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Abstract

We present an algorithm for estimation of head orien-
tation, given cropped images of a subject’s head from any
viewpoint. Our algorithm handles dramatic changes in illu-
mination, applies to many people without per-user initial-
ization, and covers a wider range (e.g., side and back) of
head orientations than previous algorithms.

The algorithm builds an ellipsoidal model of the head,
where points on the model maintain probabilistic informa-
tion about surface edge density. To collect data for each
point on the model, edge-density features are extracted
from hand-annotated training images and projected onto
the model. Each model point learns a probability density
function from the training observations. During pose esti-
mation, features are extracted from input images; then, the
maximuma posterioripose is sought, given the current ob-
servation.

1. Introduction

Facial gaze – the orientation of a person’s head – gives
cues about a person’s intent, emotion, and focus of atten-
tion. Thus, head orientation can play an important role in
vision-based interfaces, where it can provide evidence of
user action and lead to more detailed analysis of the face.

The literature on face tracking confirms this belief. A
substantial part of facial image processing is concerned with
determination of head pose. There are techniques based on
tracking blobs of color [4], tracking particular facial fea-
tures [12, 18], tracking point features [8, 10, 13, 20], fol-
lowing optic flow [2, 6, 19], and fitting textures [3, 5, 17].

Although many of these algorithms are suited for ap-
plications such as graphical avatar puppetteering [19] and
hands-free cursor control [20], they have constraints that
make them inappropriate for other applications. For exam-
ple, many algorithms are based on tracking image features

or computing dense optic flow, and therefore require high-
resolution images of the subject. Some systems also apply
restrictions on operation, such as per-user initialization, sta-
ble lighting conditions, or near-frontal facial poses.

A few authors have tried alternative approaches to over-
come these limitations. Pappu & Beardsley build an el-
lipsoidal texture model of the head and determine pose by
matching model projections to live images [15]. This avoids
dependency on high-resolution images and tracks the full
range of orientations, but nevertheless requires initialization
for each subject and static illumination. Gonget al. use Ga-
bor wavelet transforms and construct a linear “eigenface”
image space for different poses [9]. PCA-based techniques
are not well-suited for capturing pose changes, however; it
is not clear whether their algorithm generalizes well to re-
covering more than the single rotational parameter that they
consider. Niyogi & Freeman develop an example-based
system which trains a neural network from example poses
[14]. Pose estimation is treated as a brute-force recogni-
tion task and does not take advantage of known geometry.
Lastly, Elaginet al. use elastic bunch graphs of wavelet
feature vectors to determine head pose [7]. Their technique
is relatively insensitive to person and illumination, but de-
pends on good resolution.

Our contribution is an algorithm for coarse head-
orientation estimation with the following properties:

� It is insensitive to skin color, to glasses or facial hair,
and to other common variations in facial appearance.

� It handles large variations in illumination

� It handles side and back views.

� It works under a significant range of image scales and
resolutions.

� It requires no per-user initialization.

� The underlying formalism is Bayesian.

We tradeoff these gains with some loss in precision relative
to narrow-range, high-resolution techniques (average error



is 19 degrees for near-frontal head poses; allowing user-
specific initialization, error drops to 10 degrees), but the loss
is acceptable for the kind of applications we envision.

Wide-range, coarse head pose is more useful than range-
limited, fine head pose in situations where only the subject’s
approximate focus of attention is of interest. In intelligent
environments, for example, head pose offers evidence of a
user’s communicative intent (“Computer, please turnthat
TV off.”). There is also interest in automated cameramen
for taping lectures [1] – these systems could be enhanced by
knowledge of the speaker’s focus of attention to determine
pan and zoom parameters (audiences like to see what the
speaker is looking at). Finally, the user-independent quality
of our system makes it ideal as an initializer for other pose
tracking algorithms that require an initial estimate.

2. Algorithm

Our algorithm builds an ellipsoidal model of points,
where each point maintains probability density functions
(pdfs) of local image features of the head based on training
images. The features capture local edge density, which is in-
dependent of person and illumination. Some preprocessing
for both training images and input images further dimin-
ishes effects of illumination. Lastly, we implement maxi-
mum a posteriori (MAP) estimation using different priors
tailored for the cases of global pose estimation and pose
tracking, respectively.

2.1. Head Model

In its most general form, our model is an ellipsoid with
a set of points on the surface. Each point, indexed byi, is
represented by its coordinates,qi (lying on the ellipsoid sur-
face), and a pdf representing the belief probability,pi(zj�)
– the belief that given a particular 3D pose, the pointi will
project observationz. “Observations” are local feature vec-
tors extracted from the image. The model itself does not
specify what features should be used, although in the next
section, we describe our choice for estimation of head pose.

We tried two different placements of the model points.
In the first, the points are placed at the intersections of
regularly-spaced latitudinal and longitudinal lines. “North
pole” coincides with the top of the head. Longitudinal lines
are drawn every 10 degrees and latitudes at roughly every 11
degrees, for a total of 562 points. The second point distri-
bution is the same except that the point positions are rotated
90 degrees such that north pole coincides with the nose.

Empirical evidence indicates that the second option cap-
tures head information better for the purposes of pose esti-
mation, because it has the greatest concentration of points
at the front of the face (see Figure 1). We hypothesize that

Figure 1. Two point distributions. The one on
the right was used in all experiments.

a point distribution specifically tailored for the texture land-
scape of heads would fare even better.

2.2. Features

Nothing in our methodology requires the use of any par-
ticular feature, but careful selection of features was nev-
ertheless a critical component of the design. We wanted
features which would be nearly universal (for a range of
appearances), insensitive to illumination, and still able to
distinguish among different orientations. At the same time,
these features could not be those that depended on high-
resolution imagery or nearly frontal poses.

The first set of constraints rules out the use of local
color or brightness information, which varies significantly
depending on the person (compare Figure 8(a) with Fig-
ure 8(c)). Color is also highly variable under dramatic
changes in illumination, in spite of the persistent belief oth-
erwise (see the variation in Figure 7). Skin-color models
which purport to capture the racial spectrum of human skin
only model skin under a particular lighting condition; and
color constancy remains a difficult open problem, especially
when illumination within an image itself varies (as in Fig-
ure 7(d)). The second set of constraints eliminates the use
of precise facial-feature detectors. In severe lighting condi-
tions and in low-resolution imagery, the information to reli-
ably detect an eye, as such, is simply absent (see Figure 8).

The alternative is to use features that are sensitive to lo-
cal texture. We tried several options, each of which result in
feature vectors from the convolution of the following tem-
plates applied at each pixel:

1. Gabor wavelets at 4 orientations and at 4 scales each.
2. Rotation-invariant Gabor “wavelets” at 5 different

scales. Each template is the sum of 10 Gabor wavelets
at 10 orientations such that the result is approximately
rotationally symmetric.

3. A Gaussian at a coarse scale, and rotation-invariant
Gabor templates at 4 scales.

4. One Gaussian, and Laplacians at 4 scales.



Option 1 was quickly discarded, because convolution co-
efficients for a given model point changed with orientation.
The remaining options were deliberately designed to be ro-
tationally invariant. Options 2 through 4 all worked fairly
well, but of these, Option 3 worked the best. The rotation-
invariant Gabor template appears to detect high-frequency
texture, oredge density, as opposed to the Laplacian’s ten-
dency to emphasize existence of a single edge. We use Op-
tion 3 for the remainder of this paper.

(a) (b) (c)

Figure 2. Convolution templates for detect-
ing high textural content: (a) directed Gabor
wavelet; (b) rotation-invariant Gabor wavelet;
(c) Laplacian.

Finally, because convolution output is strongly corre-
lated with image brightness and contrast, we perform a fea-
ture vector normalization which effectively reduces that de-
pendency. This eliminates one parameter from each feature
vector but improves performance.

2.3. Image Preprocessing

All of our training images and input images undergo a
preprocessing phase that scales the image, eliminates the
background, and enhances contrast.

First, given a cropped, rectangular image of a face, we
rescale it to a32 � 32 image using bilinear interpolation.
This step performs the scaling necessary for scaled ortho-
graphic registration of the head model with the image.

Next, we apply a circular mask to the image so that any
background, non-head portions of the image are ignored.
The mask is designed to be conservative: its diameter is
0:7 � 32 pixels. This reduces the possibility of including
background pixels and also effectively bars those parts of
the model which would undergo the most foreshortening
from contributing to the training and estimation processes.
Extreme foreshortening is a problem since it changes the
aspect ratio of textures during projection.

Finally, the masked image is histogram equalized.
Our preprocessing phase comprises a subset of the steps

performed for face detection by Rowleyet al. [16]. We
avoid elimination of a linear brightness component from the
image, since brightness variation is already handled by the
normalization of model feature vectors.

2.4. Model Training

We assume we are given a set of annotated training data.
The annotation consists of a tight bounding box for the head
and an estimate of the rotation matrix,R, that maps the head
coordinate system to the camera coordinate system.

Given a set of annotated images, training proceeds as
follows: First, the image within the bounding box is pre-
processed as described in Section 2.3. Then, normalized
feature vectors are computed for each pixel as outlined in
Section 2.2. LetZ be the concatenation of feature vector
observations,zj , which occur at coordinatespj = [xj yj ]

T

in the image. The feature vectorzj contributes to the data
collected for the model pointi�j that is the nearest neighbor
to pj after orthographic projection:

i�j = argmin
i2I

kpj � O R qik2; (1)

whereO is the matrix that projects[x y z]T to [x y]T , and
I is the set of model points,fi : (R qi) � k̂ < 0g, that could
actually project to the image, assuming model opacity (k̂ is
a unit vector along the camera’s optical axis, and recall that
qi is the coordinate of model pointi in the model frame).

Once all of the data is collected for each model point,i,
we estimate the pdf for that point. In our implementation,
we approximate the pdf with a single Gaussian whose mean
and covariance coincide with the data. More precisely,
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andk indexes the available dataDi�
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for point i�j . This is
consistent with a Bayesian approximation of the pdf with a
low-information prior.

Figure 3 shows an example of a trained model, using data
from 10 subjects. Edge density consistently distinguishes
the eyes, nose, and mouth from the rest of the face.

2.5. Pose Estimation

We seek the maximuma posterioripose, given the ob-
servation:

�
� = argmax

�
p(�jZ) = argmax

�

p(Zj�)p(�)
p(Z)

; (3)



(a) (b) (c)

(d) (e)

Figure 3. Trained model at a particular pose,
after applying (a) a Gaussian, and (b-e)
rotation-invariant Gabor masks, at 4 different
scales. High intensity corresponds to high
mean for the distribution at a model point.

using Bayes’ Rule. Sincep(Z) is constant, we can ignore
the denominator in the right hand side when computing�

�.
For global pose estimation, our prior is constant, further

eliminatingp(�) from Equation 3. In this case, MAP esti-
mation reduces to maximum likelihood estimation. Specif-
ically, we wish to find the pose,��, that maximizes

p(Zj�) �
Y

j

pi�
j
(zj j�); (4)

with the terms on the right hand side given by the trained
model as in Equation 2. The product is only valid if these
terms are independent, which they are not – the results nev-
ertheless bear out use of this approximation.

2.6. Tracking Variants

For pose estimation in an online, continuous tracking sit-
uation, additional constraints force us to modify this general
approach. In particular, tracking often imposes a limit on
computational processing. Below, we consider a decima-
tion of the search space. Tracking also provides us with ad-
ditional information due to spatio-temporal continuity. We
incorporate this into the MAP framework by applying priors
on� that depend on earlier processing.

First, if computational resources are limited, we cannot
afford to compute Equation 4 over the entire pose space.
Because we are only interested in approximate pose, any-
way, we coarsely discretize the search space (equivalent
to setting the prior in Equation 4 to be zero or a normal-
ized constant, depending on�). We therefore only consider
poses every 20 degrees of rotation about the vertical axis of
the head (corresponding to yaw), every 10 degrees about the

axis through the ears (pitch), and +/-20 degrees or 0 degrees
about the axis through the nose (roll).

Next, we tried different priors for Equation 3. We exam-
ined three: (a) a constant prior (p(�) = c)); (b) a Gaussian
prior, with constant variance and mean at the previous pose
estimate (p(�t) = N(�t�1; ��)); (c) the previous posterior
as prior (p(�t) = p(�t�1jZt�1)). The last alternative is
equivalent to the prior used in CONDENSATION [11] with
a trivial motion model; it differs also in that we take ad-
vantage of our small state space and decouple the sampling
scheme from estimates of the posterior probability.

Figure 4. The likelihood outputs shown for
pitch and yaw of the head, where whiter val-
ues correspond to greater likelihoods.

3. Experimental Results

We collected data from various sources. Some data was
captured by a digital video recorder and downloaded onto
disk. Others are from movie files of old lectures, where we
know little about the camera. Altogether, we used 16 se-
quences of 11 different people, under different illumination
conditions, and at varying distances from the camera.

“Ground truth” pose was determined by hand because
many of the data sequences were from prerecorded video.
This introduced minor errors during both training and test-
ing. For training, model points tend to accumulate some
data meant for their neighbors, which results in blurring
of the model. For testing purposes, all errors of the al-
gorithm are measured with respect to the annotation. On
one sequence in which true pose was measured by a Polhe-
mus device, true errors (Polhemus pose - hand annotation)
and reported errors (estimated pose - hand annotation) were
within 13 degrees 90% of the time.

All algorithms were implemented on a 450MHz, double-



Annotation within: 0Æ � 45Æ 45Æ � 90Æ 90Æ � 135Æ 135Æ � 180Æ

Training Testing Rot Y Rot X Rot Y Rot X Rot Y Rot X Rot Y Rot X
1 person same person 10.4 5.7 14.8 6.8 16.9 5.9 28.5 8.7
10 people different person 19.2 12.0 33.6 16.3 38.0 15.7 47.5 13.2
1 person different person 21.2 13.7 35.1 17.2 50.6 12.7 70.5 10.9

Figure 5. Average estimation errors.

processor Pentium II PC. Our initial implementation runs at
3 to 5 Hertz, depending on the predictive scheme used.

We tried three types of experiments. In the first, we train
the model on a single person and test on the same person.
In the second, we train a “generic” model using data from
many people, and test on individuals. And, in the third set,
we train the model on one user and test on another person.

Error results are shown in Figure 5 for results with a
weak Gaussian prior. The first row shows results for train-
ing and testing on the same person; results are averaged over
11 people. The second row shows the averaged result for 11
instances of training on 10 people and testing on the remain-
ing person. The final row shows results for training on one
person and testing on a different person; results are aver-
aged over 11 trials, where for each trained model, one test
subject was chosen at random.

Because texture is more stable on the face than in hair,
results were far more accurate when all or part of the face
was actually visible. Thus, it made little sense to report av-
erage errors over an arbitrary sequence that might consist of
part frontal-face views and part back-of-the-head views. In-
stead, we average over four regions of the pose space. The
columns in Figure 5 show the range for which errors were
averaged. These numbers indicate the angle between the an-
notated face normal and the camera’s optical axis (inverted).
This data is plotted for a single subject in Figure 6.

We note several qualitative trends in our results.
Most significant is that we are able to track side and back

views at all, though with decreased accuracy. In particular,
for the case in which we are most interested (training on
many subjects and estimating pose for an individual), we
have an average error of less than 20 degrees for near-frontal
poses, approximately 36 degrees for side views, and 47.5
degrees when the subject is facing away from the camera.
This is as expected, since there is less textural structure in
the back of the head.

The best results come when the model is trained using
data for the same person who is tracked. Second-best re-
sults are observed when many subjects are used to train the
model, and the worst results are for training the model using
a single person and tracking a different person altogether.
This confirms the intuition that two individuals chosen at
random tend to differ more than either to the mean.

Errors in rotation about the x-axis are generally lower

Figure 6. Differences in estimation errors due
to training set, for a typical subject.

than those about the y-axis. This is a representational arti-
fact, based on the wider range and coarser discretization for
y-axis rotations.

Finally, we add that the results shown here are numeri-
cally close to results when we use a constant prior. That is,
the predictive Gaussian prior adds very little information.
In part, our sequences are responsible for this result, since
many contain frames that are up to 1 second apart, and thus
lose spatio-temporal smoothness. On the other hand, global
estimation is fairly reliable in itself, testifying to the sound-
ness of our underlying model.

To give a better feel for the performance of our algorithm
under some extreme situations, we offer several images of
successful pose estimation under a wide range of circum-
stances. In Figure 7, we show the same speaker tracked un-
der very different illumination conditions – of course, with
no model adaptation. Figure 8 shows some difficult cases on
other subjects. In each figure, the overlaid ellipse and line
indicate the coronal plane of the head that passes through
each ear and the normal to that plane. The model used in all
of these images was trained on multiple subjects.



(a) (b)

(c) (d)

Figure 7. Pose tracking under large varia-
tion in lighting conditions (cropped images
shown).

4. Conclusion

We have presented an algorithm for performing wide-
range, person- and illumination-insensitive head pose es-
timation. Our results show considerable robustness to
real-world visual perturbations. Estimation errors decrease
when the subject is facing the camera. Good results are ob-
tained for a generically-trained model; the best results come
from a model trained specifically for the target.

In ongoing work, we allow the generic model to provide
noisy supervision for learning a user-specific model. We are
also considering applying our framework to non-ellipsoidal
shapes for coarse pose estimation of other objects.
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