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Abstract. Many visual learning tasks are usually confronted by some
common difficulties. One of them is the lack of supervised information,
due to the fact that labeling could be tedious, expensive or even impos-
sible. Such scenario makes it challenging to learn object concepts from
images. This problem could be alleviated by taking a hybrid of labeled
and unlabeled training data for learning. Since the unlabeled data char-
acterize the joint probability across different features, they could be used
to boost weak classifiers by exploring discriminating features in a self-
supervised fashion. Discriminant-EM (D-EM) attacks such problems by
integrating discriminant analysis with the EM framework. Both linear
and nonlinear methods are investigated in this paper. Based on kernel
multiple discriminant analysis (KMDA), the nonlinear D-EM provides
better ability to simplify the probabilistic structures of data distribu-
tions in a discrimination space. We also propose a novel data-sampling
scheme for efficient learning of kernel discriminants. Our experimental
results show that D-EM outperforms a variety of supervised and semi-
supervised learning algorithms for many visual learning tasks, such as
content-based image retrieval and invariant object recognition.

1 Introduction

Characterizing objects or concepts from images is one of the fundamental re-
search topics of computer vision. Since there could be large variations in the
image appearances due to various illumination conditions, viewing directions,
variations in a general concept, this task is challenging because finding effective
and explicit representations is generally a difficult problem. To approach this
problem, machine learning techniques could be employed to model the varia-
tions in image appearances by learning the representations from a set of training
data.

For example, invariant 3D object recognition is to recognize objects from
different view directions. 3D object reconstruction suggests a way to invariantly
characterize objects. Alternatively, objects could also be represented by their
visual appearance without explicit reconstruction. However, representing objects
in the image space is formidable, since the dimensionality of the image space
is intractable. Dimension reduction could be achieved by identifying invariant
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image features. In some cases, domain knowledge could be exploited to extract
image features from visual inputs, however, many other cases need to learn
such features from a set of examples when image features are difficult to define.
Many successful examples of learning approaches in the area of face and gesture
recognition can be found in the literature [4, 2].

Generally, representing objects from examples requires huge training data
sets, because input dimensionality is large and the variations that object classes
undergo are significant. Although unsupervised or clustering schemes have been
proposed [1,20], it is difficult for pure unsupervised approaches to achieve ac-
curate classification without supervision. Labels or supervised information of
training samples are needed for recognition tasks. The generalization abilities of
many current methods largely depend on training data sets. In general, good
generalization requires large and representative labeled training data sets.

Unfortunately, collecting labeled data can be a tedious process. In some other
cases, the situations are even worse, since it maybe impossible to label all the
data. Content-based image retrieval is one of such examples.

The task of image retrieval is to find as many as possible “similar” images
to the query images in a given database. Early research of image retrieval is
searching by manually annotating every image in a database. To avoid manual
annotating, an alternative approach is content-based image retrieval (CBIR), by
which images would be indexed by their visual contents such as color, texture,
shape, etc. Many research efforts have been made to extract these low-level
image features [8,15], evaluate distance metrics [13,16], and look for efficient
searching schemes [18]. However, it is generally impossible to find a fixed distance
or similarity metrics. Such task could be cast as a classification problem, i.e., the
retrieval system acts as a classifier to divide the images in the database into two
classes, either relevant or irrelevant [22]. Unfortunately, one of the difficulties
for learning is that only very limited number of query images could be used as
labeled data, so that pure supervised learning with such limited training data
can only give very weak classifiers.

We could consider the integration of pure supervised and unsupervised learn-
ing by taking hybrid data sets. The issue of combining unlabeled data in super-
vised learning begins to receive more and more research efforts recently and the
research of this problem is still in its infancy. Without assuming parametric prob-
abilistic models, several methods are based on the SVM [6, 3, 7]. However, when
the size of unlabeled data becomes very large, these methods need formidable
computational resources for mathematical programming. Some other alternative
methods try to fit this problem into the EM framework and employ parametric
models [22,23], and have some applications in text classification [7,11,12]. Al-
though EM offers a systematic approach to this problem, these methods largely
depend on the a priori knowledge about the probabilistic structure of data dis-
tribution.

Since the labels of unlabeled data can be treated as missing values, The

Expectation-Maximization (EM) approach can be applied to this problem. We
assume that the hybrid data set is drawn from a mixture density distribution
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of C components {cj,j = 1,...,C}, which are parameterized by ® = {6;,j =

1,...,C}. The mixture model can be represented as:
c
p(x|®) = p(x|ej; 6;)p(c;105) (1)
j=1

where x is a sample drawn from the hybrid data set D = L|JU. We make
another assumption that each component in the mixture density corresponds to
one class, i.e. {y; = ¢;,j =1,...,C}. Then, the joint probability density of the
hybrid data set can be written as:

C
p(D1®) = [[ D p(cj|®)p(xilc;;©) o ] plyi = cil®)p(xilys = ci; ©)

x; €U j=1 x; €L

The parameters ® can be estimated by maximizing a posteriori probability
p(©|D). Equivalently, this can be done by maximizing 1g(p(@|D)). Let [(®|D) =
lg(p(®)p(D|®)). A binary indicator z; is introduced, z; = (2, ..., 2ic). And
zij = 1iff y; = ¢;, and z;; = 0 otherwise, so that

C
(®ID,2) =1g(p(®)) + Y Y 2;18(p(0;|®)p(x:|0;; ©)) (2)

x;€D j=1

The EM algorithm can be used to estimate the parameters ® by an itera-
tive hill climbing procedure, which alternatively calculates E(Z), the expected
values of all unlabeled data, and estimates the parameters ® given E(Z). The
EM algorithm generally reaches a local maximum of I[(®|D). It consists of two
iterative steps:

— E-step: set Z(+1) = E[Z|D; 0"
— M-step: set O+ = argmax, p(Q|D; Z(*+1)

where Z(*) and ©® denote the estimation for Z and © at the k-th iteration
respectively. When the size of the labeled set is small, EM basically performs
an unsupervised learning, except that labeled data are used to identify the com-
ponents. If the probabilistic structure, such as the number of components in
mixture models, is known, EM could estimate true parameters of the proba-
bilistic model. Otherwise, the performance can be very bad. Generally, when
we do not have such a prior knowledge about the data distribution, a Gaussian
distribution is always assumed to represent a class. However, this assumption is
often invalid in practice, which is partly the reason that unlabeled data hurt the
classifier.

To alleviate such difficulties for the EM-based approaches, this paper pro-
poses a novel approach, the Discriminant-EM (D-EM) algorithm, by inserting a
step of discriminant analysis step into the EM iterations. Both linear and nonlin-
ear discriminant analysis will be discussed in this paper. The proposed nonlinear
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method is based on kernel machines. A novel algorithm is presented for sampling
training data for efficient learning of nonlinear kernel discriminants. We did stan-
dard benchmark testing of the kernel discriminant analysis. Our experiments of
the D-EM algorithm include view-independent hand posture recognition and
transductive content-based image retrieval.

2 Discriminant-EM Algorithm

As an extension to Expectation-Maximization, Discriminant-EM (D-EM) is a
self-supervised learning algorithm for such purposes by taking a small set of
labeled data with a large set of unlabeled data. The D-EM algorithm loops
between an expectation step, a discrimination step, and a maximization step.
D-EM estimates the parameters of a generative model in a discrimination space.

The basic idea of this algorithm is to learn discriminating features and the
classifier simultaneously by inserting a multi-class linear discrminant step in the
standard expectation-maximization iteration loop. The basic idea of D-EM is to
identify some “similar” samples in the unlabeled data set to enlarge the labeled
data set so that supervised techniques are made possible in such an enlarged
labeled set.

— E-step: set Z(-+1) = E[Z|D; O(%)]
— D-step: find a discriminant space and project data onto it
— M-step: set O*+1) = arg maxg p(0|D; £(++1))

The E-step gives unlabeled data probabilistic labels, which are then used by
the D-step to separate the data. D-EM makes assumption that the probabilistic
structure of data distribution in the lower dimensional discrimination space is
simplified and could be captured by lower order Gaussian mixtures. In this sense,
the discriminant projection is not arbitrary. We will have a detailed discussion on
the D-step in the next two sections, and concentrate on nonlinear discriminant
analysis approaches.

D-EM begins with a weak classifier learned from the labeled set. Certainly,
we do not expect much from this weak classifier. However, for each unlabeled

sample x;, the classification confidence w; = {w;x,k = 1,...,C} can be given
based on the probabilistic label 1; = {l;,k = 1,...,C} assigned by this weak
classifier.
o p(o(x;)|ck)p(ek)
jk — C (3)
Zk:l p(d)(xj)'ck)p(ck)
Wik = —lg(p(¢(xj)|ck)), k=1,....,C (4)

Eugation(4) is just a heuristic to weight unlabeled data x; € U/, although there
may be many other choices.

After that, multiple discriminant analysis is performed on the new weighted
data set,

D = ,CU{X]',]J',W]' :VXj S L{},
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by which the data set D' is projected to a new space of dimension C' — 1 but
unchanging the labels and weights, i.e.,

D = {¢(x);,y; : ¥x; € L} J{¢(x);,1;, W, : Vx; € U}, (5)

Then parameters © of the probabilistic models are estimated by maximizing
a posteriori probability on D, so that the probabilistic labels are given by the
Bayesian classifier according to Equation(3). The D-EM algorithm iterates over
these three steps, “Expectation-Discrimination-Maximization”.

3 Linear Multiple Discriminant Analysis

Multiple discriminant analysis (MDA) is a natural generalization of Fisher’s
linear discriminant analysis (LDA) for the case of multiple classes [5]. The goal
of MDA is to find a linear projection W that maps the original d;-dimensional
data space X to a dp-dimensional discrimination space A (dy < ¢ — 1, ¢ is the
number of classes) such that the classes are linearly separable.

More specifically, MDA finds the best linear projection of labeled data, x €
X, such that the ratio of between-class scatter, Sg, to within-class scatter, Sy,
is maximized. Let n be the size of training data set, and n; be the size of the
data set for class j. Then,

_ [VISEV]|
Vapt - a’rg m‘?’x |VTSWV| (6)
Sp =Y n;(m; — m)(m; —m)", (7)
j=1
Sw =YY (xk —my)(xx —m;)”, (8)
J=1 k=1

where the total mean and class means are given by
1 n
m=- > %k
k=1
1
m; = ;ZX’“’ Vie{l,...,c}

J k=1

and Vop = [V1,...,Vc_1] will contain in its columns ¢ — 1 eigenvectors corre-
sponding to ¢ — 1 eigenvalues, i.e.,

SBV,' = )\iSWVi-
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4 Nonlinear Discriminant Analysis

Nonlinear discriminant analysis could be achieved by transforming the original
data space X’ to a nonlinear feature space F and then performing LDA in F.
This section presents a kernel-based approach.

4.1 Kernel Discriminant Analysis

In nonlinear discriminant analysis, we seek a prior transformation of the data,
y = ¢(x), that maps the original data space X, to a feature space (F-space) F,
in which MDA can be then performed. Thus, we have

_ VTsEv|
Vopt = arg m‘z} |VTS$VV|7 (9)
S§ =Y "n;(m; — m)(m; — m)7, (10)
j=1
Sty =3 (b(xi) — my) ($(xx) — my)7, (11)

with

m = %Zd)(xk)a

Z¢(Xk)7 VJ € {17"'70}'

k=1

LR

1
mJ = n]

In general, because we choose ¢(-) to facilitate linear discriminant analysis in
the feature space F, the dimension of the feature space may be arbitrarily large,
even infinite. As a result, the explicit computation of the mapping induced by
¢(+) could be prohibitively expensive.

The problem can be made tractable by taking a kernel approach that has
recently been used to construct nonlinear versions of support vector machines
[19], principal components analysis [17], and invariant feature extraction [9, 14].
Specifically, the observation behind kernel approaches is that if an algorithm
can be written in such a way that only dot products of the transformed data in
F need to be computed, explicit mappings of individual data from X become
unnecessary.

Referring to Equation 9, we know that any column of the solution V, must
lie in the span of all training samples in F, i.e., v; € F. Thus, for some a =

[ah o '7an]T7

v=>"ardlxi) = Fa, (12)
k=1
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where & = [¢(x1), -, ¢(x,)]. We can therefore project a data point x;, onto one
coordinate of the linear subspace of F as follows (we will drop the subscript on
v; in the ensuing):

k(x1,xk)
vIp(xr) = ol ¢ p(xx) = ¥ : = a’'¢, (13)
k(xn,x)
where
k(x1,xy)
& = : ; (14)
k(%xn,Xg)

where we have rewritten dot products, (#(x), ¢(y)), with kernel notation, k(x,y).
Similarly, we can project each of the class means onto an axis of the feature space
subspace using only dot products:

Lo o7 (x1)p(xx)
Vij = gT; Z (15)
TE=1 | T (k) ()
nLj 22;1 k(xla xk)
=a” : =a"p;. (16)
nij ZJ:I k(xn; Xk:)
It follows that
vISpv =a"Kpa, (17)
where
Kp =1y nj(u; —w)(u; — )", (18)
Jj=1
and
vIiSwv =aTKwa, (19)
where .
Kw =YY (& — 1) (& — )" (20)
j=1k=1

The goal of Kernel Multiple Discriminant Analysis (KMDA), then, is to find

|ATKpA|
Aopt = argmﬁx m, (21)
where A = [a;,---,a. 4], and computation of Kp and Kw requires only kernel

computations.
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4.2 Sampling Data for Efficiency

Because Kp and Ky are n x n matrices, where n is the size of training set, the
nonlinear mapping is dependent on the entire training samples. For large n, the
solution to the generalized eigensystem is costly. Approximate solutions could
be obtained by sampling representative subsets of the training data, {pi|k =
1,...,M,M < n}, and using & = [k(x1,%k), -, k(xa, k)] to take the place
of Ek

We select representatives, or kernel vectors, by identifying those training
samples which are likely to play a key role in & = [&,...,&,]. Eisann xn
matrix, but rank(Z) < n, when the size of training data set is very large. This
fact suggests that some training samples could be ignored in calculating kernel
features &.

Fig. 1. KMDA with a 2D 2-class non-linearly-separable example. (a) Original data (b)
the kernel features of the data (c) the nonlinear mapping.

Our approach is to take advantage of class labels in the data. We maintain
a set of kernel vectors at every iteration which are meant to be the key pieces
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of data for training. M initial kernel vectors, KV(9)  are chosen at random. At
iteration k, we have a set of kernel vectors, KV(¥) which are used to perform
KMDA such that the nonlinear projection ygk) = V®Ty(x;) = Ag’;%ngk) €A
of the original data x; can be obtained. We assume Gaussian distribution §(*)
for each class in the nonlinear discrimination space A, and the parameters §(%)
can be estimated by {y®)}, such that the labeling and training error e(¥) can
be obtained by l_z(k) = arg max; p(;|y;, 8®)).

If e®) < ek~ we randomly select M training samples from the correctly
classified training samples as kernel vector KV #+1) at iteration k + 1. Another
possibility is that if any current kernel vector is correctly classified, we randomly
select a sample in its topological neighborhood to replace this kernel vector in the
next iteration. Otherwise, i.e., e®) > ¢!~ and we terminate. The evolutionary
kernel vector selection algorithm is summarized below in Figure 2.

Evolutionary Kernel Vector Selection: Given a set of training data
D = (X,L) = {(xs,l;),s = 1,...,N}, to identify a set of M kernel
vectors KV ={v;,i =1,...,M}.

// Initialization
k=0 e=o00; KV© =random_pick(X);
do{
// Perfrom KMDA
AL =xupa(X, KV *);
// Project X to A
Y *) =proj(X,Al);
//Bayesian classifier
% =Bayes (Y® 1y;
// Classification
L™ =Labeling (Y ®) @®));
// Calculate error
e(®) :Error(f/(k), L);

// Select new kernel vectors
if(e® < e)
e=e®; KV = KV®); g+ +;
KV® —random_pick({x; : fgk) #UL});

else
KV = KV*~1; break;
end
}
return KV

Fig. 2. Evolutionary Kernel Vector Selection
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4.3 Kernel D-EM Algorithm

We now apply KMDA to D-EM. Kernel D-EM (KDEM) is a generalization of
linear D-EM, in which instead of a simple linear transformation of the data,
KMDA is used to project the data nonlinearly into a feature space where the
data is better separated linearly. The nonlinear mapping, ¢(-), is implicitly de-
termined by the kernel function, which must be determined in advance. The
transformation from the original data space X to the discrimination space A,
which is a linear subspace of the feature space F, is given by VI ¢(-) implicitly
or AT¢ explicitly. A low-dimensional generative model is used to capture the
transformed data in A.

Empirical observations suggest that the transformed data often approximates
a Gaussian in A, and so in our current implementation, we use low-order Gaus-
sian mixtures to model the transformed data in A. Kernel D-EM can be initial-
ized by selecting all labeled data as kernel vectors, and training a weak classifier
based on only unlabeled samples.

5 Experiments

In this section, we compare KMDA with other supervised learning techniques on
some standard data sets. Experimental results of D-EM on content-based image
retrieval and view-independent hand posture recognition are presented.

5.1 Benchmark Test for KMDA

We first verify the ability of KMDA with our data-sampling algorithms. Several
benchmark data sets! are used in our experiments. The benchmark data has
100 different realizations. In [9], results of different approaches on these data
sets have been reported. The proposed KMDA algorithms were compared to a
single RBF classifier (RBF), a support vector machine (SVM), AdaBoost, and
the kernel Fisher discriminant (KFD) [10]. RBF kernels were used in all kernel-
based algorithms.

In Table 1, KMDA-pca is KMDA with PCA selection, and KMDA-evol is
KMDA with evolutionary selection, where #-KVs is the number of kernel vec-
tors. The benchmark tests show that the proposed approaches achieve compara-
ble results as other state-of-the-art techniques, in spite of the use of a decimated
training set.

5.2 Content-based Image Retrieval

Using a random subset of the database or even the whole database as an un-
labeled data set, the D-EM algorithm identifies some “similar” images to the
labeled images to enlarge the labeled data set. Therefore, good discriminating

! The standard benchmark data sets in our experiments are obtained from
http://wuw.first.gmd.de/ raetsch.
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Table 1. Benchmark Test: the average test error as well as standard deviation.

Benchmark Banana  B-Cancer Heart Thyroid F-Sonar

RBF 10.8+0.06 27.6+0.47 17.6+0.33 4.5£0.21 34.4+0.20
AdaBoost 12.3+0.07 30.44+0.47 20.3+0.34 4.4+0.22 35.7+0.18
SVM 11.5+0.07 26.0+0.47 16.0+0.33 4.84+0.22 32.4+0.18
KFD 10.8+0.05 25.84+0.46 16.1+0.34 4.2+0.21 33.2+0.17

KMDA-evol 10.840.56 26.3+£0.48 16.1+0.33 4.3+0.25 33.3£0.17
#-KVs 120 40 20 20 40

features could be automatically selected through this enlarged training data set
to better represent the implicit concepts. The application of D-EM to image
retrieval is straightforward. In our current implementation, in the transformed
space, both classes are represented by a Gaussian distribution with three param-
eters, the mean pu;, the covariance X; and a priori probability of each class P;.
The D-EM iteration tries to boost an initial weak classifier.

In order to give some analysis and compare several different methods, we
manually label an image database of 134 images, which is a subset of the COREL
database. All images in the database have been labeled by their categories. In
all the experiments, these labels for unlabeled data are only used to calculate
classification error.

To investigate the effect of the unlabeled data used in D-EM, we feed the
algorithm a different number of labeled and unlabeled samples. The labeled
images are obtained by relevance feedback. When using more than 100 unlabeled
samples, the error rates drop to less than 10%. From Figure 3, we find that D-EM
brings about 20% to 30% more accuracy. In general, combining some unlabeled
data can largely reduce the classification error when labeled data are very few.

Our algorithm is also tested by several large databases. The COREL database
contains more than 70, 000 images over a wide range of more than 500 categories
with 120 x 80 resolution. The VISTEX database is a collection of 832 texture
images. Satisfactory results are obtained.

5.3 View-independent Hand Posture Recognition

Next, we examine results for KDEM on a hand gesture recognition task. The
task is to classify among 14 different hand postures, each of which represents
a gesture command mode, such as navigating, pointing, grasping, etc. Our raw
data set consists of 14,000 unlabeled hand images together with 560 labeled
images (approximately 40 labeled images per hand posture), most from video of
subjects making each of the hand postures. These 560 labeled images are used
to test the classifiers by calculating the classification errors.

Hands are localized in video sequences by adaptive color segmentation and
hand regions are cropped and converted to gray-level images[21]. Gabor wavelet
filters with 3 levels and 4 orientations are used to extract 12 texture features.
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Fig. 3. The effect of labeled and unlabeled data in D-EM. Error rate decreases when
adding more unlabeled data. Combining some unlabeled data can largely reduce the
classification error.

10 coefficients from the Fourier descriptor of the occluding contour are used
to represent hand shape. We also use area, contour length, total edge length,
density, and 2nd moments of edge distribution, for a total of 28 low-level image
features (I-Feature). For comparison, we also represent images by coefficients of
the 22 largest principal components of the total data set resized to 20 x 20 pixels
(these are “eigenimages”, or E-Features) [21]. In our experiments, we use 140
(10 for each) and 10000 (randomly selected from the whole database) labeled
and unlabeled images respectively, for training with both EM and D-EM. Table
2 shows the comparison.

Table 2. View-independent hand posture recognition: Comparison among multilayer
perceptron (MLP),Nearest Neighbor with growing templates (NN-G), EM, linear D-
EM (LDEM) and KDEM

Algorithm MLP NN-G EM LDEM KDEM

I-Feature 33.3% 15.8% 21.4% 9.2% 5.3%
E-Feature 39.6% 20.3% 20.8% 7.6% 4.9%

We observed that multilayer perceptrons are often trapped in local minima
and nearest neighbor suffers from the sparsity of the labeled templates. The poor
performance of pure EM is due to the fact that the generative model does not
capture the ground-truth distribution well, since the underlying data distribution
is highly complex. It is not surprising that LDEM and KDEM outperform other
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methods, since the D-step optimizes separability of the classes. Finally, note the
effectiveness of KDEM. We find that KDEM often appears to project classes
to approximately Gaussian clusters in the transformed space, which facilitates
their modeling with Gaussians.

Fig.4. (a) Some correctly classified images by both LDEM and KDEM (b) images
that are mislabeled by LDEM, but correctly labeled by KDEM (c) images that neither
LDEM or KDEM can correctly labeled.

6 Conclusion and Future Work

Many visual learning tasks are confronted by some common difficulties, such as
the lack of a large number of supervised training data, and learning in high di-
mensional space. In this paper, we presented a self-supervised learning technique,
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Discriminant-EM, which employs both labeled and unlabeled data in training,
and explores most discriminant features automatically. Both linear and nonlinear
approaches were investigated. We also presented a novel algorithm for efficient
kernel-based, nonlinear, multiple discriminant analysis (KMDA). The algorithm
identifies “kernel vectors” which are the defining training data for the purposes
of classification. Benchmark tests show that KMDA with these adaptations per-
forms comparably with the best known supervised learning algorithms. On real
experiments for recognizing hand postures and content-based image retrieval,
D-EM outperforms naive supervised learning and existing semi-supervised algo-
rithms.

Examination of the experimental results reveals that KMDA often maps
data sets corresponding to each class into approximately Gaussian clusters in
the tranformed space, even when the initial data distribution is highly non-
Gaussian. In future work, we will investigate this phenomenon more closely.
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