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Abstract: Job-shop scheduling , a typical NP-complete
problem, is an important step in planning and manufacturing
control of CIMS environment . Researches on job-shop
scheduling focus on knowledge-based approach and heuristic
searching which are useful except the difficulty of getting
knowledge[3]. Genetic algorithms are optimization methods
which use the ideas of the evolution of the nature. Simple as
genetic algorithms are, they are efficient[1][2]. Three novel
genetic algorithms model, such as decimal idle time coding
genetic algorithm(DITCGA)[5], binary idle time coding
genetic algorithm(BITCGA), and adaptive idle time coding
genetic algorithm(AITCGA), are presented to design job-shop
- scheduling algorithm in this paper. Using the idle processing
time to code this problem, we efficiently reduce the solution
space. In our approaches, adaptive learning mechanism is
applied to guide the searching or evolution process. The
simulation results show the efficiency of these approaches.
Keyword: FMS, job-shop , genetic algorithm .

I. INTRODUCTION

Job-shop scheduling, a typical NP-complete problelﬁ,
is an important step in planning and manufacturing control of
CIMS environment. In many cases, scheduling is so difficult
that even a mediocre problem s painstaking . Optimum
solution can be found only for certain problem. However, the
larger the dimension is, the more difficultly the optimum
solution can be found. So, we expect to find a feasible
solution to solve the problem. Realistically, we are fairly
satisfied to find a feasible solution that is nearly optimum.
When we consider job-shop scheduling, we :encounter a
relatively complex problem, because there are many parts and
machines to arrange, and the constraint is somehow harsh.

Because job-shop scheduling affect the efficiency of
manufacture, many researches are in progress and many
optimum approaches are proposed to get a satisfied solution
of job-shop scheduling[3]: Knowledge based methods and
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heuristic searching are fairly successful. But there is still a
question : how to acquire the knowledge needed? =

Genetic algorithm (GA) is a relatively new épproach of
optimum searching[4]. GA inherits its ideas from evolution of
the nature. Even a simple GA algqritiml appears to be robust,
and the complexity of algorithm-and result of GA is irrelevant
to the length of genetic string and the original state of
population. . Genetic.algorithin. is so simple that it only
involves somne -selection, crossover ‘and mutation' bperations,
but it is so efficient that it can find a nearly optimum solution
even for a large scale problem[4]. For an instance, travel
salesman problem (TSP), a traditional NP-completed problem
is impossible for even the fastest computer to solve when the

>

city number is greater than 100: Surprisingly enough, GA can
give a satisfied solution, ‘

Essentially, however, GAs are searching approaches. So
the searching space or the séhition space will affect the
efficiency and the convergence of GAs, GA can get neariy
optimum solution when the solution space is simplistic, while
it can not even convergence to:a feasible solution when the
solution space is rather compléx. :

Whether can we consider to combine tlie knowledge-
based methods and the GAs? It is reasonable that the
knowledge can lead the searching and reduce the searching
space and enhance the searching efficiency. e

In this paper, we propose three methods, based on
genetic algorithm to find a nearly optimum solution to job-
shop scheduling problem. -First, we describe the job-shop
scheduling problem. Second, we initroduce the principle of
genetic algorithms. Third, otr approaches, includésgenetic
coding of the problem, deécription of \ﬁ‘tness; function and
designation of some important operator:such as selection,
crossover and mutation. Three methods such as decimal idle
time coding genetic algorithmi(DITCGA), binary-idle time
coding genetic algorithm(BITCGAlan’d adaptive idle time
coding genetic algoritllglx(AITCGA)‘afe presented. And next,
a series of simulations are showed to iklrlustrért,e our methods
and ideas. Next, the three methods are compared. Finally,
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some important conclusions are made .

II. THE DESCRIPTION OF JOB
SHOP SCHEDULING

There are a number of parts to be processed by several
machines. The working process of each part is determined by
the technical requirement. Job-shop scheduling is to
determine the processing sequence of the parts on these
machines , s.t.

1. m--.the number of machine , n---the number of part ;

2. the i part is composed of a fixed work process ;

3. If we use i to represent the ith part ,and k means the kth
step. Let m(i,k) mean the machine to process the kth step of
the ith part;

4. one machine can only process one part at one time ;

5. process (i , k) must be processed after process (i ,k-1);

6. t; i is the processing time of process (1,k), mik is the
machine number of process (1,k) ;

7.a step can not be separated .

(i,k,m(i,k)) means that the kth step of the ith part is
processed by the m(i,k)th machine ,and ki means the last step
* of the ith part. Above are determined by technical
requirement. We can see that job-shop scheduling problem is
a typical linear programming. If let S; x mean the start
processing time of the kth step of the ith part, we can write
the constraint below:

Sik-Sik-1+x< 0, I€i<nl<k <ki i

5;,120, 1i<n Q)

Sik-Sipttix< 0 or S5~ S+, <0

1igSml<k,p<ki 3)

In these constraints, (1) means that process (i , k) must be
processed after process (i ,k-1), and (2) means that the start
processing time must be no less than zero, and (3) means
that a certain machine only can process one part at one
time ,which can avoiding conflict of two parts.

The objective of scheduling is to minimize the end
processing time of all parts, that is to say that let all parts be
completed as early as possible. The objective function is
max(S; k;), and the optimizing process is min(max(8; jx)).

III. GENETIC ALGORITHM

In the magic nature, creatures are developing form
elementary micro creatures to advanced and complex human
beings. Undergoing a relatively long time, the structure of
creatures are changing to adapt to the changing environment.
In the evolutionary process, gene play a key role from which
descendants get many beneficial materials from older

generation. According to Darwin 's theory, natural selection
discards inferior genes and inferior individuals which are not
adapt to the environment. In genetics, crossover and mutation
of gene are the main changes which lead to the difference
between the two generations .

When we use Genetic algorithms, a exceptional
optimization method, we must code the given problem firstly,
and determine the fitness function according to the objective
of optimization. Sure, different genetic descriptions or coding
strategies lead to different results, such as algorithmic
efficiency and the quality of the solution. Essentially, genetic
algorithms are a searching process. If we do not make
appropriate gene description, the searching space is rather
lager than we anticipate GA can find a optimum solution,
because there are innumerable local minimums in the
solution space. On the other hand, If we code the problem
properly, we can narrow the searching range to find a nearly
optimum solution or even optimum solution rapidly.

Genetic Algorithms are search algorithms based on the
mechanics of natural selection and natural genetics. GAs use
probabilistic transition, not deterministic rules. GAs search
from a population of points instead of a single point. In GAs,
a solution of a problem is coded to a string or a chromosome.
By using operations such as reproduction, crossover and
mutation, the string which is fitter than the others get better
chance to reproduce .

A simple GA is composed of three ' operators:
reproduction, crossover and mutation. Reproduction is a
process in which individual strings are copied according to
their objective function values (or fitness function). Copyihg
strings according to their fitness values means that strings
with higher value have a higher probability of contributing
one or more offspring in the next generation. The
implementation of reproduction can be done by roulette
wheel. After reproduction, crossover may proceed in  two
steps : First, members of the newly reproduced strings in the
mating pool are mated at random; second, each pair
undergoes crossing over. For example, consider string Al, A2
that A1=0110]1,

A2=1100]1 .
choosing a random number such as 4 , then we get the result
Al=0110]0
A2=1100(0.

The mechanics of reproduction and crossover are
surprisingly simple, involving random number géneration,
string copies and some partial string exchange. However, this
algorithm is efficient in optimization .

Following is the typical genetic algorithm:

step 1 code the given problem use gene string;

step 2 initialize a population pop(n) and let n=0;

step 3 evaluate the fitness function value fit(n) of each
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-iring in the population pop(n).From the fit(
which string representing a solution is what we want. If we
find a satisfied solution ,we may cease the process, else let
n=n+1 and continue;

, We canl see

step 4 select descendant pop(n) from the older
generation pop(n-1);
step 5 = crossover and mutate pop(n) according to
certain strategy;
step 6 go tostep 3

IV. JOB SHOP SCHEDULING
BASED ON GA

1. Decimal Idle Time Coding Genetic Algorithm
(DITCGA)
scheduling which is a NP-complete problem, and give the
representation of the fitness function. Next we construct
crossover and mutation operator. '

In this section, we code the job-shop

First, we construct the description of the chromosome. A
solution of the scheduling is code to a large string which is
made up by several sub strings each of which stands by a
machine. That is, for the kth machiné, the sub string is
{PRTy;,PRTy2, -.PRTy;, .. PRTyp , IDTMy  , IDTMy
s - JDTMy;, ... IDTMy,.}, '
where PRTy; means a step of a part is processed by the kth
machine; and IDTMy; within the upper limit of idle time
means the waiting time (or idle time) of the kth machine to
process a part. So if there are m machines, the whole string is

composed by m sub strings which is made up of 2*n genes.

where n means the number of steps to be proceésed
by a machine. ; '

For an instance, a sub string for the kth machine which
processes five parts can be written like {2541301030}.
In this sub string, the first five genes (2 54 1 3) means that
the 2nd, 5th, 4th, lst, 3rd parts have a step to be processed by
the kth machine with the fixed order. The latter five genes (0
1 03 0) mean that machine process the 2nd, 4th and 3rd parts
at once when completing a previous part, and wait 1 unit of
time before processing the 5th part and 3unit of time
before 1st part.

If we only use the fist half of this kind of sub string, we
have to use knowledge based methods to get a completed
determined solution because the exact arrangement can not
be determined only when knowing the order  of each part.
So, the advantage of GA is not used completely. We have to
add some genes. We face two choices: using idle time of each
machine or using start time of each part. In our coding
method, 1dle time of machines are used other than start time
of each part to sharply narrow the solution space .

It is not guaranteed that this kind of string represents a

feasible solution, because it may not'satisfy'the constrain in
the formulas (1), although (2) and (3) are naturally satisfied.
This problem can be successfully solved by using a
punishment factor in-fitness function which is discussed
next. o ) ]

Second, we construct the fitness function, The objective
of job-shop scheduling is min(max(S ji)) with the objective
function obj=max(S; ;x). But the selection operation.of
genetic algorithm requires positive fitness function value and
GAs maximize the fitness function which s different from
the objective of job-shop scheduling min(max(Syx))- So, we
change the objective function.to fitness function using
fitness=C-obj ,-where C is a giveri number-to giarantee the
fitness to get positive value: Further,:we-use a punishment
factor PNSH(' §; -8 1.1+t ) Finally, the fitness function is
fitness = C — A x max(.Si, i)

—Bx > > PNSH(Sik—Sik-1+1k)
ik

where A and B are weights,

Third, we construct mutation and crossover operators
When we select two sub strmgs say, "Al and A2 as parents
according to fitness value usmg “roulette, they undergo
mutations which are mdependent “two operatrons to two
halves : the first half of parts and the other half of 1d1e time.
An integer position | is selected umformly at random between

" 1 and half length of sub string: For the first half exchanoe

the two parts of the position l'and 1. If 1=1, the exchange 1
and 1+1. For the other half, after select a random position I,
just replace the genes of r by a new random value ranging
from 0 to the upper limit of idle time. For example A1=24 1
5301201, and =2, 1'=3 50 the result of mutation is A1=4
215301101 Each sub strmgs undergoes mutation
independently.
After selection and mutation, crossover may proceed in

two steps: The first is for the first half. After selecting a
position t, genes before t are kept for thie two children. AR1
is the rernnant after eliminating genes before position t of Al
in A2 and ARZ is the remnant after eliminating ’ge'nes‘ before
position t of A2 in A1, Child A1" is produced by replaced the
geneés after t by ART and Child A2' is produced by replaced
the genes after t by AR2.The second step is exchanging the
genes after a random position t' of the other half to form two
children. -For example,
Al=24]153.012]01 - ,
A2=311425100]03 andt=2,t=3. AR1=31S5,
AR2=2 4 5, the two children are

Al=2431501203
A2=3124510001.

This approach gets a satisfied result injob- shop scheduhnO.
The results of software simulation will be showed below to
illustrate the efficiency of this coding strategy.
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2.Binary Idle Time Coding Genetic Algorithm
(BITCGA)  The structure of chromosome in BITCGA is
the same as DICCGA and the coding strategy is almost the
same as the DITCGA only with the difference of idle time
“coding. In this algorithm, idle time is coded into binary
number of certain bits. For an instance, 101 represents the
decimal number 5. The binary coding is used to replace the
decimal coding in DITCGA. For example, a sub string can be
{24315 000001010000 111}.

The importance of the bits allocated to the idle time in
BITCGA is what the upper limit of idle time to DITCGA.
When we allocate more bits to idle time, the searching space
is more complex and enormous.

The DITCGA uses float numbers to code the idle time. it
is easy to understand but it may be not fit the genetic. When
using binary coding, we can see that the idle time is
changing when crossover happens. This method bring about
more chances for the idle times to change so as to
seck a new solution.

3.Adaptive Idle Time Coding Genetic
Algorithm (AITCGA)
below:
step 1 initialize a population pop(n) and let n=0;
step 2 evaluate the fitness function value fit(n) of each
string in the population pop(n). If we find a satisfied
solution ,we may cease the process , else let n=n+1 and

The algorithm is described

continue;

step 3 get the best individual (decoded to be the best
solution) from the fitness value. So, the end processing time
can be obtain. If the end processing time of scheduling does
not change even undergoing a relatively long time, we reduce
the upper limit of idle time to bring forth a new population.
This procedure can reduce the searching space. After that,
save the population before the great fluctuation;

step 4 if the upper limit of idle time change, then a new
population is produced to goto step 2;

step 5 if after evolution of a given times, the end

processing time is still larger than the end processing time
before the great change. It can be said that there is no
optimum solution in the reduced searching space. So, we will
restore the population before the great change to come back
to a larger space to search what we want. And goto step 2.

step 6 select descendant pop(n) from the older generation
pop(n-1).

step 7 crossover and mutate pop(n) according to certain

strategy.
step 8 goto step 2.

We consider the effect of the parameter of upper limit of

idle time. First, it can affect the search space. The complexity
of the searching space is a important factor for every
optimization approach. Even the search space is relatively
complex and huge, the GA can often give a feasible solution.
However, the efficiency can be improved if we reduce the
search space to a more bounded range. In job shop scheduling,
we can see that the essence of this problem is to search a
solution in a RT space which is nearly infinitive. In the
knowledge based approaches, the heuristic method leads us
to reach the feasible solution in spite that it can leads to a
local minim in many cases. Essentially, GA is a probability
approach rather than a determined approach. But it doesn't
exclude a heuristic idea. We can take advantage both to
contract the search space.

Second, the end processing time is hard to reduce if the
upper limit of idle time is inappropriately selected, because
the search space may be too complex and tremendous. There
is a dilemma between the probability of find a solution and
searching efficiency. when we use unchanging upper limit of
idle time, the GA algorithm can find a fairly well solution,
but not the best solution. For example, when we adopt upper
limit of idle time 7, the algorithm repeated 300 times to get a
solution of end processing time 42. But when we use upper
limit of idle time 3, the end processing time of first found
feasible solution is 42, and reached 35 which can be
considered a nearly optimum solution after 300 times
repetition.

The basic idea of this method is to self-adjust the upper
limit of idle time. When the algorithm has come to its stable
point with a upper limit of idle time, the upper limit of idle
time is reduced and the population are adjusted to proper
style.

4. Comparison of the Three Algorithms
AITCGA is more complicated than the other two
algorithms. It combines the probabilistic transition and
deterministic mechanism. The searching procedure changes
greatly when the upper limit of idle time is changing.
DITCGA and BITCGA are of the same complexity. However,

.BITCGA includes greater probability of mutation than

DITCGA.

’ DITCGA and BITCGA are of almost the same
searching efficiency. If the upper limit of idle time or the bits
allocated to idle time is fixed, the searching space is
consequently determined. If the space is small, it may be easy
to find a optimum solution but with a risk that a solution may
be not included in this space. On the other hand, when the
searching space is large, it can be guaranteed that GAs can
find the optimum solution but it needs relatively larger
searching time. AITCGA is the tradeoff between the
probability of reaching a solution and the searching speed.
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V. SIMULATIONS

Simulation programs are written in MATLAB language Lo o :
The technical requirement is[3]: M1 r:ﬂ 1 r 2 lﬂ Iﬂ 5 |7 \ ] 6 l

1 3 2 4] 4 4 73 03 7 11 1619 22, 27
3124 30442 melelrls [afofsl 1 B3]

1 4 3 2 346 3 01 57 12 16 2022 29
migy=|> = L 4,043 w2z 175113 [slel
4 2 3 1 4 553 0 3 9 1318 22 28 33

2 4 1 3 4 6 5 4 : :
S R Ma sl 3fsl [ 7] 6 PRl[al [1]

» 0 4 8§ 13 18 24 27

41 2 3 3 3 2 5] ,

The weights: A=1,B=100 . The probability of crossover
PC=0.7 . The probability of mutation PM=0.2. The number
of population is 50. Figl and Fig2 are the results of DITCGA.
Fig3 and Fig4 are the results of BITCGA. And Fig5 and Figé

Fig 2. scheduling result of DITCGA. The number in
rectangles are parts and: the: nuniber under- the. lines are the
start processing time of each part.

are the results of ATTCGA.
(a)the min end time A (bjthe mean end time - . (a)the min end time : : (b)t'he méén‘eh’d tim& ’
) ASMWMW .
40 40 ®
& o w300 S o0 o0 300 *s 100 200 0 100' - 20
, P i o
(e)the AR hment (dtne BRI R hment 150 (otne B Ehmers a0, xre AR PRnmert
150 200 : f
150 100
100
100 50\
50
50
0 ,
0 o 0 100 200 ; ’ )
0 100 200 300 0 100 200 300 generation : * generation
generation generation PR .
Fig 1. Result of DITCGA (a)the min end processing Fig 3. Result of BITCGA (a)the min end processing
time, (b)the mean end processing time, (¢)the min : time, (b)the mean end processing time, (c)the min
punishment,(d) the mean punishment. punishment,(d) the mean pumshment
The coded solution of DITCGA described is: The coded solution of BITCGA :is:
solution = : solution = 3 : :
31284576 000062000 32184756 000000 000 000.010 001 000000
67542813 10000000 67542813 0010000007000 000000 001 000
24751386 00000000 24751386 000000 000 000 000 000 000 000

53876241 00020012 53876241 000 000 000-010 000001 000 000
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Mi[3]2 1 18] [al[7 [sl6 |

03 7 11 16 20 25 28

m2 [ 67l 5 (42 I8l 1 [3]

1 57 12 16 20 23 30

mal2la [71sT1[ 3 lsTlel

03 9 13 18 22 28 33

M4 5] 3 (8l [ 7] 6 llJa I1]

0 4 8 13 18 2527 31

Fig 4. scheduling result of BITCGA. The number in
rectangles are parts and the number under the lines are the
start processing time of each part.

(aXhe min end time (bthe mean end time

70~ 70
60 €0
50 50
40 40
0 0

0 203_ 40 0 20 a0

(cxhe T Lhment (dxre AR hment

150 - A0
100 20
50 \ 100
0 Ot 0

0 200 400 0 200 400

generation generation

Fig 5. Result of AITCGA. (a)the min end processing
time, (b)the mean end processing time, (c)the min
punishment,(d) the mean punishment.

The coded solution of AITCGA is:
solution =

13287465 00010000
76524183 00100100
27415368 00001000
58763421 00000100

Mi (1 ]3]2]lslr Tals Is]

0 4 7 1215 2023 28

M2l 6l 5 [2 Tall 1 BB

02 7 12 16 22 2830

m3[2l 7l 4 Talls T 31e6lsl

03 7 13 18 23 29 33

Ma| sTsl 7] 6 131[4P]1]

0 4 7 12 i8 232729
Fig 6. scheduling result of AITCGA. The number in
rectangles are parts and the number under the lines are the
start processing time of each part.

V1. CONCLUSIONS

Three GA based methods, DITCGA, BITCGA and
AITCGA, are submitted in this paper. Idle time coding of
job-shop is appropriate to narrow the solution space. The
introduction of punishment factor simplifies the genetic
processing. This approach is efficient with its shorter
searching time. Form the simulation, we can see that, the
upper limit of idle time is significant to the searching

- procedure. By using the combination of probabilistic

transition and deterministic mechanism, AITCGA can select
the upper limit of idle time automatically. These algorithms
can satisfy the rapid response requirement in scheduling and
has great application value .
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