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Abstract 

The goal of this project is to teach a computer-robot system 
to understand human speech through natural human- 
computer interaction. To achieve this goal, we develop an 
interactive and incremental learning algorithm based on 
entropy-guided LVQ and memory association. Supported 
by this algorithm, the robot has the potential to  learn 
unlimited sounds progressively. Experimental results of a 
multilingual short-speech learning task are given ajler the 
presentation of the learning system. Further investigation 
of this learning system will include human-computer 
interactions that involve more modalities, and applications 
that use the proposed idea to train home appliances. 

1 Introduction 

As computer programming gets more and more labor 
intensive, programming computers through multi-modality 
human-computer interaction becomes an attractive idea for 
further exploration. The idea of programming a computer 
through human-computer interaction is originally proposed 
by Alan Turing in 1950 [16]. Since then, very few 
researchers try this idea in practice because of technical 
limitations. In the past decade, researchers started several 
projects that are related to this idea. These projects include 
the “Cog” project in MIT AI lab [ 11, the “Robocat” project 
in Bell Labs [8], the “Sail” project in Michigan State 
University [18], the “Toco” project in MIT Media Lab [ 151, 
and the “Illy” project in University of Illinois at Urbana- 
Champaign [l l] .  In these projects, the “Cog” project 
mainly focuses on the robot hardware construction; the 
“Sail” project mainly focuses on computer vision research; 
the other three projects mainly focuses on spoken language 
acquisition research. 

In our project, we choose spoken language acquisition 
research as a starting point. The terminology of “spoken 
language acquisition” denotes the process of a computer to 
learn the signal pattern and the meaning of human speech. 
This terminology is also used in [6] with a similar meaning. 
The choice of this research starting point has two 
advantages over the whole project. First, the robot speech 
ability can help us to retrieve what the robot has learned in 
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Figure 1. Sensory data are associated through 
predefined discrete set. 

To overcome problems encountered in early research; 
we propose building relations between sensory features 
directly through interactive and incremental learning. In 
this paper, we will present an algorithm that allows a 
multisensory mobile robot to learn and understand human 
speech through direct association between speech and other 
sensory inputs. With this novel approach, the speech 
feature representations are used directly for communication 
without translating this media (speech) into another media 
(text) for manipulation. Thus, the robot can learn speech in 
various (potentially any) languages. Since our system 
avoids the predefined discrete set, it is more flexible for 
language acquisition than early systems. 

The rest of this paper is organized as follows. In 
Section 2, we discuss various classifiers and their suitability 
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to the robot-learning project. Section 3 focuses on an 
information transmission model for human-computer 
interaction. This model is useful to guide the computer 
training process and our algorithm design. Section 4 
describes our learning algorithm in details. Section 5 
presents some learning experiments with synthetic data. 
Section .6 describes our speech acquisition experiments. 
The conclusion and future directions are given in Section 7. 

2 Various Pattern Classifiers and the Robot Project 

The sensory data are generally manipulated in groups by a 
robot bruin (i.e. a computer). Therefore, the learning 
process of a robot should start from the learning of a pattern 
classifier that forms data groups. Since the robot is 
expected to learn in any environment, the classifier 
designed for the robot should have the ability to learn any 
pattern classification task online. Besides the ability to 
learn any task, the robot classifier should also have the 
ability to get increasingly complicated as it is exposed to 
more data. 

For discussion proposes, we separate existing pattern 
classifiers into four categories: 
1) Classifiers based on parametric density estimation. 
2) Classifiers based on parametric boundary 

approximation. 
3) Classifiers based on non-parametric density estimation. 
4) Classifiers based on non-parametric boundary 

approximation. 
In these classifiers, the first type of classifiers can work 

’ very well when the joint probability density p(x,y) is 
known. However, p(x,y) is unknown for most pattern 
classification cases. For the robot-learning task, it is 
impossible to know the probability density, forms of the 
sensory inputs before the robot start to learn. Therefore, the 
classifiers based on parametric density estimation are not 
going to be used for the robot-learning task. 

When the pdf p(x,y) is unavailable, the second type of 
classifier is generally used. This type of classifier directly 
adjusts a parametric decision boundary flx)=O to 
approximate the optimal decision boundary. These 
approaches include the Widrow-Hoff approach [ 191, the 
Ho-Kashyap approach [9], the Fisher linear discriminant 
approach [3], and the newly emerged Support Vector 
Machine (SVM) [ 171 classifier. All classifier variations in 
this category can be viewed as searching an optimal 
decision boundary in a predefined function space. It is 
often tricky to find a function space that can describe all 
unknown class boundaries well. Since the robot and the 
designer do not know what kind of data the robot will 
experience in its lifetime, this type of classifier is not 
appropriate for the robot project. 

When the prior knowledge of a learning task is 
unavailable, the third type of classifier is often used. The 
idea of this type of classifier is to estimate the probability 
density value of each class at every testing point, and use 

the Bayes decision theory to perform classification at the 
testing point. Typical approaches in this category are the 
Parzen-window approach [ 141 and the k,-nearest-neighbor 
approach [2]. Since classical Pazen-window approach and 
k,-nearest-neighbor approach need to memorize a large 
number of training data for accurate density estimation, 
these classifiers are not appropriate to learn a large amount 
of contents when the memory space and computational 
power are limited. Therefore, we will not select pattern 
classifiers in this category for our robot-learning task. 

Classifiers in the fourth category can asymptotically 
achieve a low pattern classification error rate without U 

priori knowledge. The basic idea of this type of pattern 
classifier is to break the boundary optimization problem 
into a collection of sub-problems, and approximates the 
optimal decision boundaries piece by piece. The 
classification boundary can take the form of piecewise 
hyper-plane, piecewise hyper-sphere, or piecewise spline 
surface etc. A typical classifier in this category is based on 
Vector Quantization (VQ) technique [7]. As the VQ 
technique relaxes the requirement on memory space and 
computational power, classifiers in this category seem more 
suitable for the robot-learning task than pattern classifiers in 
other categories. 

There are various approaches to train the vector 
representations of a VQ based classifier. These approaches 
include the LBG algorithm [ 121, self-organizing map 
(SOM) [lo], growing cell structure (GCS) [4], neural gas 
(NG) [13], and growing neural gas (GNG) [5], etc. Among 
these approaches, the LBG algorithm has the problem of 
keeping “dead units” (the units that are not used by any 
input). The result of this algorithm is also greatly affected 
by initialization. The SOM approach and the GCS 
approach use fixed network dimensionality. Fixing the 
dimensionality makes the growth of the SOM network 
difficult. It also restricts the natural representation-vector 
update of both GCS and SOM. Even though the NG 
approach eliminates the fixed dimensionality constraint for 
more learning flexibility, it cannot dynamically add new 
representation vectors for increasingly complicated learning 
tasks. The GNG approach goes further to allow the number 
of vectors change during its learning process. However, its 
cost for maintaining the neighborhood connections of each 
representation vector is too expensive for the robot online 
learning task. Because of these limitations of existing VQ 
training approaches, we propose an entropy-guided LVQ 
algorithm for the robot-learning task. 

3 Information Transmission Model for Human- 
computer Interaction 

The robot training process can be viewed as an information 
transmission procedure. The information distribution in a 
sensory-data feature space is vital for the robot training and 
the algorithm design. Assuming that we denote x as a point 
in the feature space, and y as a possible label of x, the 
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conditional probability of y at point x can be expressed by 
p(yb) .  With these notations, the information related to 
point x can be measured by conditional entropy 

H ( Y  I x = x) = -E P ( Y  I X ) W P ( Y  I x)). (1) 
Y 

Since p ( y b )  varies from point to point, the information 
related to every feature point varies in the feature space. 
Suppose we want to separate two classes Y J  and y2 based on 
the Bayes decision theory, we know that p(ylb)=p(y2Cr., at a 
boundary point x of class yz and class y2. Based on 
information theory, this equation indicates that the 
boundary points have more information than points that are 
not on the boundary. Generally speaking, a point near to a 
classification boundary has more information contents than 
a point that is distant from classification boundaries, 
provided that the density functions vary smoothly in the 
feature space. These facts suggest a robot instructor 
spending most teaching effort on data that are close to 
decision boundaries. On the other hand, the robot brain 
should assign sufficient resources to learn the data that are 
close to decision boundaries. 

Based on the analysis of the information transmission 
model, we propose the following strategy to assist the robot 
training process. When a robot responds correctly to its 
input, a teacher will consider that the robot can 
“understand” the testing sample and therefore do nothing to 
the robot. However, when the robot responds incorrectly to 
its input, the teacher will consider that the robot cannot 
“understand” the testing sample and therefore should 
repeatedly teach the robot about the correct response to the 
testing sample. Through repeatedly training, the robot will 
perform correct actions on selected testing samples. This 
teaching strategy is different from some existing training 
schemes. However, it aligns well with our daily 
experiences. 

4 An Interactive and Incremental Learning 
Algorithm 

4.1 Entropy guided LVQ 
Learning vector quatization (LVQ) is a popular algorithm in 
pattern-classification. It is generally initialized by VQ 
algorithms we described in section 2. The problems of 
those algorithms limit their application in the robot-learning 
task. Beside those problems we mentioned in section 2, 
many representation vectors generated by those VQ 
algorithms are often assigned far away from decision 
boundaries. For pattern recognition purpose, the 
representation vectors that are distant from decision 
boundaries are generally not very useful. These 
representation vectors can be reduced if we use conditional 
entropy to control the new representation-vector insertion 
process. Our algorithm assigns new representation vectors 
through Voronoi cell split. Let x be an input vector, y be a 
label, R be the region occupied by a Voronoi cell, n be the 
number of training data that fall in R, p be the probability 

estimation p(ylR), we can define an information (entropy) 
related value ZR with Eq. (2). If the value ZR is greater than 
a threshold, the cell will split into two cells to increase the 
local cell resolution. 

1, = -..E P ( Y  I R)log( P ( Y  I R)) (2) 

To avoid the dead unit (i.e. the Voronoi cell that is not a 
winner for a long time) problem commonly encountered by 
hard competitive learning algorithms, such as the LBG 
algorithm, our algorithm uses an age record to keep track of 
the usage of every representation vector, and periodically 
removes dead-units for efficient resource allocation. 

With the described mechanism, Voronoi cells near 
classification boundaries can get more chances than cells 
distant from classification boundaries to split into fine cells. 
This cell information value estimation is useful to control 
the Voronoi cell resolution according to the external 
stimulation frequency and the information distribution in 
the feature space. Because the Voronoi cell resolution can 
be easily controlled through the external stimulation, it is 
easy to train a computer to distinguish minor feature 
differences through repeatedly training with similar 
examples. This teaching process can simulate the teaching 
process of a human. 

The LVQ mechanism used in our algorithm can be 
described as follows. Let m, and m, be the two nearest 
representation vectors to the input x, a and p are learning 
constants. For input x with label y ,  the boundary 
adjustment mechanism can be described with Eq. (3). 

! f ( P ( Y  I R,) > P ( Y  I R,))and(xE 4) 

(3) 
m,(t +1) = m , ( t ) + a ( x - m , ( t ) )  

Else 
m, ( 2  + 1) = m, ( 2 )  + P C X  - m , W )  

Eq. (3) may be calculated incrementally. That is the 
feature we want in our learning system. The local posterior 
probability estimation is useful for the memory association 
among different modalities. The probability estimation is 
also useful to suppress the noise disturbance. As an 
algorithm property, it is not difficult to prove that the error 
rate of our classifier can approach the Bayes error rate 
asymptotically. 

4.2 
Building relations among different modalities in a robot 
learning system is very important for a robot to perform 
interesting behaviors, such as performing an action 
according to a speech command and naming an object with 
speech etc. The algorithm we presented in previous 
sections can build a large number of representations for 
inputs from each sensor. The relations of different inputs 
can be built through associations based on statistics of 
synchronized events. 

Fig. 2 demonstrates a representation-association model 
between two modalities. In this model, the association 
between two different representations is tracked by a 

Building relations among different modalities 
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counter for these two representations. If a representation X, 
happens with a representation Y, at nearly the same time, 
the Counter,,, will be increased by 1. When the robot 
detects an input X,, the computer can always find its 
associated representations in another modality based on 
p(Y(X,). On the other hand, when the robot detects Y,, the 
computer can always find associated representations based 
on p(XIY,). In our current system, the associated 
representations are chosen based on the maximum value of 
p(Y(X,) or the maximum value of p(XIY,). --- 
Figure 2. Representation association model between two 
modalities 

5 Experiments with Synthetic Data 

For the robot-learning task, our algorithm has many 
advantages over existing competitive learning algorithms. 
It does not have the fixed network structure to constrain the 
growth and training of the network; it can add new 
representation vectors incrementally according to task 
requirement; it can also save large memory space and 
computation for tracking the neighborhood connections of 
every representation vector. Beside these advantages, using 
the information related value to guide the cell-split is more 
meaningful than using the quantization error to guide the 
representation vector insertion for classification error-rate 
control. Using the information related value to control the 
cell-split also makes it easy for the teacher to master the 
robot teaching strategy, and makes the algorithm robust to 
data outliers. To illustrate how our algorithm works, we 
conduct experiments using synthetic data before we try the 
algorithm with a speech-learning task. 

' 

5.1 Synthetic Data 
In the synthetic data experiments, the distribution of the 
data is illustrated in Fig. 3. In Fig. 3, the data inside the 
square box belong to class 1,  and the data outside the box 
belong to class 2. The range of all data in each dimension 
is within [-3,3]. The data are uniformly distributed in each 
class, and the data frequency of each class is proportional to 
the area that each class occupies. 

For this pattern classification task, an ideal VQ based 
pattern classifier can separate the data perfectly with 5 
representation vectors. It is the best solution we can get 
when we know the underlying data distribution. In the 
following illustration, it is assumed that we don't know the 
underlying data distribution. The task in our experiments is 
to let a classifier learn the pattern classification task from 
the data randomly generated according to the underlying 
data distribution. 

'I 
I 

-I j 

Figure 3. A synthetic pattern classification- task with 
class-1 inside the box and class3 outside the box. 

5.2 Experiments with Synthetic Data 
In our leaming experiment, we assume that we have 
100,OOO labeled training samples generated randomly from 
the above distributions. We skip the cell deletion process 
for easy analysis. Under this condition, the number of 
Voronoi cells used by our algorithm is determined by the 
threshold value for cell split. 

"I' 

Figure 4. Classification error rate comparison. The 
solid line reflects the error rate change of randomly 
generated VQ classifiers. The dashed line reflects the 
error rate change of entropy-guided VQ classifiers. 

We first test the entropy-guided VQ without using Eq. 
(3) for supervised boundary refinement. The training 
process starts from a single point on (0,O). It uses all data 
falling in a Voronoi cell to train the corresponding 
representation vector in the same way. The result of this 
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experiment is compared with a simple VQ classifier, which 
uses the same number of vector representations randomly 
generated according to the data distribution. The 
comparison result is shown in Fig. 4. 

From the experimental results shown in Fig. 4, we 
observe that the entropy-guided VQ algorithm generally 
performs better than the algorithm that randomly assigns 
representation vectors according to data distribution. Since 
both algorithms are based on VQ principles to perform the 
pattern classification task, and every approach has the 
potential to generate a classifier that can solve this problem 
perfectly, we cannot claim that our algorithm can always 
perform better than the other approach just based on this 
experiment. However, since all classifiers in the 
experiment are generated independently, it is reasonable to 
conclude that the entropy-guided VQ algorithm can allocate 
representation vectors more efficiently than the other 
algorithm in general. 

4 

Figure 5. Number of representation-vectors used by 
entropy-guided VQ classifiers and entropy-guided LVQ 
classifiers. The solid line corresponds to entropy-guided 
VQ classifiers. The dashed line corresponds to entropy- 
guided LVQ classifiers. 

We also tested the synthetic data on the entropy-guided 
LVQ algorithm. This algorithm is different from the 
algorithm used in previous comparison because it uses 
labeled data to refine the decision boundary construction 
instead of using all data in the same way. The classifiers 
constructed with this algorithm are compared with the 
classifiers generated by entropy-guided VQ algorithm. The 
comparison result is shown in Fig. 5 and Fig. 6.  

From Fig 5, we notice that the number of representation 
vectors used by a classifier decreases as the threshold for 
cell split increases. We also notice that the decision 
boundary refinement procedure can help a classifier to use 
less resource to perform the pattern classification task in 
general. 

In Fig. 6, we notice that the dashed line is above the 
solid line when the cell split threshold is very high. 
Because the number of representation vectors generated for 
a classifier is generally low when the cell split threshold is 
high, we consider the data in that range to be too noisy to 

reflect the general trend of the algorithm performance. In 
Fig. 6, the dashed line is under the solid line for most values 
as the number of representation vectors is reasonably large. 
Since all our classifiers are constructed independently with 
randomly generated training samples, it is reasonable to 
conclude that the entropy-guided LVQ algorithm can work 
more efficiently than the entropy-guided algorithm. 

Figure 6. Classification error rate comparison. The 
solid line corresponds to entropy-guided VQ classifiers. 
The dashed line corresponds to entropy guided LVQ 
ciassifiers. 

6 Speech Acquisition Experiments 

Loud Sound Detectlon 

Autocorrelduon End Point Detectlon 

Cepstral Coefficient 

EntrODv Guided LVQ 

Actlon Command Robot 

Figure 7. Construction block diagram of the audio 
learning system 
We are presently using our algorithm to enable a mobile 
robot to learn spoken language through its interactions with 
humans. The system structure is described in Fig. 7. In this 
system configuration, the “Mic ... + Liftering” parts 
try to simulate some major functions of the human hearing 
system. The same structure is used in state-of-the-art 
speech recognizers for extracting useful audio features. 
The “Time Warping” component is used to align inputs 
with representation vectors. The approaches we present in 
previous sections are used to represent and classify the 
input signals. 

Currently, we are using two modalities to test our 
language acquisition system. These two modalities are 
speech and tactile sense. The robot can automatically build 
associations between these two modalities according to the 
association model we presented in the last section. For 
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example, if we frequently say “forward” in any language to 
the robot when we push the robot forward, the robot will 
build associations between the “forward” speech and the 
push action. After the association is constructed, the 
“forward” speech command will be able to activate a 
“push” feeling on a corresponding tactile sensor. 

Our experiment is to teach the robot to act according to 
our short speech commands in different languages. The 
robot knows nothing about any speech utterances when it 
starts to learn. As we teach the robot, we say speech 
commands to the robot while we force the robot to perform 
some actions through pushing its corresponding sensors. 
This teaching process will follow the procedure we 
proposed in section 3. In other words, we may issue a 
speech command to the robot and wait for its reaction. If 
the reaction is correct, we know that the robot can 
understand the testing command, and therefore try to test it 
on other commands. If the robot cannot react correctly to 
our speech, we know that the robot cannot understand the 
specific command when it experiences the test. Therefore, 
we should pronounce this command more to the robot, and 
tell the robot the meaning of the command through pushing 
corresponding tactile sensors. Following this teaching 
process, we try control commands in English, Chinese and 
Japanese with different speakers. The control commands 
are “forward”, “back”, “left”, “right”, .“straight”, and “stop” 
in English and their corresponding Chinese and Japanese 
versions. The robot can distinguish these commands after 
we teach it for about twenty minutes. Following the 
interactive training, when we say a command to the robot in 
English, Chinese, or Japanese, it will move according to our 
commands. The accuracy of the robot responses is about 
100%. Demonstrations of this project can be found at 
http:Nwww.ifp.uiuc.edu/speecN. 

7 Conclusion and Future Directions 

In this project, a novel learning framework is developed to 
facilitate human-computer interaction. In the long run, we 
want to expand our learning framework to more modalities, 
and enable the robot to communicate with us through 
natural human-computer interactions. At present, we are 
working on more efficient temporal sequence processing 
method, and speech synthesis for the robot. After the 
completion of the synthesis program, we expect that the 
robot can explain its action in speech. In the long run, we 
also want to expand our learning framework to many other 
modalities, and enable the robot to express its sensory 
detection and internal state in speech and body motions. 
The demonstrations for these expectations may include 
naming an object in speech or expressing its starvation (low 
battery) in speech etc. Other important and interesting 
topics in this research project are speech sentence learning 
and music sequence learning. To assemble more 
complicated body parts for the robot will also be 
encouraging. 
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