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ABSTRACT

Capturing human hand motion through visual input is achal-
lenging problem that involves the estimation of both global
hand pose as well as the local finger articulation, This is
a difficult task that requires a search in a high dimensional
space due to the high degrees of freedom that fingers exhibit
and the self occlusions caused by global hand motion. In
this paper we propose a divide and conquer approach to es-
timate both global and local hand motion. The hand pose is
determined from the palm using Iterative Closed Point (ICP)
algorithm and factorization method. By incorporating natu-
ral hand motion constraints, we propose an efficient track-
ing algorithm based on sequential Monte Carlo technique
for tracking finger motion. Finally, the iteration step be-
tween the pose estimation and finger articulation tracking is
performed in an EM fashion to cbtain an accurate configu-
ration estimation. Qur experiments show that our approach
is accurate and robust for natural hand movements.

1. INTRODUCTION

Rather thar using the mouse and the keyboard, hand ges-
tures can be used as a more natural and convenient way
for human to communicate with computers. Several appli-
cations such as the virtual environment interaction, would
benefit directly from such an interface. One important com-
ponent for this interface is how to capture hand motions.
As an alternative to glove-based techniques, vision-based
techniques offer an non-intrusive and affordable approach
to hand motion capturing. However, this task is difficult
due to the high degrees of freedoms invelved.

Different methods have been proposed to analyze hu-
man hand motion for visual hand tracking. One choice is
the appearance-based approach, which tries to establish the
mapping between the image feature space and the hand mo-
tion space {1, 2]. However, the mapping can be difficult to
learn and may not be one-to-one. Also, it is not trivial to
collect large and representative set of training data.

Another approach is the 3D model-based approach. The
hand motion could be estimated by matching the 3D model
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projections and observed image features, so that the prob-
lem becomes a search probiem in a high dimensional space.
To construct the correspondences between the model and
the images, different image observations have been studied,
such as fingertips 13, 4, 5], line features 16], and silhouettes
7,38, 9]

Many methods tackle the global hand motion and lo-
cal finger motion simultaneously, such that the optimization
would have a very high chance to converge to a local min-
ima. On the other hand, a divide-and-conquer approach [5]
could be taken to separate the hand pose determination and
articulate estimation.

This paper proposes a model-based approach to capture
both hand pose and finger articulation in the divide-and-
conquer framework. In Section 2 we describe how to repre-
sent the hand model and hand motion constraint. Section 3
presents an approach to combine global and local motion.
In Section 4 a method is given for estimating global moticn
using ICP. Section 5 shows an algorithm for estimating local
motion, Our experiment results are presented in Section 6.
Finally, conclusions are given in Section 7.

2. HAND MODEL AND MOTION CONSTRAINTS

The hand motion consists of global hand pose Mg and lo-
cal finger articulation M. Global hand motion can be de-
scribed by 3D transiation £ and rotation R of the palm. The
local finger motion is represented by a set of joint angle ©.
The hand structure is represented by a kinematical model
(Figure 1a), which has roughly 20 degrees of freedom [3, 7].
The task of motion capturing is 1o estimate {R,, £,0}.

In our experiment, we use a cardboard model in which
each finger is represented by a set of three connected pla-
nar patches, The parameters of the patches are calibrated
according to individual user. (Figure 1b). Although it is a
simplification of the human hand structure, it offers a good
approximation for motion capturing.

Instead of searching in the 20 dimensional space, we
would like to use varicus constraints to reduce the dimen-
sionality of the joint angle space and find a smaller feasible
space, which we will call the configuration space =. Sev-
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Figure 1: Hand model; (a) Kinematical chain of one finger,
{b) Cardboard hand model,

eral commonly known constraints due to the anatomy of the
hand can be used to initially reduce the dimensionality to
roughly 15. To further reduce the dimensionality, we have
collected more than 30,000 joint angle data from various
hand motions using CyberGlove. Then PCA is applied to
eliminate the redundancy. We can project ©@ € R into a
7-dimensional subspace while maintaining 95% of the in-
formation. Therefore, the configuration space = is defined
in R7. Furthermore, we define 28 basis configurations as
follows. For each basis state by, each finger is either fully
extended or fully curled. Our observations of the motion
trajectories between basis states in 2 show that they are
roughly linear and that natural hand articulation can be char-
acterized by these linear manifold £;; spanned by b; and
b 5 with ¢ ?é J .

By U[:ij, where L:,'j = span(bi,bj) (1)
i

Figure 2: Hand articulation in the configuration space, which is
characterized by a set of basis configurations and linear manifolds.

3. DIVIDE AND CONQUER APPROACH

Rather than estimating both global and local motion alto-
gether, another approach is o estimate global and local mo-
tions separately and combine the results in an iterative marn-
ner [51. The idea is to use additional information from fin-
ger projections and iterate between two steps: (1) pose de-
termination based on palm contour and some extra points,
using the method describe in Section 4; (2) tracking local
finger configurations using a Monte Carlo based algorithm
as described in Section 5. The iterations between giobal and
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local hand motion estimation would converge to a local sta-
tionary point that minimizes the discrepancies between the
image observation and model projection.

4. CAPTURING GLOBAL MOTION

The global hand motion is defined by the pose of the paim,
which is treated as a rigid planar object. In this section, we
present algorithms for determining the pose and estimating
the global motion.

4.1. Tterative Closed Points

We first describe a method for establishing point correspon-
dences by adapting the idea of the Iterative Closed Point
(ICP) algorithm {10]. The basic idea is to refine the corre-
spondences and the motion parameters iteratively.

The ICP algorithm takes the image edge point that is
closest to the projected 3D model point as its correspon-
dence. Motion parameters {R, ¢} can be compuied based
on these temporary correspondences using the pose deter-
mination method presented in Section 4.2. The computed
motion would result in a new matching. Iteratively apply-
ing this procedure, ICP would continue to yield an improved
pose estimation. It should be pointed out that ICP procedure
converges only to local minima, which means that we need
a close initial start.

4.2. Pose Estimation

After the correspondences have been constructed, we may
determine the pose using the following approach. Let a
point on the plane be x; = [z;,]7, and its image point
be m; = [u;,%;]T. Under scaled orthographic projection,
we can write tzm; = Ax; + t, where
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We can subtract the centroid of the projection points and
modetl points, i.e., ; = m; — m and X; = x; — X, which
gives t31ny; = A% If we let B = A/ta, then we have
m; = Bx;

Denoting {u¥,v¥]7 to be the ¢-th image point at the k-th
frame, we can write
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The factorization method [11] can be used to solve for M
and S up to a matrix I}, which could be determined by the
constraints of M.

After recovering M, which contains B and t3, R and £3
may be computed from B. Once the rotation matrix R and
the depth translation £3 are computed, we can compute:

2] -om- [ 2]

For simplicity, we can use the first frame that shows the
front of the palm for initialization and calibration, and take
image points along the palm contour as the model points.

t1
ta

Rn
Ry

Ria
Rao

5. CAPTURING FINGER ARTICULATION

In this section, we present a sequential Monte Carlo algo-
rithm that takes advaniage of the natural hand motion con-
straints in the tracking algorithm,

5.1. Sequential Monte Carlo

The tracking problem could be formulated as a process of
conditional probability density propagation. We can track
the finger motions efficiently using sequential Monte Carlo
method, which offers a way to approximate the evolution of
the densities. Denote the target state and image observations
by X; and Z; respectively, and Z, = {Zi,...,%;}, the
tracking problem is formulated as:

P Xe1|Zypq) o {Ze1 | XKerr )Xo 1Z,) ()

The posteriori p(X,|Z,) can be represented by a set of ran-

dom samples {sg ), ng“)} which will evolve to a new set of

samples {sgi)I ’ wg 11} attime t+1 o represent the new pos-
teriori. Different sampling schemes can be used depending
on the source of sampling priors [9, 12].

Since finger articulation involves a high DOF, algorithms
such as CONDENSATION will require a large number of
samples for representing the density propagation, and an in-
tensive computation will be unavoidable. Fortunately, we
may reduce the complexity by making use of the finger mo-
tion constraints as an outside prior for the importance sam-
pling technique. Let fi{X{™) = p(X; = X{™1Z,_,), be
the tracking prior. When we want to approximate the poste-
rior p{X;|Z}, we could draw random samples from another
distribution g¢(X;), instead of the prior density fi(X;). Be-
low we will give a brief description of this method. The
details can be found in [9].

For natural hand motion, each hand configuration X
should be either around a basis state by, k = 1,..., M,
or on the manifold £;;, where ¢ £ j,i,5 = 1,..., M. Sup-
pose at timae frame ¢, the hand configuration is X;. We find
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the projection X; of X; onto the nearest manifold L}

ij*
obtain

(X: —b)T(b; — by)
lI(b; —b)]|

Then, random samples are drawn from the manifold £;; ac-
cording to the density p;;, i.e.,

St=1—

ST~ Py =Nis,o) 3

X = siPhbi+ (18, @

Next, perform random walk on igi)l to obtain hypothesis
XM e,

X{% ~ NXP,, Do) ®)

We could write the importance function as: ggq4 (Xg:_)l) =

p(si s dp (XKL So.
(n) 1 ("’t+1 — &)
Ji+1 (Xt-;-l) ~ W exp{ '_"70-_2___
1 ~ ~
1L e SR VD Y
Finally, the weights must be properly compensated:
J; x(™
Ei)l _tﬂi_%:)_lzp(zt+l!xt+l = ngﬁ (6)
9t+1(xt+1)

If the previous hand configuration is at one of the basis
configurations, say X; = by, it is reasonable to assume that
it selects any one of the manifolds of {L;,5 = 1,..., M}
with the same probability. Consequently, random samples
are drawn from a mixture density py.

5.2. Model Matching

We employ edge observations to measure the likelihood of
hypotheses, Le., p(Z¢|X;) as in {9]. Self-occlusion is han-
dled by constructing an occlusion map for the hand model.
The cardboard model for the hand is sampled at a set of
K points on the laterals of the patches. For each of these
samples, edge detection is performed on the points along
the normal of this sample. When we assume that M edge
points {zsm,m = 1,..., M} are observed, and the clutter is
a Poisson process with density A, then,

We have tested our algorithm on real hand motion sequences.
Different schemes are also compared for local motion cap-
turing. The first one is a random search scheme in the RY

- irk)
2ae

p(Z|X) x ]'[ (1+ Vo 2 Z exp—

6. EXPERIMENT



(b) CONDENSATION with 3,000 sampies in R'.

{¢) Our approach with 100 samples.

Figure 3: Comparisons of different methods on real sequences. Our method is more accurate and robust than the other two methods.

space. We use 5000 random samples, but since it makes
use of no constraints, the performance is poor for local mo-
tion estimation and also degrades the global pose estima-
tion. The second scheme uses CONDENSATION with 3000
samples in R7. It performs better than the first method, but
it is still not robust encugh. The third scheme is the pro-
posed method, and it works accurately and robustly. The ar-
ticulation model makes the computation more efficient and
the local motion estimation enhances the accuracy of hand
pose determination.

7. CONCLUSIONS

Recovering hand motions from video sequences is a diffi-
cult problem due to the high degrees of freedom involved.
This paper presents a divide and conquer approach to this
problem by separating the global ard local hand motion and
estimating each component separately. For the global mo-
tion, we approximate the palm as a rigid planar object and
use ICP to track the hand pose. The local finger articulation
is tracked through a sequential Monte Carlo technique. The
iterations between the estimates of global and local finger
motion result in an accurate motion estimation. There are
still several directions for future extensions. For instance,
a better hand model could be used to handle out of plane
rotations. Also, it would be more interesting if we could
achieve automatic initialization for the tracking.
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