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Abstract 
Hand motion capturing is one of the most important 

parts of gesture interfaces. Many current approaches to 
this task generally involve a formidable nonlinear 
optimization problem in a large search space. Motion 
capturing can be achieved more cost-efficiently when 
considering the motion constraints of a hand. Although 
some constraints can be represented as equalities or 
inequalities, there exist many constraints, which cannot be 
explicitly represented. In this paper, we propose a 
learning approach to model the hand configuration space 
directly. The redundancy of the configuration space can 
be eliminated by finding a lower-dimensional subspace of 
the original space. Finger motion is modeled in this 
subspace based on the linear behavior observed in the 
real motion data collected by a CyberGlove. Employing 
the constrained motion model, we are able to efficiently 
capture finger motion from video inputs. Several 
experiments show that our proposed model is helpful for 
capturing articulated motion. 

1 Introduction 

In recent years, there has been a significant effort 
devoted to gesture recognition and related work in body 
motion analysis due to interest in a more natural and 
immersive Human Computer Interaction (HCI). As the 
cost for more powerful computers decreases and PCs 
become more popular, a more natural interface is desired 
rather than the traditional input devices such as mouse and 
keyboard. Using gestures, as one of the most natural ways 
humans communicate with each other, thus becomes an 
apparent choice for a more natural interface [3, 81. An 
effective recognition of hand gestures will provide major 
advantages not only in virtual environments and other HCI 
applications, but also in areas such as teleconferencing, 
surveillance, and human animation. 

Recognizing hand gestures, however, involves 
capturing the motion of a highly articulated human hand 
with roughly 30 degrees of freedom (DoF). Hand motion 

capturing involves finding the global hand movement and 
local finger motion such that the hand posture can be 
recovered. One possible way to analyze hand motion is 
the appearance-based approach, which emphasizes the 
analysis of hand shapes in images [4, 81. However, local 
hand motion is very hard to estimate by this means. 
Another possible way is the model-based approach [ 1, 2, 
6, 7, 10, 13, 151. With a single calibrated camera, local 
hand motion parameters can be estimated by fitting a 3D 
hand model to the observation images. 

One method of model-based approaches is to use 
gradient-based constrained nonlinear programming 
techniques to estimate the global and local hand motion 
simultaneously [lo]. The drawback of this approach is 
that the optimization is often trapped in local minima. 
Another idea is to model the surface of the hand and 
estimate hand configurations using the ‘ ‘analysis-by- 
synthesis” approach [6]. Candidate 3D models are 
projected to the image plane and the best match is found 
with respect to some similarity measurement. Essentially, 
it is a search problem in a very high dimensional space 
that makes this method computational intensive. A 
decomposition method is also proposed to analyze 
articulated hand motion by separating hand motion into its 
global motion and local finger motions [ 151. 

Although the 3D model-based approach makes 
motion capturing from monocular images possible, it also 
faces some challenging difficulties. Many current 
methods for hand posture estimation basically involve the 
problem of searching for the optimal hand posture in a 
huge hand configuration space, due to the high DoF in 
hand geometry. Such a search process is computationally 
expensive and the optimization is prone to local minima. 
At the same time, many current approaches suffer from 
self-occlusion. 

However, although the human hand is a highly 
articulated object, it is also highly constrained. There are 
dependencies among fingers and joints. Applying the 
motion constraints among fingers and finger joints can 
greatly reduce the size or dimensions of the search space, 
which in turn makes the estimation of hand postures more 
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cost-efficient. Another major advantage of applying hand 
motion constraints is to be able to synthesize natural hand 
motion and produce realistic hand animation, which 
would be very useful to synthesize sign languages. 

There has not been much done regarding the study of 
hand constraints other than the commonly used ones. 
Even though constraints would help reduce the size of the 
search space, too many or too complicated constraints 
would also add to computational complexity. Which 
constraints to adopt becomes an important issue. Some 
constraints have already been presented, studied, and used 
in many previous works [I, 2, 6, 71. The common ones 
include the constraints of joints within the same finger, 
constraints of joints between fingers, and the maximum 
range of finger motions. All these are presented as either 

or inequalities. However, due to the high 
in finger motion, there are yet more constraints 

that cannot be explicitly represented by equations. 
In this paper we propose a learning approach to model 

the constraints directly from sampled data in the hand 
configuration space (C-Space). Each point in this hand 
configuration space corresponds to a set of joint angles of 
a hand state, which is commonly estimated in model-based 
approaches. Rather than studying the global hand motion, 
we will focus only on the analysis of local finger motions 
and constraints with the help of a CyberGlove developed 
by Virtual Technologies Inc. Moreover, we will study the 
constraints of hand motions that are natural and feasible to 
everyone. 

2 Hand skeleton model 
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Figure 1: Kinematical structure and jointnotations. 

The human hand is highly articulated. To model the 
articulation of fingers, the kinematical structure of the 
hand should be modeled. In our research, the skeleton of a 
hand can be abstracted as a stick figure with each finger as 
a kinematical chain with base frame at the palm and each 
fingertip as the end-effector. Such a hand kinematical 
model is shown in Figure 1 with the names of each joint. 
This model has 27 Degrees of Freedom (DoF). There are 
21 DoF contributed by the finger joints for the local 
motion and 6 DoF due to the global motion [7].  Since we 

will only focus on the estimation of the local finger 
motions rather than the global motion, these six 
parameters are not considered in our current study. 

Articulated local hand motion, i.e. finger motion, can 
be represented by a set of joint angle values. In order to 
capture the hand motion, glove-based devices have been 
developed to directly measure the joint angles and spatial 
positions by attaching a number of sensors to hand joints. 
Although the goal of vision-based hand motion analysis is 
to be able to recognize hand configurations without the 
use of attached external devices, a glove-based device will 
help in collecting ground truth data, which enable the 
modeling and learning process in visual analysis. 

In our study, we employ a right-handed CyberGlove, 
which provides 15 sensors for measuring joint angles; 
therefore, we are able to characterize the local finger 
motion by 15 parameters. The glove can be calibrated to 
accurately measure the angle within 5 degrees. This is 
acceptable for gesture recognition; finger postures that are 
five degrees different would still appear to be the same 
posture. 

3 Modeling the constraints 

3.1 Constraints overview 

Hand/finger motion is constrained so that the hand 
cannot make arbitrary gestures. There are many examples 
of such constraints. For instance, fingers cannot bend 
backward too much and the pinky finger cannot be bent 
without bending the ring finger. The natural movements of 
human hands are implicitly defined by such motion 
constraints. 

Some motion constraints may have a closed form 
representation, and they are often employed in current 
research of animation and visual motion capturing [ 1, 2, 6, 
7, 151. However, many motion constraints are very 
difficult to express in closed forms. How to model such 
constraints still needs further investigation. Here we 
present three types of motion constraints and explain how 
we are able to represent hand motion with only 15 
parameters instead of 21. 

Hand constraints can be roughly divided into three 
types. Type I constraints are the limits of finger motions 
as a result of hand anatomy, which are usually referred to 
as static constraints. Type I1 constraints are the limits 
imposed on joints during motion, which are usually 
referred to as dynamic constraints in previous work. Type 
III constraints are applied in performing natural motion, 
and have not yet been explored. Below we will describe 
each type in more detail. 

Type I constraints. This type of constraint refers to 
the limits of the range of finger motions as a result of hand 
anatomy. We will only consider the range of motion of 
each finger that can be achieved without applying external 
forces, such as bending fingers backward using the other 
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hand. This type of constraint is usually represented by the 
following inequalities: 

0" I 6 M C p - F  590' , 

O " I @ p / p - F  <110", 

O"IO, ,p- ,  190",and 

- 1 5 ' I O M c p - A A  115". (1) 
where the subscript F denotes flexion and AA denotes 
abductionladduction. 

Another commonly adopted constraint states that the 
middle finger displays little abduction/adduction motion. 
The following approximation is made for the middle 
finger: 

This will reduce 1 DoF from the 21 DoF model. 

abduction motion and will be approximated by 0 as well. 

As a result, the thumb motion will be characterized by 
four parameters instead of five. 

Finally, the index, middle, ring, and little fingers are 
planar manipulators. In other words, the DIP, PIP and 
MCP joint of each finger move in one plane since the DIP 
and PIP joints only have 1 DoF for flexion. 

Type I1 constraints. This type of constraint refers to 
the limits imposed on joints during finger motions. These 
constraints are often called dynamic constraints and can be 
subdivided into intrafinger and interfinger constraints. 
The intrafinger constraints are the constraints between 
joints of the same finger. A commonly used one based on 
hand anatomy states that for the index, middle, ring and 
little fingers, in order to bend the DIP joints, the 
corresponding PIP joints must also be bent. The relations 
can be approximated as follows: 

(4) 
2 

$DIP =-$PIP . 
3 

By combining Eqs. (2)-(4), we are able to reduce the 
model with 21 DoF to one that is approximated by 15 
DoF. Experiments in previous work have shown that 
postures can be estimated using these constraints without 
severe degradation in performance. 

Interfinger constraints are those imposed on joints 
between adjacent fingers. For instance, when an index 
MCP joint is bent, the middle MCP joint is forced to bend 
as well. Lee and Kunii [7] have performed measurements 
on several people and obtained a set of inequalities that 
approximates the limits of adjacent MCP joints. 
However, there are yet more constraints that cannot be 
explicitly represented in equations. 

Type I11 constraints. These constraints are imposed 
by the naturalness of hand motions and are more subtle to 
detect and quantify. Almost nothing has been done to 
account for these constraints in simulating natural hand 
motion. Type I11 constraints differ from Type I1 in that 

O M C P - A A  = O " .  (2) 

Similarly, the TM joint also displays limited 

OTM-AA = O " .  (3)  

they have nothing to do with limitations imposed by hand 
anatomy, but rather are results of common and natural 
movements. For instance, the most natural way for every 
person to make a fist from an open hand would be to curl 
all the fingers at the same time instead of curling one 
finger at a time. Even though the naturalness of hand 
motions differs from person to person, it is broadly 
similar for everybody. This type of constraint also cannot 
be explicitly represented by equations. 

3.2 Modeling the constraints in C-space 

It is difficult to explicitly represent the constraints of 
natural hand motions in closed form. However, they can 
be learned from a large and representative set of training 
samples; therefore, we propose to construct the 
configuration space (i.e., joint angle space) and learn the 
constraints directly from empirical data using the approach 
described below. For notational convenience, let us 
denote the feasible C-space by @ c % 1 5  with each 
configuration denoted by 4 . 

1. Locating base states { f  in @ . We will directly 
locate the base states by fixing the hand in desired 
configurations and measuring the 15 parameters associated 
with the corresponding state. Since the sensors are very 
sensitive to finger movements, little variations in finger 
postures will also be recorded and will be considered as 
the same state. As a result, we will use the centroid from 
the set of N training data D, = ( x , , j = l  ... N ) a s  the 
location of the base state C. Another altemative would be 
to collect a huge set of training samples x, from 
predefined motions and apply a clustering algorithm in 
order to locate the base states. This approach was taken in 
[ 111 for body posture estimation. However, since we have 
full control of how a hand must be configured to form the 
base state, we do not need to apply clustering algorithms 
to locate the base states in C-space. 

In our model, the hand gestures are roughly classified 
into 32 discrete states by quantizing each finger into one 
of two states: fully extended or curled. The reason for 
choosing these two states is that the entire motion of a 
finger falls roughly between these two states. Therefore, 
the whole set of 32 states will roughly characterize the 
entire hand motion (Figure 2a and 2b). However, since 
not everyone is able to bend the pinky unless the ring 
finger is also bent or an extemal force is applied, four of 
the states will not be achievable by everyone without 
applying extemal forces. Therefore, these four states 
(Figure 2b) are not included in our set of base states in C- 
space modeling. Finally, the configurations that are 
similar are considered as the same state. For instance, the 
cases with five fingers spreading apart and with all fingers 
straightened but closed together are considered the same. 
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Figure 2a: Feasible base states. 

Figure 2b: Infeasible base states. 

2. Motion modeling. With the set of base states 5, 
established, we then collect motion data for state 
transitions in order to model the configurations during 
natural hand motions. A large number of sets of motion 
data are collected in order to observe the Type I1 and I11 
constraints of natural hand motions. An example of 
measuring the motion of making and opening a fist is 
shown in Figure 3. 

YIkl.l* 

I 
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mm-.. 

Figure 3: Joint angle measurements from the motion of 
making and opening a fist. 

3. Dimensionality reduction. From Figure 3, we can 
clearly observe some correlations in the joint angle 
measurements. Therefore, together with the data collected 
from static states and the finger motions, we then perform 
principal components analysis (PCA) to reduce the 
dimension of the model and thus reduce the search space 
while preserving the components with the highest energy. 
We note that 95% of the energy is contained in the seven 
dimensions that have the largest eigenvalues. We thus 
perform the mapping 3 1 1 5  + 3' on Q, by projecting the 
original model onto a lower-dimensional subspace 
@' c 3' with principle directions associated with these 
seven largest eigenvalues. 

Figure 4a: Motion Figure 4b: Motion 
transitions between transitions between 

four states. eight states. 

4. Interpolation in compressed C-space. An 
interesting phenomenon regarding the Type I11 motion 
constraints is observed from the motion data. We observe 
a nearly linear transition between states in C-space. An 
example is shown for the case of transitioning between 
four states in the movements of the index and middle 
fingers (Figure 4a). Since only a few joints are involved in 
making these movements, we are able to perform PCA and 
project the C-space into 312 for observation without 
losing much information. The four comers are the 
locations of the four discrete base states. A linear 
transition is clearly demonstrated in Figure 4a. Another 
example is shown in Figure 4b with three-finger motions 
projected onto 313. The eight base states are roughly 
located at the eight comers of a cube. 

Based on this observation of linear behavior, once a 
set of base states 5, has been determined, the whole 
feasible configuration space Q, can be approximated by 
these base states 5, and an interpolation scheme. Our 
approach takes a linear interpolation in the lower- 
dimensional configuration subspace @' . For each 
configuration 9' c@' we will represent its parameters 
by a polynomial interpolation, i.e., 

28 

9' = p l i l '  7 ( 5 )  
I =1 

in which <,' is the projected location of base state 5, and 

i=l 

3.3 Model characteristics 

Our model has three main characteristics that will 
help reduce the search space in gesture recognition. First, 
the model is compact due to the dimensionality reduction 
by PCA. This property also helps to compactly encode 
gesture representations. To obtain the data in original C- 
space only requires linear computations with low 
complexity. 

Second, the motion constraints are automatically 
incorporated in the model. The reason for incorporating 
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motion constraints is that we sample directly from natural 
hand motions. Type I constraints are represented as the 

relative to the center of the base of the palm as the features 
viinprrt for each input image. 

boundaq in the C-space, since configurations that are 
outside of the range permitted by hand anatomy will not 
be achievable in natural hand motions. Type I1 constraints 
are shown through the direction of the paths during 
motion. Type I11 constraints are observed as the straight 
lines from state transition paths involving multiple fingers 
moving together. 

The third characteristic of the model is the linear 
behavior observed in the state transitions in the C-space. 
As stated before, this is the result of the Type 111 
constraints. This observation allows us to justify the 
representation of all feasible configurations using linear 
interpolations as in Eq. (5). Furthermore, we are able to 
produce synthetic hand motions that replicate real hand 
motions with simple computations by knowing the 
trajectories of the state transitions. Although many current 
techniques exist that strive to generate lifelike hand 
motions [5, 9, 12, 141, many of them suffer from great 
computational complexity. Finally, by including time 
domain knowledge of the hand configuration with this 
linear behavior, we will be able to better predict the new Figure 5: Configuration estimations. 
configurations. 

4 Posture estimations 

Using the result we observe from the linear behavior, 
we are able to utilize the model for applications in posture (a) (b) (c)  (d) 

1. In the training stage, first associate each base state 
<:with a feature vector vI  . 
Extract features prnput from the input 2D image, such 

Figure 6: Comparison of different techniques. (a) 
original image. (b) estimation with T~~~ I constraints 
only. (c) estimation with Type I & I1 constraints only. 
(d) estimation with TYPe 1711 L!L 111 constraints. 

estimation by taking the general approach as follows: 

2. 
as edge, area, centroid, etc. 

The results of the experiments are shown in Figure 5. 
3* Compute = '(VI , v ! n p U t )  3 where '(VI YvlinpUt) The first and third rows the input images and the 

measures the closeness of piinput to v i ,  and a; are 
normalized as in Eq. (6). 
Based on the observation made from Type I11 motion 
constraints, linearly interpolate the estimated 
configuration in the compressed space Q c  : 

4. 

i =1 

5. Reconstruct the estimated configuration state 
@estimate c 91'~ from . 

5 Experiments 

In order to evaluate the validity of this model, we 
perform some experiments in synthesizing realistic finger 
motions and estimating the postures constituted by a 
subset of the 28 base states. The input images are 
assumed to be segmented. In our current experiment, we 
manually identify the 2D locations of the fingertips 

second and fourth rows are the corresponding 
reconstructed 3D hand models based on the estimation by 
our approach. The results are visually agreeable. Such 
preliminary experiments show that the motion constraints 
play an important role in hand posture estimation. More 
accurate and cost-efficient estimation can be obtained 
when a better motion constraint model is applied. 
Moreover, better results can be obtained with better 
feature extraction methods, which will be implemented in 
the future research. 

A comparison of estimations using different types of 
constraints is also shown in Figure 6(a)-(d). In Figure 
6(b), estimation with only Type I constraints results in a 
feasible, yet unnatural configuration. In Figure 6(c), a 
closer approximation is obtained by applying Type I & 11 
constraints. Some additional adjustments are required in 
order to approximate the configurations correctly. Finally, 
applying all three types of constraints together produces 
the better result with a more natural approximation in 
Figure 6(d). 
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Another application is hand motion synthesis by 
reconstructing the sequences of configurations along the 
lines that approximate the state transitions (Figure 7). 
Since the lines are the approximations of the original real 
motion data, the reconstructed sequences also incorporate 
the constraints, which make the motion realistic. 

Figure 7: Sequences of synthesized finger motions. 

6 Conclusion 

estimation problem generally involves a 
h dimensional C-space. Useful hand 
been demonstrated to greatly reduce the 

search space, and thus improve gesture recognition results. 
Many constraints can be represented in simple closed 
forms while many more cannot and have not been found. 

s paper, we presented a novel approach to model 
the constraints. Our model has three characteristics. 
First, it is compact by utilizing PCA. Second, it 
incorporates constraints that can and cannot be represented 
by equations. Third, it displays a linear behavior in state 
transitioning as a result of natural motion. These 
properties together simplify configuration estimation in 
the C-space as shown in Eq. (5) by a simple interpolation 
with linear polynomials. Some preliminary gesture 
estimation experiments are shown, taking advantage of 
this model. 

However, there is still much to be done to improve 
this model. For instance, more states can be included to 
further refine the model. Deciding which states to choose 
will require more analysis of the C-space. Furthermore, 
other constraints might exist in the C-space that have not 
yet been observed. Finally, even though a nearly linear 
behavior is observed in state transition, it is not exactly 
linear. A more detailed study can better approximate the 
trajectories, which in tum would help improve the 
configuration estimation. Nevertheless, our constraints 
modeling provides a different interpretation of hand 
motions and the current results look promising. 
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