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ABSTRACT

This paper presents a subproject of a challenging project that
explores teaching a computer human-intelligence. In the
subproject, a multisensory mobile robot is used as the interface
for human-computer interaction, and spoken language is taught
to the computer through natural human-robot interaction.
Different from state-of-the-art speech recognizers, our approach
associates speech patterns directly with sensory inputs of the
robot. This approach allows our system to learn multilingual
speech patterns online. Further investigation of this project will
include human-computer interaction that involves more
modalities, and applications that use the proposed idea to train
home appliances.

1. INTRODUCTION
The idea of teaching a machine human-intelligence may be traced
back to Turing’s original thoughts of an intelligent machine [8].
Engineering research of an intelligent machine is useful for
developing tools to assist humanity; intensive research of the
intelligent machine may lead to a deep understanding of human-
mind functions, human-mind evolution processes, and limitations
of current computer techniques.

To approach the challenging problem of teaching a computer
human-intelligence, a computer-controlled multisensory mobile
robot is used in this project to interact with human when a human
teaches the computer, and the spoken language acquisition
research is selected as the first subproject. The terminology of
“spoken language acquisition” denotes the process of a computer
to learn the signal pattern and the meaning of human speech. It is
also used in [2] with a similar meaning. The spoken language
acquisition research has two advantages over the whole project.
First, the computer’s speech ability can help developers to
retrieve what the computer has learned in a convenient way; this
is important for debugging the system. Second, the computer’s
speech ability can give the system more flexibility to express
itself than the robot’s action ability can.

In early research in Bell Labs, Henis and Levinson built a
mobile robot for spoken language acquisition [4]. Their system
directly translates the speech acquired by the robot into text with
a pre-trained speech recognizer. The predefined symbols (text)
and grammars in the pre-trained speech recognizer strictly limit
their system for natural language acquisition (e.g. acquire English
and Chinese at the same time). The language acquisition
approach proposed by Roy and Pentland in the late 1990s tackled
the text representation problem encountered in early research by
using phonemes to represent speech [6]. However, the phoneme
recognition system in their design still cannot provide sufficient
flexibility to the language acquisition task. To overcome

problems encountered in early research, we propose using speech
patterns and other robot sensory inputs directly and teaching the
robot to understand human speech through natural human-robot
interaction. Guided by this idea, we design an interactive and
incremental learning algorithm for the robot-computer system. In
our project, the algorithm uses the robot sensory inputs instead of
text to explain speech signals so that the robot can learn speech in
various (potentially any) languages. It also uses the speech
feature representations directly for communication without
translating this media (speech) into another media (text) for
manipulation.

The rest of this paper is organized as follows. In Section 2,
we discuss an information theory analogy of the robot training
process. This discussion is useful for the robot training strategy
design and our algorithm design. Section 3 focuses on the
interactive and incremental learning algorithm. Section 4 reports
our language acquisition experiments. The concluding remarks
and future works are given in Section 5.

2. INFORMATION THEORY ANALOGY
OF THE ROBOT TRAINING PROCESS

The robot training process can be considered as an information
transmission process. In this process, the human teacher is
considered as an information source. All sensors on the robot
platform are considered as a communication channel. The robot
brain (i.e. the computer) is considered as an information
destination.

With this analogy, the information distribution in a sensory-
data feature space is vital for the robot training and the algorithm
design. Let x be a point in the feature space, y be a possible label
of x, and p(y|x) be the conditional probability of y at point x, the
information related to point x can be measured with conditional
entropy
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As p(y|x) varies in the feature space, the information related
to every feature point also varies in the feature space. If two
classes y1 and y2 are separated based on the Bayes decision
theory,
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will hold at a boundary point x of class y1 and class y2. (2)
indicates that the boundary points have more information than
other points. It also suggests that a point near the classification
boundary is more important in terms of conveying information
than a point that is distant from the classification boundary,
provided that the density function varies smoothly in the feature
space. Based on this fact, a robot instructor should spend most
teaching effort on data that are close to a decision boundary.
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Moreover, the robot brain should assign sufficient resources to
learn the data that are close to a decision boundary.

Based on the information theory analogy, we propose a robot
training strategy as follows. When a robot responds correctly to
its input, the robot teacher should consider that the robot have
understood the training sample and therefore do nothing to the
robot. When the robot responds incorrectly to its input, the
teacher should consider that the robot does not understand the
training sample and therefore should repeatedly teach the robot
about the correct response to the sample. Through repeating the
training process, we expect the robot to perform correct actions
on the data that are similar to taught samples. This training
scheme is different from the classical training scheme, in which
the classifier parameters are estimated only according to the data
frequency in real life and no additional trainings are done for
misclassified cases. It is noteworthy that our teaching strategy
aligns well with our daily experiences. For example, we always
practice more on confusing words to enhance our memory even
through these words may not be used as frequently as we have
practiced them [10].

3. AN INTERACTIVE & INCREMENTAL
LEARNING ALGORITHM

3.1 Interactive and Incremental Learning in a Static
Feature Space

The main idea of our algorithm is based on Vector Quantization
(VQ) and posterior probability estimation [3,7]. The VQ
approach uses a set of vectors to represent data in the feature
space. With this set of data, the feature space is separated into a
set of regions. These regions are called Voronoi cells. The basic
consideration of our approach is Voronoi cell split and deletion.
Our algorithm separates an existing cell according to the task
requirement, and deletes a cell when it is not used for a long time.
In this way, our algorithm is not greatly affected by initialization;
it does not need to maintain a large number of neighborhood
connections for soft-competitive learning either. As an algorithm
property, it is not difficult to prove that the error rate of our
approach is asymptotically bounded as many nearest-neighbor
classifiers [1].

To use representation vectors more efficiently, our algorithm
uses an information related value IR to control the cell separation.
Let x be an input vector, y be a label, R be the region occupied by
a Voronoi cell, n be the number of training data that fall in R, and
p(y|R) be the conditional probability estimation, the information
related value IR can be defined with
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With the estimation of IR, the algorithm can split a cell whenever
the IR of the cell is greater than a threshold

�
. After the cell split,

the IR is decreased through decreasing n to a half.
Using IR as the cell-split criterion is inspired by our

information theoretical analogy of the learning process.
Assuming that each sensory input is independent of other sensory
input and the data falling in region R carries approximately
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transmitted into region R through the teaching process can be
approximated by IR in (3). When information estimation in a
region exceeds a threshold, it is reasonable to believe that data
falling in this region are difficult to be classified and the region
requires more resources to separate the data. Our approach splits

the cell that has a high IR estimation into two to increase
resources in the region. In real implementation, the threshold �
of IR for cell separation is dynamically changed according to the
available resources. In other words, this threshold is set low
when the available resources are sufficient, and high otherwise.
This mechanism allows a robot instructor to train a computer to
distinguish minor feature differences through repeatedly training
with similar examples. It aligns well with our training strategy.

The presented algorithm allocates Voronoi cells according to
the task requirement, and uses Voronoi cell boundaries to
approximate the optimal decision boundaries. In general, the
piecewise boundary defined by the presented algorithm does not
follow the direction of the underlying class boundary at a small
scale. In our robot-learning algorithm, we use the learning vector
quatization (LVQ) [5] approach to deal with this problem. Let mi

and mj be the two nearest representation vectors to the input x, �
and � are learning constants. For input x with label y, the LVQ
boundary adjustment mechanism can be described with (4).
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Synthetic data experiments indicate that combing (3) and (4)
allows our algorithm to use representation vectors more
efficiently than using (3) only.

Compared with classical VQ based classifiers, the proposed
algorithm uses the representation vectors more efficiently. It is
also simpler and more efficient than classical density estimation
approaches for the robot-learning task. As the proposed
algorithm emphasizes the training data near decision boundary, it
is somewhat related to the Support Vector Machine (SVM)
techniques. But Vapnik got his idea from somewhere else [9].

3.2 Mixture of Classical Supervised and
Unsupervised Learning

An ideal situation for a human to teach a robot is to give the robot
correct labels for all its inputs (supervised learning). However, it
is difficult to achieve this requirement in practice. In our project,
we mix classical supervised learning and unsupervised learning
paradigms for the robot training process. This mixture is
achieved through (3), where p(y|R) is estimated with labeled data
and n is estimated with both labeled data and unlabeled data.
Mixing supervised and unsupervised learning paradigm together
can eliminate certain requirements, such as labeling data as fast
as the robot acquires, labeling a data that does not have a label,
and labeling all data that a robot experiences. These requirement
eliminations can greatly decrease the burden of robot teachers.

3.3 How to Handle Dynamic Signals

The approaches presented in previous subsections mainly focus
on classifying static patterns. To handle dynamic signals, our
algorithm represents signals with index strings and their run-
lengths. We call this approach the index string approach (ISA).
With this approach, an index string {15, 15, 15, 15, 2, 2, 8, 8, 8}
can be coded as {15:4, 2:2, 8:3}, where the indices come from
vector-quantizing short signal segments with the static approach.
Let P and Q be indices, m and n be index lengths, a difference
measurement d between two units {P:m} and {Q:n} is defined
with (4).
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Based on the difference measurement between two units, the
difference D between two index strings is defined with (5), where
i is the time index of every unit in the string.
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For the robot-learning task, ISA has several advantages over
classical temporal sequence processing approaches, such as the
Hidden Markov Model (HMM) approach. First, the ISA can
avoid impossible sequences that a HMM model cannot avoid.
Second, the ISA does not allow signals that are significantly
different to share one string. Third, the ISA is suitable for output
sequence synthesis (e.g. instruct the robot to say learned speech).
Fourth, the ISA allows the robot to perceive relatively accurate
time variations in the signal. Fifth, the ISA is proper for
incremental learning. Sixth, the ISA can learn input signals
online. Encouraged by these advantages, we use the ISA in our
robot-computer learning system.

3.4 Association Among Different Modalities

Building relations among different modalities in a robot learning
system is vital for a robot to perform interesting behaviors, such
as performing an action according to a speech command and
naming an object with speech etc. The approach presented in
previous sections can build representations for inputs from each
sensor. The relation among these representations can be built
based on statistics of concurrent activated representations. After
relations among various representations are constructed, a
machine is able to respond inputs of one modality with outputs of
another modality.

Figure 1. Representation association model between two
modalities.

Fig. 1 illustrates a model for building associations among
various representations. With this model, the association for
every representation-pair is tracked by a dedicated counter. If
representation Xp and representation Yq happen concurrently, the
Counterp,q will be increased by 1. Based on the value recorded
by the counter, p(Xp,Yq), p(Xp), and p(Yq) can be estimated. By
using the Bayes equation, p(Yq|Xp) and p(Xp|Yq) can be calculated
based on p(Xp,Yq), p(Xp), and p(Yq). These values are very useful
for building associations between two modalities. When the
representation Xp is activated by an input, the algorithm can
always find the associated representation of Xp in another
modality based on p(Y|Xp). On the other hand, when the

representation Yq is activated by an input, the algorithm can
always find the associated representation of Yq based on p(X|Yq).
In our current system, the associated representations are selected
based on the maximum value of p(Y|Xp) or the maximum value
of p(X|Yq).

4. EXPERIMENTS
We are presently using our algorithm to enable a mobile robot to
learn spoken language through its interaction with humans. The
system architecture is described in Fig. 2. In this system, we use
a dual CPU Octane as the “brain” of the learning system. The
multimodal robot platform is used for signal acquisition through
many different sensors. These sensors include a video camera, 2
microphones, 4 tactile sensors, a digital compass, a tilt sensor, a
temperature sensor, bumper switches etc. The robot platform
may also perform some actions through its propelling motor and
steering motor. The Octane computer and the robot platform is
connected through a pair of wireless modems and a pair of NTSC
transmitter/receiver. Through these communication channels, the
computer can request the robot to collect required signals with its
multimodal sensors, or command the robot to move around
according to computer decisions.

Figure 2. Multimodal Robot Learning System

Figure 3. Touch sensors are installed on the robot chassis
1.Right sensor; 2. Back sensor; 3. Left sensor; 4. Front
sensor.

In this experiment, we teach the robot to move according to
our command through pushing corresponding touch sensors.
More specifically, we want the robot to make associations
between our commands (in any language) and our pushing forces
so that we can use our language to substitute our pushing action
after we teach the robot these associations. For the robot to feel
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the direction of pushing force, we added four touch sensors on
the robot chassis. They are mounted on the robot as shown in
Fig. 3. With these touch senesors, we can avoid damaging the
robot motors by forcing them to move according to our
commands.

Since the robot only has two motors to drive the platform, we
can only teach the robot 6 actions. These actions are “forward”,
“back”, “straight”, “stop”, “left”, and “right”. They are directly
related to the robot’s feeling on touch sensors. These relations
are listed in Table 1. The relation shown in Table-1 is consistent
with common sense.
Table-1 Relations between the robot action and the direction

of the force
ROBOT ACTIONS TOUCHED SENSORS
Forward Back

Back Front

Straight Left and Right

Stop Front and Back

Left Right

Right Left

To test the robot’s ability of learning different sounds, we
pronounce the corresponding commands of these actions in both
English and Chinese. When we have visitors from Japan, we also
ask the visitors to pronounce these commands in Japanese. The
teaching strategy in the experiment follows the rules we
presented in section 2.

These commands and their associated touch feelings are
taught to the robot through our interactions with the robot. For
example, suppose we want to teach the robot the utterances
“forward” and “back”. At the beginning, the robot cannot decide
if there is any difference in meaning between these two sounds.
So, it is possible to move forward when we say “back”. This
means that the feature vector of the utterance “back” locates a
representation vector that has a different label, whose meaning is
to instruct the robot to move forward. Our algorithm can recover
from this problem in the following way. In this case, the right
thing for us to do is to say “back” again to the robot, and label the
audio input through touching the related sensors from time to
time. If the robot cannot understand us, repeat the same word
and label it again whenever possible. When we pronounce the
same sound to the robot again and again, the corresponding
Voronoi cell will be visit again and again, and a new cell will
finally be generated in nearby regions. The representation
vectors of the Voronoi cells will be changed gradually during the
training. The conditional probability (related to the semantic
meaning) calculated within the cells will also be updated through
the training procedure. After the generation of the new cell, the
computer will have more cells to represent the intensively taught
data. The building of new Voronoi cells may increase the local
resolution for distinguishing different inputs. After we teach the
robot the semantic meaning of the new cell through touching
related sensors, the robot should be able to distinguish the
semantics of the utterances “forward” and “back”. It is still
possible for the robot to misunderstand “forward” and “back”

with other sounds, but we can help clarifying these meanings
through more interactions with the robot.

The speech experiments of our algorithm on the multi-
sensory mobile robot have been successful. When the mobile
robot starts to learn, it knows nothing about any sound as well as
the meaning of any sound. Through interacting with its human
teachers, the robot acquires audio information online, and relates
different audio inputs to different actions according to the
human-taught meanings. The robot can distinguish these
commands after we teach it for about 20 minutes. Following the
interactive training, when we say a command to the robot in
English, Chinese, or Japanese, it can move according to our
commands. The accuracy of the robot responses is about 100%.
Demonstrations of this project can be found at
http://www.ifp.uiuc.edu/~q-liu2/research.html.

5. SUMMARY AND FUTURE WORK
In this paper, we present our work on spoken language
acquisition. This work is the first subproject of our autonomous
learning robot project. The next step of the robot project is going
to involve sound mimic experiments with the robot learning
system. Providing the system with “speak back” ability will
greatly increase the number of actions that a robot can perform.
In the long run, we prepare to expend our learning framework to
many other modalities, and enable the robot to express its sensory
detection and internal state in speech and body motions.
Moreover, we are also interested in applications that use the
proposed framework to train home appliances.
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