
Capturing Natural Hand Articulation 

Ying Wu, John Y. Lin and Thomas S. Huang 
Beckman Institute 

University of Illinois at Urbana-Champaign 
405 N. Mathews, Urbana, IL 61801 

{yingwu, jy-lin,huang}@ifp.uiuc. edu 

Abstract 
Vision-based m,otion captu.ring of hand articulation 

i s - a  ch,allengin,g task,  since th,e hand presents a m,o- 
tion of high, degrees of freedom.. Model-based approach,es 
could he taken to approach this problem. by searching 
in, 0. h,igh dim.en,sional hand state ,sppace, a,nd m,atch,- 
in,g projection,s of a hand m,odel and im,age ohsemia- 
tion.s. fIouieaer, i t  is h,a,qhhj ineficien,t due  to th,e curse 
of dim.ension,ality. Fortumately, nmturd h,and nrticu.la- 
tion is highly constrained, iihich, lar9ely redu.ces the di- 
m,ension,nlity of hand .state space. Th'is paper presen,ts 
n, m.odel-hased m,ethod to captu.re h,an.d articu.lation, by 
leamin,g h,o,n.d nmturd constmin,ts. Our study sh,ouis 
th,at natu,ro.l h,an,d articu.lo.tion lies in a lower dimfen- 
sion,nl config,u.ration,s space charoxterized b y  a maon, of 
linenr m,an,ifolds spnn,n,ed by 0. set of basis con~jigu.ra- 
tion,s. By inte,qratin,g h,o,n,d m,otion, constrain,ts, an, ef- 
ficien,t articirlnted m.otion,-co,pturin,,q algorithm, is pro- 
posed hnsed on seque M m t e  Co.rlo tech,n,iques. 0u.r 
en:pcrim.en,ts shoai th,at th,is algorithm. is rohwst and ac- 
cumte f o r  tro,ckdn,,q nmtural h,nn,d m,ovem,ents. Th,is al- 
,qorith,m, is ~O,S!J  to  extend to d e r  art icdn.ted m.otion 
co.ptii,rin,g tasks. 

1 Introduction 
The i isc of hand gcstiircs has bccome an important 

part of hiiman cornpitbcr intcraction in reccnt ycars 
[ 111. Gcstmc commands could bc captured and rcc- 
ognizcd by compiit.crs, and computers could synthesize 
hand sign language as an outpiit. Glovcbascd dcviccs 
have bccn cmploycd to (:iLpturc human hand motion 
by dircctly nicasuring thc joint. anglcs and spatial po- 
sit.ions of hands with sensors at,t.achcd. Generally, such 
dcviccs arc cxpcnsivc and cumbcrsomc. On t.hc other 
hand, vision-bascd tcchniquc has bccomc a promising 
alt.crnativc t.0 captiirc human hand motion, d m  to thc 
cost-cfficicnt and non-invasive visual scnsory inputs. It, 
scrves as thc motivating forccs for rcscarch in vision- 
based capturing of hand art,iculat,ion. 

Capturing hand articulation is a challcnging task, 
sincc thc hand prcscnts a motion of high dcgrccs of frcc- 

dom. If hand articulation is represented by its joint an- 
gles: the dimensionality for est,imation and tracking of 
hand states would make this task prohibitive. Another 
difficulty comes from self-occlusions of different fingers, 
which brings uncertainty for the occluded parts. 

Two general approaches have been explored to c a p  
ture hand articulation. One of them is the m,odel-based 
approach, which takes advantage of 3D hand models. 
Hand states could be recovered by matching the pro- 
jcctcd 3D model and observed image features, so that 
thc problem becomes a search problem in a high di- 
mensional space. Different image observations have 
been studied. Fingertips [7, 15, 161 could be used 
to construct the correspondcnces between the model 
and the images. However, the robustness and accuracy 
largely depends on the performance of fingertip detec- 
tion. Line features were employed in [12, 141 to en- 
hance the robustness. An exact hand shape model was 
built by splines in [SI, and hand state recovery could 
be achieved by minimizing the difference between the 
silhouctt,cs. A method of combining edge and silhou- 
ette obscrvations was reported recently for human body 
tracking [a]. 

Thc other alternative is the a,ppearo,nce-based ap- 
proach, which estimat,es hand states from images di- 
rcctly after learning the mapping from the image fea- 
ture space t.o the hand configuration space. In (171: 
static hand posture recognition is achieved by m a p  
ping image feature space to  a discrete space of hand 
configurations. The mapping is highly nonlinear due 
to the variation in the hand appearances under dif- 
fcrcnt vicw angles. An appcarance-bawd mct,hod was 
also rcportcd in [13] to recover body postures. How- 
cvcr, appcarance-bascd approach generally involvcs a 
quite difficult learning problem, and it is not trivial to 
collect large sets of training data. 

Fortunabely, human motion is often highly con- 
strained. In thc casc of thc hand, the movenicnt,s of 
different joints are not, indcpendcnt,. Although the dc- 
grccs of frccdom (DoF), D ,  for the hand is large, the 
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act,nal hand configurat,ion' spacc could bc a small con- 
strained subspacc in t,hc stat,c spacc RD. Thc con- 
straint,s coiild drainat,ically rcdiicc thc scarch spacc in 
capturing hand articulat.ion. Although somc simplc 
and closcd form constriiint.s havc bccn found in bio- 
nictrics and applicd t o  hand niot.ion analysis [7, 6: 161, 
morc invcst.ig-ntions on t,hc rcprcscnt.at,ions and utilizii- 
t.ioiis of t.hc const,raint.s nccd to bc condiict.cd. 

In this paper. we proposc an cffcctivc method t.o 
captlirc hiintl iirticukition by int.cgrat.ing const,raints of 
IiiLt1iral hand motion. Our st,iidy of nat.iira1 hand nio- 
tion shows that t,hc hand configuration spacc coiild bc 
iLpproxiliint.od by iL lowcr dimcnsional spacc and charac- 
t,crizcd by a sct of lxisis c:onfigiirations. To makc iisc of 
s ld i  const riiints: iiii importancc siiliiplilig based RIontc 
Carlo triI&iiig algorithm is proposrd to track hand iir- 
tic,liliLt.ion. Soction 2 dcscribcs ii 3D hand niodcl iiscd 
in oiir stidy. Oiir stiltly of n i i t 1 d  constraint.s of liilnd 
motion is prc:sc:nt.c:tl in Scrt.ion 3. Scc:t.ion 4 and Soction 
5 pr(:scnt t hc import ;in(:(: s;inipling tcrhniqiic: ancl oiir 
tr;rc:kiiig :ilgoritlini rcspcct ivcly. Expcrinicntal rcsiilts 
iirC shown in Sort ion 6 iilitl w(: (.oli(:lIitl(! t h(! p;ipt:r in 
Scction 7. 

2 Hand Model 
T l i ~  hiiniiin hiLlitl is highly iirti('iililt(:d d i i ~  to th(: f:ICt 

thtit, c;~(.ll fiiigor ('it11 IN t r(:iit(:d 21s ii ki1ic:niiit k i l l  c h i h  
with pahi as its basc rcf(:rciic:c: fr;imc. Basic:ally. c;ic*h 
fingcr hi1s f o ~ ~  DoFs. two for the hICP joint iind O W  

for (:il(*li of  thr PIP and DIP joint. tis shown in Figurc 
1 (a). Tlic thiinib ciin be iipproxiinatdy modcl(:d by 
four DoFs. In t.liis scnsc, hniicl iirt iciilation coiild bc 
rcprcscnt~cd by its joint iiligl(!s H E (3 c 72'". 

a good approximation for mot.ion capturing under this 
spccific vicw direct,ion. 

3 Study of Hand Constraints 
It is a formidable t,ask to analyze hand articulation 

in it,s joint. angle spacc e c RZo. Fortunatcly, natural 
hand art,iculation is also highly constraincd. Onc type 
of const.raints. usually refcrrcd to as static c0nstraint.s 
in prcvioiis work. arc t.hc limits of thc rangc of fingcr 
inot.ions as a rcsiilt of hand anatomy, such as 0' 5 
HLtlcp 5 90°. Thcsc c0nstraint.s limit. hand arbiculabion 
wit,liin ii boundary in RZ0, but, without. reducing t.hc 
dimensionality. 

Another t.ypc of const.raii1t.s dcscribcs thc corrcla- 
tions iinioiig different joints. and t,hiis rcdiiccs thc di- 
mcnsionality of hand articulation. For cxilmplc. thc 
motions of the DIP joint and PIP joint arc gcncr- 
d ly  not. indcpcndcnt. and t.liey coiild be dcscribcd as 
H ~ r p  = H F I p  from the st.iidy of biomechanics. Al- 
t ho~igh this colistriLilit could be iiitcntionally miidc iii- 
\did,  it. is ii good i\ppro?timiLt.ion of natural finger nio- 
t.ioii. Uiifort.iuiiat.cly. not d l  of such constraints could 
bc qiiiint,ifi(:d in closc!d forms. Thcsc problcnis inotivatc 
11s t,o modcl thc const.raints iising other altcrniitivcs. 

Instcad of iising the joint. anglc space (-> c R2,. wc 
cmploy 1i;ind c:onfigiirat,ion spacc Z to rcprcsciit. natu- 
rid hand iirtirlilations. N'c arc piirt.icularly int.crcst.cd 
in thc diiiiciisioiiality of t.hc c:oiifigllriition SPiiCC E and 
t.ho behaviors of hand i1rt.icliliLt.ion in 5. To invosti- 
gat.(: such problems. we proposc R lcarning approach t,o 
niodrl hand iiiot,ion constrilints in Z using a largc sct, 
of hand motion data collcctcd wing CybcrGlovc. We 
1i;ivci collcctcd i i  sct of morc thiin 30.000 joint, anglc 
iii(:aSiirCiiiCiit s { HI;,  k = 1, . . . . by performing vari- 
011s natiirnl finger niot.ions. The corrclat.ions of diffcr- 
cnt joints arc iissiilild to bc well rcproscntcd by such a. 
dntii sot.. The Principii1 Compon(>lit.s Analysis (PCA) 
tc~chniqur is cniployvod t.o projcct, t.hc joint. iiliglc spacc 
to tlic c:onfigiiration sl'iicc by c:liiiiiniiting the rcdiun- 
dii1ic.y. i.e.. 

x = P T .  (0 - e,) (1) 

whcrc P is c:onst.riirtrd by t.hc cigrnvcctors corrcspond- 
iiig t.o Iargc: cigcnviiliics of t,hc covarii1nc:c mat.rix of t.hc 
data sct. ;rnd 00 = E,"=, HI; is t.hc iiiciiii of t.hc di1t.a 
sct.. Tlic rcsiilt. shows that. wc can project, t.hc originid 
joint. iinglc sptic<: into iL 7-diiiiciisioii;-ll s\ibspii(:(! whilc 
1iiiiint;Lin 95% of inforination. Thus, X E Z C R7. 

Sincc thc li:it.i1riil hand iirt.irliht ion only covcrs a 
siibsct. of R': we dcfinc 28 basis configiirations B = 
{bl.. . . I bnl : V b k  E E .  AI = 28) to chiiract.(:rizc t,hc 
collfigllration spiicc E.  These hiisis cdigilriit,ions coiild 
bc idcnt ificd by clustcring t,hc c1at.a in E or sclcct.ing in- 
t.uit.ivclg. Sonic of t.licni arc shown in Figiirc 2(a).  Sur- 
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prisingly. after examining the data in E, we found that 
natural hand articulation lies largely in the linear man- 
ifolds spanned by any two basis Configurations. For cx- 
ample, if thc hand moves from a basis configuration b ,  
to another basis b, , the intermediate hand configura- 
tion lies approximatcly on the lincar manifold spanned 
by b, and b,. i.e.. 

Consequcntly, hand art,iculation could bc charact.cr- 
ized in the configurat,ion space by: 

E M UL,,, whcrc L,, = s p a n ( b , ,  b,) ( 3 )  
2 . 3  

A lowcr dimensional illustration is shown in Figure 
2(b). 

(a) a subset of basis configurations 

(b) linear manifolds in the configuration space 

Figure 2: Hand articulation in the configuration space, 
which is characterized by a set of basis configurations arid 
linear manifolds. 

We noticed that [3] proposed a PCA-based approach 
t,o charact,erizc t,he hand shapc deformation, in which 
hand space deformation lies in thc space spanned by a 
set of eigcn shapes. Our rcprcscntation is different from 
theirs since our rcpresent,at,ion charact,orizcs hand art,ic- 
ulation in more details. Besides dcscribing a siibspacc, 
our reprcscntation actually describes the structure of 
thc art,icnlation subset in t,hc configuration space by a 
union of lincar manifolds. Also, our rcprcscntation of 
hand articulation is view-independent,, since it is dc- 
rived from the joint angle space. 

4 Importance Sampling 
A dynamic system could be formulated in a prob- 

abilistic framework, and sampling techniques could be 
used to  approximate probabilistic inferences. 

4.1 Factored Sampling 
In statistics, sampling tcchniqucs are widely iiscd to 

approximate a complcx probability density. A set of 
weighted random samples {dn) ,  d")}, J = 1, . . . , N is 
properly weighted with respect to thc distribution f if 
for any intcgrablc function h. 

In this scnsc, the distribiit,ion p is approximated by a 
set of discrete random samplcs, d') with each having 
probability proportional to its weight dk). 

The t,racking problem of a dynamic system coiild 
be formulatcd in a probabilist,ic framcwork by rcprc- 
scnting t,racking as a process of conditional probabil- 
ity density propagation. Dcnot,c the target. st,atc and 
observation at. timc t as Xt and Z t  rcspccbivcly, and 
X, = { X I , .  . . , X t } , z t  = { Z l , .  . . , Z,}. The tracking 
problem is formulated as:  

P(Xt+lIZt+1) ~ ( Z t + l I X t + l ) ~ ( X t + l l Z , )  (4) 

Generally, closed-form soliitions of dynamic systcms 
arc int.ract,ablc. Monte Carlo mct,hods offer a way t.o 
approximat,c the infcrcncc and characterize the cvolu- 
tion 'of the dynamic syst,cms. Scqiicntial hkmtc Carlo 
mct.hods for dynamic systcms arc st,udicd in the area 
of st,atistics [8, 91. 

a set. of random 
samples {X;"', n, = 1,. . . , N }  conld be drawn from a 
prior p(Xt lzt-l)t and wcightcd by t.hcir mcasiiromcnt,s, 
i.e.: T!") = p(ZtlXt = Xi"'), such t,hat, t,hc posteriori 
p(X,/&) is rcprcscntcd by a sct, of wcightcd random 
samples { sf"', T:"'}. This sanipliiig scheme is called 
fo.ctored sam.pli,n,,q in sta ics. It. conld be shown t.hat, 
snch a sample set is propcrly wcightcd. This sample 
set will cvolvc to a ncw sample sct. at timo t + 1 and 
the new sample sct {s!:)~, T!:\} rcprcscnt.s the post,cri- 
ori p(Xt+&+,)  at, t.imc t + 1. This is t,hc scqnciitial 
Monte Carlo method employed in CONDENSATION al- 
gorithm 141. 

CONDENSATION achieved quite robust tracking rc- 
suits. Thc robiist.ncss of hk"c  Carlo t,racking is due 
to the mainhining of a pool of hypot,hcscs. Sincc ciich 
hypothesis nccds to be mcasiircd and associated wit.h a 
likelihood value, t.hc compntat,ional cost mainly comcs 
from t hc image mcasiircmcnt proccsscs. Gcncrally, t hc 
morc the samples, the morc t,hc chanccs to obtain accii- 
rate t,racking results but tht: slower the tracking spccd. 
Consequently, the number of samples bccomcs an im- 
portant factor in h4ont.c Carlo bascd tracking, sincc it 
dct,crmincs t,hc t,racking accuracy and spccd. Unfor- 
tunately, when t.he dimcnsionality of t,hc stat(: space 

To represent t.hc post,c:riori p(Xt  

428 



incrcascs, t hc numbcr of samples increascs exponcn- 
tially. 

This phcnomcnon has becn noticed and diffcrent 
mcthods havc been takcn to approach this problcm by 
rcducing thc numbcr of hypothescs. A scmi-parametric 
approach was taken in 111. It retains only the modcs (or 
pcaks) of the probability density and models thc local 
neighborhood surrounding each mode with a Gaussian 
distribution. Diffcrcnt sampling techniques were also 
invcstigatcd to rcducc the number of samplcs, such as 
partitioned sampling schcmc [lo] and anncaled particlc 
filtering schemc [Z]. (51 emphasized on color-scgmcntcd 
rcgions by importance sampling. 
4.2 Importance Sampling 

In practice. it might bc difficult to draw random 
samples from thc distribution f(X). Samplcs could 
be drawn from another distribution g(X), but their 
weights should be propcrly adjustcd. This is the basic 
idea of the tcchnique importance sampling. When sam- 
ples s(") are drawn from g(X), but weights are com- 
pensated as 

T ( n )  - f(@)*(") 
9(s( " ) )  

It can be proved that the sample sct {s (" ) ,  d")} is still 
properly weighted with respect to f(X).  This is illus- 
trated in Figure 3. 

Figure 3: Importance sampling. 

To employ the importance sampling tcchniquc in 
dynamic systems, we need to  let ft(Xi"') = p(Xt = 
X ~ ) l & - l ) ,  where jt(.) is the tracking prior, i.e., a 
prediction density. So, when we want to approximate 
the posterior p(X,IZ), we could draw random samples 
from another distribution gt(Xt), instead of thc prior 
density ft(Xt). But the sample weights should bc com- 
pensated as 

5 Our Approach 
This section prcscnts a motion-capturing algorithm 

bascd on importance sampling tcchniquc. Thc lcarncd 
natural hand motion is takcn as the altcrnativc track- 
ing prior when iising importancc sampling tcchniquc. 
Both cdgc and silhoiicttc arc cmploycd as image obscr- 
vation to mcasurc each hypothcsis. 
5.1 Hypotheses Generating 

One important, part of scqiicntial Montc Carlo track- 
ing is to gcncratc samplcs {x:;',, r$\} at time t + 1 
from t,hc samplcs {Xi"', ,in)} at time t. Instead of di- 
rcctly sampling from the prior p(Xt+llZt), we propose 
a method to samplc hand articulation manifolds, bascd 
on importancc sampling tcchniquc. 

Each hand configuration X should be cithcr around 
a basis statc bk, k = 1,.  . . , Ivf ~ or on thc manifold C,j ~ 

whcrc i # j ,  i ,  j = 1,. . . , M .  Suppose at t,imc framc: t: 
the hand configuration is Xt. Wc find the projection 
Xt of Xt onto the ncarcst manifold C:jt i.e.: 

Cij = arg min D(Xt, Lij) 
2>3 

x t  = IJ?-oj(xt,c;j) 

Accordingly. 

(xt - b?)T(bJ - bt) s t = 1 -  
l l ( b J  - b j ) l l  

Thcn. random samplcs arc drawn from thc manifold 
C,J according to thr density p l J .  i.e.. 

( 6 )  St+l (") 

k::), = s:if)lb, + (1 - sl:)l)bJ (7 )  

- PIJ = N ( s t > g )  

Then. perform random walk on %::\ to obtain hypoth- 
esis xi:),, i.e.. 

x::\ - N(kg)l, &+l) (8) 

So. we could writc the importancc function as 
St+l(X:;),) = p(sb;), Ist)P(x:;),Ixj;),) so. 

If the prcvious hand configuration is onc of the basis 
configurations, say xt = b k .  it is rcasonablc to axiumc 
that it takes any one of the manifolds of {Lk3,'j = 

429 



1,. . . , M }  with the same probability. Consequently, 
random samples are drawn from a mixture density p k :  

Suppose at time t ,  the tracking posteriori p(Xt I&) 
is approximated by a set of weighted random samples 
or hypotheses { ( X f " ' ,  T! " ) ) ,  n = 1,. . . , N } .  

In dynamic system, the prior is p(Xt+l(&), we have 

ft+l(xg),, = P(Xt+l = X$\lZt) 
N 

= Tfk)p(Xt+l = x:"?l IXt = Xi") 
k= 1 

Lct 
p(Xi:)JXfk)) N N(AXLk) ,  C2) 

Inst,ead of sampling directly from the prior p(Xt+l I&), 
samples s(")  could be drawn from another source 
gt(Xt+l): and the weight of each sample is: 

' bo 

(4 (b) 

Figure 4: Generating Hypotheses: (a) Xp' # b;, (b) 
Xl"' = b,. 

5.2 Observation Model 
We employ both cdge and silhouette observations 

to measure the likclihood of hypotheses, i.e., p ( Z t ( X t ) .  
Sclf-occlusion is handled by constructing an occlusion 
map for the hand model. Since hand is modeled by a 
cardboard model, it is expected to observe two edges 
for each planar patch. The cardboard model is sam- 
pled at a set of K points on the laterals of the patches. 
For each such sample, cdge detection is performed on 
the points along the normal of this sample. When we 
assume that n/r cdgc points { zmr  m = 1, . . . , M }  are ob- 
served, and the cluttcr is a Poisson process with density 
A, then, 

Figure 5: Shape measurements. 

We also consider the silhouette measurements, by cal- 
culating the difference between the areas of the image 
AI and the projected cardboard model A M ,  i.e., 

( A I  -  AM)^ 
2 4  

pa cx exp - 

Thus, the likelihood could be written as: 

K 

P(ZIX) Ex p a  n Pek (10) 
IC= 1 

5.3 Algorithm Summery 
Since natural finger motion could be represented by 

a set of manifolds in a lower dimensional configuration 
space, our motion-capturing algorithm takes into ac- 
count of such motion constraints by importance sam- 
pling technique. The motion capturing algorithm is 
summarized in Figure 6. 

6 Experiments 
In our experiments, we assume the hand has very 

little global motion. Only translations in a small range 
arc allowed. Consequentially, the hand motion is r e p  
resented by (d t ,  X t ) ,  where dt is global 2D translation 
and Xt is hand articulation. 

We have compared three different methods for both 
joint angle space R20 and the configurations space 
E c R7. The first is a random search algorithm, which 
generates articulation hypotheses based on previous es- 
timate according to a fixed Gaussian distribution with- 
out considering any constraints in the joint angle space, 
i.e., Of:\ N N(&,Ce) .  The second method is CON- 
DENSATION. The third one is our proposed method 
based on learned hand constraints using importance 
sampling. 

Some experimental results are shown in Figure 6. 
Figure 6(a) shows the results of random search in R20. 

We treat each dimension independently with standard 
deviation of 5 O ,  and produce 5,000 hypotheses at each 
frame. However, it hardly succeeded due to the high 
dimensionality. When we perform random search in 
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(a) Random search 5,000 points in 2''. It quickly losses track due to the high dimensionality of search space. 

(e)  Our approach with 100 samples. Based on the natural motion model, it can track hand articulations in a long sequence. 

Figure 7: Comparison of different methods. The projections of the hand model are drawn on the images. When the fingers 
bend and their backsides appear, the corresponding pieces are drawn in red, otherwise in green. 

the reduced space R7 and again with 5,000 hypotheses, 
the tracking is lost after several frames. The results are 
shown in Figure G(b). Figure 6(c) shows some frames 
of the CONDENSATION in RZ0, in which 5,000 samples 
are used. The results show that it is still difficult to 
handle such a high dimensionality. When performing 
CONDENSATION in the reduced space R7, the algorithm 
can track up to 200 frames using 3,000 samples, which 
is shown in Figure G(d). Finally, in our proposed algo- 
rithm, we use 100 samples, and the algorithm is able to 
track hand articulations all the time, which is shown 
in Figure Gfe) '. 

We noticed that our proposed algorithm is efficient , 
since it is able to perform successful tracking with 
smaller number of samples compared to CONDENSA- 
TION. The reason behind it is that the hand articula- 
tion manifolds provide a good prior for tracking, which 
largely reduces the search complexity. 

'The demo sequences of our algorithm could be obtained from 
http://nrv.ifp.uiuc.edu/-yingvu 

7 Conclusions 

Vision-based capturing of hand articulation is a 
challenging problem. due to thc high degrees of frcc- 
dom of finger motions. Fortunately, finger movements 
are also highly constrained. which could be used to 
ease the high dimensionality problem. In this paper. 
instead of using the joint anglc spacc. we represented 
hand articulations in a lower dimensional configura- 
tion space, in which hand articulations could be char- 
acterized by a set of linear manifolds constructed from 
28 basis configurations. Such a representation gives a 
good approximation of hand articulations. Taking ad- 
vantage of such a representation of hand articulation. 
we proposed a sequential Monte Carlo tracking algo- 
rithm based on importance sampling technique. The 
articulation manifolds provide another source of prior 
to tracking. Our experiments show that this proposed 
algorithm could perform successful tracking in long se- 
quences efficiently. 

Our current capturing algorithm is view-dependent. 
and the hand model and the method of testing hy- 
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Monte Carlo Tracking: Probability density propagat- 
ing from {(Xj”’, x in) )}  t o  {(Xi!\, xj;’,)}. based on 
importancc sampling. 

for n = 1 : N 
// Step(1) : 
if X:.’ # b k , k =  1, ..., M 

Selecting a manifold 

c:, = argmin?,, D ( x ~ ~ ’ ,  lq3); p = 1 - ( X l n ) - b , ) T ( b ,  -b , ) .  
Ilb3-btll ’ 

else 
randomly-pick C:,; 
sin) = 0; 

// Step(3): Drifting and diffusing 
Xi:)l - N(AXIY)l, Cl); 

// step(5): Correcting the weights 
calculate  XI;\); 
calculate y(xf:\ ); 

Figiirc 6: Psciido code of the scqiicnt,ial h4ontc Carlo 
based t,racking algorithm. 

pot,hcsis arc valid only for t,hc view orthogonal t,o the 
palm. Sonic of the hand global mot,ions, such as ro- 
t.at,ion and scaling, arc not considered in our current 
cxpcrimcnts. Bcsidcs t,hc increase of dimcnsionalit,y, 
hand global motions woiild bring about a largc amoiint 
of sclf-occliision. Better mct,hods for t,cst.ing hypot.hcscs 
ancl capt.uring algorithms including global hand mot,ioii 
will be invcst,igat.ed in oiir fiitxrc work. 
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