthasarathy, and Wei Li.
Parallel data mining for association rules on shared-memory multi-processors.
In Proc. of the ACM/IEEE Conf. on Supercomputing, November 1996.

[ZPL97] Mohammed J. Zaki, Srinivasan Parthasarathy, and Wei Li. A localized algo-
rithm for parallel association mining. In Proc. of the 9th ACM Symposium
on Parallel Algorithms and Architectures, pages 321–330, June 1997.

1-24

[ZPOL97a] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei
Li. New algorithms for fast discovery of association rules. Technical Report
TR651, University of Rochester, July 1997.

[ZPOL97b] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei
Li. Parallel algorithms for discovery of association rules. Data Mining and
Knowledge Discovery: An International Journal, special issue on Scalable
High-Performance Computing for KDD, 1(4):343–373, December 1997.

Index

Association Rule Mining, 1-2–1-14
Apriori algorithm, 1-2
Count Distribution, 1-2
Eclat algorithm, 1-4
FP-growth algorithm, 1-6
PD-CLUB algorithm, 1-9
bit-vector, 1-9
clustered bitmap, 1-9
conditional pattern base, 1-6
FP-tree, 1-6
frequent itemset, 1-2
tid-list, 1-4

Clustering, 1-14–1-22
k-means algorithm, 1-14
CLIQUE algorithm, 1-20
HOP algorithm, 1-17
pMAFIA algorithm, 1-20
hierarchical clustering, 1-15

KD tree, 1-17

1-25

