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1 Introduction 
Invariant. object, recognit.ion is a fiinrla.mental but, 

challenging compiit,er vision t,ask, since finding effect,ive 
object. represent,ations is genera.lly a difficult. problem. 
3D object recoiist riiction siiggests a way to  invariantly 
chsracterize ob,jects. Alternatively: oh,ject,s coiild also 
be represenkc1 by their visiial appearance withoiit ex- 
plicit reconstriiction. However, representing obj 
t.he ima,ge spa.ce is formidable, since the dimensionality 
of the image space is int.ract,able. Dimension rediic- 
tion coiiltl be achieved by ident,ifying invariant image 
feat.iires. In some cases, domain knowledge coiild be 
exploit.ed to extract image feat,iires from visiial inpiits, 
however: nnny  other cases need t,o lenrn, siich feat,iires 
from a set of examples when image feat.iires are diffi- 
ciilt. t,o define. Many siiccessfiil examples of learning 
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approaches in the area of face and gesture recognition 
can be found in t.he lit,erat,iire [5: 21. 

Generally, charact,erizing object,s from examples re- 
qiiires huge t.raining d a h  sets, becaiise input dimen- 
sionality is large and t,he variations that  object, classes 
iindergo are significant,. Labels or siipervised infor- 
niat,ion of t,raining samples are needed for recognit,ion 
t,asks. The generalization abilities of many ciirrent. 
met.hods largely depend on training dat,a sets. In gem 
eral: good generalizat,ion requires large and represen- 
t,a t.ive labeled t.raining d a h  sets. Unfortunately, col- 
lect.ing labeled dat,a can be a tedious, if not. altogether 
impossible: process. Alt,hoiigh iinsiipervised or cliist,er- 
ing schemes have been proposed 11, 141; it is difficiilt~ 
for piire unsiipervised approaches t,o achieve acciirate 
classificat,ion withoiit. siipervision. 

This problem ca.n be alleviat,ed by sem,i-su,pemii.sed 
or se/j-s?i,peruised learning kchniqiies which t.ake hybrid 
training da.t.a sets. This learning paradigm could be 
looked as an int,egrat,ion of piire siipervised and iinsii- 
pervised learning. These algorithms assiime that, only 
a fract,ion of the data is labeled wit,h groiind t.riit,h, hiit 
still t,ake advantage of the ent,ire dat,a set t.o generate 
good classifiers; they make t,he assiimpt.ion t,hat nearby 
data are likely t.o be generat,ed by t.he same class. Work 
in this area has been siiccessfiilly applied to text. clas- 
sifica.tion [3: 4: 7 ,  101. 

Discrim,l:nan.t-EM (D-EM) ,[15] is a self-siipervised 
learning algorithm for siich purposes by taking a small 
set. of labeled data with a large set. of iinlabeled t1at.a. 
The basic idea of this algorithm is to learn tliscriminat- 
ing fmtiires and t.he classifier simiilt.aneoiisly by insert,- 
ing a miilti-class linear discrniinant, step in t,he stan- 
dard expect at,ion-maximi~at,ion it.erat.ion loop. D-EM 
makes assiimpt,ion that, the probabilistic struct,iire of 
data dist riblition in the lower dimensional discrimina- 
tion space is simplified and coiild be captured by lower 
order Gmssian mist,iires. Because the discriminat.ion 
st.ep in D-ER1 is linear, however, it. ha.s difficiilty han- 
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dling data  sets which are not, linearly separable, and 
input, d a h  is likely t,o be highly non-linearly-separable: 
regardless of the featlures used as input.. 

Based on nonlinear kernel discriminmt, analysis, this 
paper present,s a Kernel! D-EM algorit,hm. Kernel dis- 
criminant analysis transforms the original d a h  space X 
t,o a higher dimensional kernel feat,ure space 3 and t,hen 
projects t.o a lower dimensional discriminat,ion space A,  
such that, nonlinear discriminat.ing featares could be 
identified, and training d a h  coiild be bebter classified 
in a nonlinear feat.ure space. Two novel algorit hnis are 
presenhed for sampling training data  for efficient. learn- 
ing of nonlinear kernel discriminants. Our experiment,s 
include standard benchmark tjest ing: view-independent, 
hand posture recognit,ion and invariant. fingertip t,rack- 
ing. 

2 Nonlinear Discriminant Analysis 
Nonlinear discriminant, analysis could be achieved 

by t.ransforniing the original d a h  space X t,o a nonlin- 
ear feat,iire space F and t,hen performing LDA in F. 
This sect,ion present.s a kernel-based approach. 
2.1 Linear Multiple Discriminant Analysis 

Mukiple discriminant, analysis (MDA) is a nat,n- 
ral general izahn of Fisher's linear discrimina.nt, anal- 
ysis (LDA) for the case of miikiple classes [B]. The 
goal of MDA is to find a linear project.ion W that 
maps. t,he original dl-dimensional d a h  space X t,o a 
d2-dimensional discrimination space A (d2 5 c - 1 , c is 
t,he number of classes) such t,hat, t,he classes are linearly 
separable. 

More specifically, MDA finds t,he best. linear projec- 
tion of labeled dat,a, x E X: such that. t,he rat,io of 
bet,ween-class scat>t.er; SB , t,o within-class scat.t,er, Sw, 
is maximized. Let, n, be t,he size of t.raining d a h  set, 
and n,j be t,he size of t,he dat,a set, for class j. Then, 

c 

j=1 k = l  

where the tot,al mean and class means are given by 
m = x k ,  for j = 1:. . . , c: 

and Vopt = [vl , .  . . , v, -~]  will contain in its columns 
c - 1 eigenvect,ors corresponding t,o c - 1 eigenvalues, 
Le.: S ~ v i  = XiSpvv1:. 
2.2 Kernel Discriminant Analysis 

In n,onlin,ear discriminant analysis, we seek a prior 
t.ransformat,ion of t,he data ,  y = d(x) ,  that, maps t,he 

~ ~ = l x k :  mj = + 

original data space X. to a featlire space (F-space) F. 
in which MDA can be then performed. Thus. we have 

(4) 

j=1 k = l  

wit.h m = A CL=, $ ( x k ) ,  mj = + E,":, d(xk): where 
j = 1) . . . ,  c. 

In general, because we choose $(.) to facilit.at,e h- 
ear discriminant, analysis in t,he feature space 3, t,he 
dimension of t,he feat lire space may be arbit,rarily large: 
even infinit.e. As a resiilt,, the explicit comput,at,ion of 
the mapping indiiced by @(.) could be prohibit.ively ex- 
pensive. 

The problem can be made t ract,able by t,aking a 
kernel a.pproach that. has recent,ly been used t,o con- 
st,riict. nonlinear versions of slipport. vechr  machines 
[13] , principal components analysis [12] , and invariant. 
feat,nre extract,ion [9: 111. Specifically, the observa.t,ion 
behind kernel approaches is t.hat, if an algorithm can 
be writ,t.en in such a way t,liat only clot. proc1nct.s of the 
t,ransformed tlat,a in 3 need t.o he computed, explicit 
mappings of individiial c1a.t.a from X become iinneces- 
sary. 

Referring t,o Eqiiat,ion 4: we know that, any col- 
umn of t.he solut,ion V: milst, lie in t,he span of all 
training samples in 3: i.e., v, E 3. Thus: for some 
u = ( c Y 1 ? . ' ' ! c Y , ]  T , - 

where @ =  XI), . . . ~ d(xn)] .  We can t.herefore 
project. a data point, xk ont,o one coordinat,e of the lin- 
ear subspace of 3 as follows (we will drop t,he siibscript. 
on vi in t,he ensiling): 

k (x l !  X k )  

<k = [ 1 ,  (10) 

k(xn! x k )  

where we have rewrit.t,en dot. pror1iict.s: (@(x), @(y)): 
with kernel notation, k (x ,  y). Similarly, we can project. 

276 



each of the class means onto an axis of the feature space 
subspace using only dot products: 

correspond to  a salient PCA coefficient: i.e., choose the 
training samples corresponding to  rows that survived 
the thresholding. Do so for every non-zero eigenvalue 
and we arrive a t  a decimated training set, which rep- 
resents data a t  the periphery of each da ta  cluster. 

It follows that, I a'l 

V ~ S B V  = g T K ~ g ,  (14) 

where K B  = n,(iiJ - p)(pLJ - P ) ~ .  and 

V ~ S W V  = gTKwgY, (15) 

where Kw = E,"=, E ? = l ( < k  -pLJ) (&  -pLJ IT .  The goal 
of Kernel Multiple Discriminant Analysis (KhlDA). 
then. is to find 

where A I [a1, . . . , 
Kw requires only kernel computations. 

3 Sampling Data for Efficiency 

~ and compiit,ation of K B  and 

Because K B  and Kw are n x n, mat.rices, where 
n, is the size of t,raining set, the nonlinear mapping 
is dependent on the ent,ire training samples. For 
large n,, the solution to  the generalized eigensystem 
is costly. Approximat,e solut,ions could be obt,ained 
by sampling represent,ative subsets of the t>raining 
data,  { p k l k  = 1, . . . , M , M  < n,): and using & = 

3.1 PCA-based Kernel Vector Selection 
The first. approach we propose is blind to the class 

labeling. We select representatives, or kernel vectors, 
by identifying those training samples which are likely 
to play a key role in 2 = [ ( I , .  . . ,En]. E is an n x n, 
matrix, but. ra,n,k(E) << n,, when the size of training 
da ta  set, is very large. This fact, suggests that, some 
t,raining samples could be ignored in calculating kernel 
features (. 

We first, compute the principal components of E.  De- 
note tjhe n, x n, mat,rix of concatenated eigenvectors with 
P. Thresholding elements of abs(P) by some fract,ion 
of the largest, element, of it, allows 11s t.o ident,ify salient 
PCA coefficients. For each coliimn corresponding t,o a 
non-zero eigenvalue, choose the training samples which 

( k ( X l , X k ) , . . .  , k ( X & f , X k ) ] t  t.0 take t,he phce  of < k .  

Figiire 1: KMDA with a 2D 2-class non-linearly-separable 
example. (a) Original data (b) the kernel features of the 
data (c) the normalized coefficients of PCA on E, in which 
only a small number of them are large (in black) (d) the 
nonlinear mapping. 

3.2 Evolutionary Kernel Vector Selection 
Another approach is to take atlvant.age of class la- 

bels in the data. We maintain a set. of kernel vec- 
t.ors at every iterat,ion which are meant, t.0 be t,he key 
pieces of data for t,raining. M initial kernel vect.ors: 
KV(") ,  are chosen at  random. At it,eratiori k :  we 
have a set. of kernel vect,ors, KV('):  which are iised 
to  perform KMDA such t,hat the lionlinear projection 
yZ(') = v ( ' ) T 4 ( x i )  = (k )T  ( k )  E A of the original 
data xi can be obtained. We asslime Gaussian dist,ri- 
biit,ion O(') for each class in the nonlinear discrimina- 
tion space A, and t,he parameters $ ( k )  can be est,imated 
by (y(')}, such t.hat, t,he labeling and t,raining error e(k')  
can be obt.ained by ck)  = arg maxj p ( l j l y i ,  $(")). 

we randomly selsct M t.rairiing sam- 
ples from the correct,ly classified t,raining samples us 
kernel vector KV(t+') a t  itxrat,ion k + 1. Anot,lier pos- 
sibility is that if any current, kernel vector is correctly 
classified, we raridomly select, a sample in its topolog- 
ical neighborhood t.o replace this kernel vect.or in t,he 
next iteration. Otherwise, i.e., e(*') 2 e(*-- ' ) ,  aiid we 
terminate. 

The evolutionary kernel vector selection algorithm 
is summarized below in Figiire 2. 

If e(') < 
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Evolut,ionary Kernel Vector Selection: Given a set of 
t,raining data  D = ( X ,  L )  = {(xi, 17,), i = 1,. . . , N } ,  
t,o ident,ify a set. of A4 kernel vectors KV = {vi, i = 
1,. . . , A I } .  

k = 0; e = x; =random-pick(X); // Init, 
do{ 

A:; =KMDA(X, KV( ' ) )  ;// Perform KMDA 

~ ( k )  = P r o j  ( x ,  A:!); // Project, x t,o A 
dk)  =Bayes (Y(')! L )  ; //Bayesian classifier 

e ( k )  =Error (z( ' ) ,  L ) ;  / /  Calculate error 
i f (e( ' )  < e> 

=Labeling(Y(') ,  e(')) ; // Classification 

e = e(');  KV = KV('); k + +; 
KV(')  =random-pick({xi : <') # l i } ) ;  

KV = KV("-'); break;  
e l s e  

end 

r e t u r n  KV;  
1 

Figiire 2: Evolutionary Kernel Vector Selection 

4 Kernel D-EM Algorithm 
As an extension t.o Expectat,ion-h,Iaximization 

(EM): 1151 proposed a t,hree-st,ep algorit.hm, called 
Discriminant-Eh4 (D-EM), which loops between an ex- 
pect,at,ion st.ep, a discrimination step (via h4DA): and 
a niaxiniizat.ion st,ep. D-EM est.imat,es the parameters 
of a generat,ive model in a discriminat,ion space. 

We now apply KMDA t.0 D-EM. Kernel D-EM 
(KDEM) is a generalizat.ion of D-EM, in which instead 
of a simple linear t,ransformat.ion of t,he dat.a, KMDA is 
used t,o project, t,he c1at.a nonlinearly into a feature space 
where t.he d a h  is b r separat,ed linearly. The non- 
linear mapping, b(. ) ,  is implicitly det,ermined by t,he 
kernel fiinction: which must, be det,ermined in advance. 
The transformat,ion from t,he original data  space X t,o 
t,he discrimination space A, which is a linear subspace 
of t.he feat.iire space 3: is given by V'$(.) implicitly or 
AT< explicit,ly. A low-dimensional generat,ive model is 
iised to capt.ure the t,ransformed data in A. 

c 

P ( W )  = Cr,(V'4(X)ICj; @j)P(Cjl@j) (17) 
j=1 

Empirical observat,ions snggest, that, t,he t.ransformed 
d a h  often approximat,es a Gaussian in A,  and so in 
oitr current, implenient,at.ion: we use low-order Gaussian 
niixt,iires t.o model the t.ransfornied dat,a in A. Keril,Tl 
D-EhTI can be init,ialized by select,ing all labeled dat,a 
as kernel vectors, and txaining a weak classifier based 

on only unlabeled samples. Then: the three steps of 
Kernel D-Eh4 are iterated until some appropriat,e con- 
vergence criterion: 

0 E-st,ep: set, i('+') = E [ Z I D ;  &')I 

0 D-step: set A:&' = argmaxA lATKwAl and iden- 

0 I\il-step: set, 6('+l) = arg maxe p ( 0 1 ~ ;  ,iYk+1)) 

The Es t , ep  gives unlabeled data  probabilist,ic labels, 
which are t,hen used by t,he D-step to separat,e the data. 
As mentioned before: this assumes t,hat the class dis- 
t,ribut,ions are moderately smoot,h. 

5 Experiments 
In t,his section: we compare KMDA wit,h other sn- 

pervised learning t,echniques on some standard data  
sets. ExperimentA resiilt,s of Kernel D-Eh4 on hand 
post,ure recognit,ion and invariant fingertip tracking are 
presented. 
5.1 Benchmark Test for KMDA 

We first verify t,he ability of KMDA with our data- 
sampling algorithms. Several benchmark data sets' are 
nsed in our experiment,s. The benchmark dat.a has 100 
different, realizat,ions. In [9] , resiilt,s of different a p  
proaches on these data  set,s have been report,ed. The 
proposed KMDA algorit,hms were compared t,o a sin- 
gle RBF classifier (RBF): a support, vector machine 
(SVM) , AdaBoost,, and t.he kernel Fisher discriminant 
(KFD) [8]. RBF kernels were used in all kernel-based 
algorit.hms. 

I A* K~ AI 

t,ify kernel vectors KV("') 

Benchmark Banana B-Cancer Hea.rt 

RBF 10.8rt0.06 27.63~0.47 17.6*0.33 
AdaBoost 12.3Zk0.07 30.4f0.47 20.3i~0.34 

SVM 11.5Zk0.07 26.0f0.47 16.0f0.33 
KFD 10.8f0.05 25.8f0.46 16.1*0.34 

KMDA-pca 10.7rt0.25 27.5k0.47 16.5f0.32 
KMDA-evol 10.810.56 26.3f0.48 16.110.33 

#-KVs 120 40 20 

Table 1: Benchmark Test: the average test error as well as 
standard deviation. 

In Table 1: KMDA-pca is KMDA wit,h PCA se- 
lection, and KMDA-evol is KMDA with evoliit,ionary 
selection, where #-KVs is the nnmber of kernel vec- 
t,ors. The benchmark k s t s  show, t'hat, the proposed 

The standard benchmark data sets in our experiments are 
obtained from http://ww.first .gmd.de/-raetsch. 
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approaches achieve comparable results as ot,her stat,e- 
of-t,he-art techniques, in spite of the use of a decimated 
training set,. 

5.2 Hand Posture Recognition 
Next: we examine resilks for KDEM on a hand ges- 

ture recognition t.ask. The task is to  classify among 
14 different hand postures: each of which represents a 
gest,ure command mode, siich as navigat,ing, pointing, 
grasping, et,c. Our raw data set consists of 14,000 tin- 
labeled hand images together wit,h 560 labeled images 
(approximat,ely 40 labeled images per hand post,iire), 
most from video of subjects making each of t.he hand 
postures. These 560 labeled images are used to  t,est the 
classifiers by calculating t,he classification errors. 

Hands are localized in video seqnences by adapt.ive 
color segment,at,ion and hand regions are cropped and 
converted t,o gray-level images [15]. Gabor wavelet, fil- 
ters with 3 levels and 4 orientat,ions are iised t,o ext.ract 
12 t,exture features. 10 coefficient,s from the Fourier 
descriptor of the occluding contoiir are used t,o repre- 
sent, hand shape. We also nse area, contoiir lengt,h, 
t,ot,al edge length: density, a.nd 2nd moment,s of edge 
distribiition, for a t:otal of 28 low-level image feat.iires 
(I-Feat.iire). For comparison: we also represent images 
by coefficients of t,he 22 largest, principal components 
of the total dat,a set resized t.o 20 x 20 pixels (these 
are "eigenimages" ~ or E-Features) 1151. In oiir experi- 
ments, we use 140 (10 for each) and 10000 (randomly 
selected from t.he whole dahbase) labeled and iinla- 
beled images respect,ively, for training wit,h both EA1 
and D-Eh;l. Table 2 shows the comparison. 

Algorithm MLP NN-G Eh4 LDEM KDEM 

I-Feat.iire 33.3% 15.8% 21.4% 9.2% 5.3% 
E-Feat,iire 39.6% 20.3% 20.8% 7.6% 4.9'% 

Table 2: View-independent hand postnre recognition: 
Comparison among mnltilayer perceptron (hrILP) ,Nearest 
Neighbor with growing templates (NN-G), EM, linear D- 
Eh4 (LDEM) and KDEhl 

We observed that. multilayer perceptrons are often 
trapped in local minima and nearest. neighbor suffers 
from the sparsity of the labeled templates. The poor 
performance of piire EM is due t.0 t,he fact. t,hat. the 
generat,ive model does not, capt,iire t,he groiind-triith 
distribution well: since the iinderlying d a h  distribiition 
is highly complex. It is not, stirprising that. LDEM and 
KDEM oiit,perforni ot,her methods, since the D-st,ep 
opt.imizes separabili t ,~ of the cla.sses. 

Finally, n o k  the effect,iveness of KDEM. We find 

that. KDEM often appears to project classes to approx- 
imately Gaussian clusters in the transformed space: 
which facilit.ates their modeling with Ganssians. Fig- 
ure 4 shows typical transformed data  sets for linear 
and nonlinear discriminant analysis, in a projected 2D 
subspace of 3 different hand postures. 

I " I  ~ . "  
(4 (b) 

Figiire 3: Data distribution in the projected subspace (a) 
Linear KMDA (b) Kernel KMDA. Different postures are 
more separated and clustered in the nonlinear subspace by 
KMDA. 

Figiire 4: (a) Some correctly classified images by both 
LDEM and KDEM (b) images that are mislabeled by 
LDEM, bnt correctly labeled by KDEM (c) images that 
neither LDEM or KDEM can correctly labeled. 

5.3 Fingertip Tracking 
In some vision-based gest,ure int,erface systems, fin- 

gers coiild be used as accurate point,er inpiit, devices. 
Also, fingertip detect,ion and t,racking play an impor- 
t.ant. role in recovering hand articrilat~ions. A difficu1t.y 
of the task is t,hat, fingert,ip mot.ion oft,en nndergoes ar- 
bitrary rotat.ions, which makes it hard t.o invariantly 
characterize fingert,ips. The proposed Kernel D-EM 
algorit.hm is employed t,o discriminate fingertips and 
non-fingert,ips. 

We have collect,ed 1,000 training samples including 
bot,h fingertips and non-fingertips. Non-fingert,ip sam- 
ples are collected from t,he background of t,he working 
space. Some training samples are shown in Figlire 5. 
50 saniples for each t,wo classes are nianiially labeled. 
Training images are resized to 20x 20 and convert,ed t.0 
gray-level images. Each training sample is represenkd 
by its coefficient,s of the 22 largest principal compo- 
nent.s. Kernel D-EM algorit.hm is performed on siich 
t.raining dat.aset to  obtain a kernel transformation and 
a Bayesian classifier. Assiime at time t - 1, fingert.ip 
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Figure 5:  (a) Fingertip samples, (b) Non-fingertip samples. 

location is X,-l in image. At, time t ,  t.he predict.ed 
locatlion of fingertip is X t  according tjo Kalman predic- 
tion. For simplicit.y, t,he_size of search window is fixed 
by 10x10 centered at X t .  For each locatim in t.he 
search window, a fingert,ip candidat,e is constriict.ed by 
the 20x20 sized image cent.ered at, that, location. Thus, 
100 candidat.es will be tested. A probabilist,ic label 
of such fingertip candidate is obtained by classifying 
it,. The one with t.he largest proba.bility is det,erniined 
as t,he t.racked location at, time t .  We run t.he t,rack- 
ing algorithm on sequences cont,aining a large anioimt 
of fingertip rotat,ion and complex backgronnds. The  
tracking result, is fairly accurat,e. 

- 

6 Conclusion and Future Work 
We present,ed t.wo novel algorit,hms for efficient 

kernel-based, nonlinear, mnltiple discriminant, analy- 
sis. These algorit,hms ident.ify ”kernel vect,ors” which 
are the defining t.raining d a h  for the purposes of classi- 
ficat’ion. Benchmark test,s show t,hat, KMDA with t,hese 
adaptations performs comparably wit,h the best known 
supervised learning algorithms. We also present,ed a 
semi-snpervised discriminant, analysis technique, Ker- 
nel D-EM, which employs both labeled and imlabeled 
dat.a in t,raining. On real experiments for recogniz- 
ing hand post,ures and t.racking fingert,ips, KDEM oiit,- 
performs na’ive supervised learning and existing semi- 
supervised algorit,hms. 

Exaniinat ion of t,he experimerkal results reveals t.hat, 
KMDA often maps data set,s corresponding to  each 
class into approximately Gaussian clusters in t,he tran- 
formed space, even when t,he initial dat.a dist,ribut,ion 
is highly non-Gaussian. In fut,ure work: we will inves- 
t,igat.e t,his phenomenon more closely. 
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