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ABSTRACT
In this paper, we propose a novel method to address the seg-
mentation problem of multiple independently moving ob-
jects. Based on the fact that multiple objects’ trajectories
correspond to multiple independent subspaces, first, bases
of these subspaces are extracted by applying independent
subspace analysis (ISA). Then, these bases are grouped prop-
erly after evaluating the correlation coefficients of them.
Feature grouping and outlier rejection are effectively per-
formed by calculating the data point’s membership func-
tions to these subspaces. A reasonable energy function is
also introduced to facilitate optimal segmentation. The geo-
metrical essence of the method is regarded as a global con-
straint added in the segmentation process resulting in a con-
siderable increase in error tolerance, without either prior
knowledge of the number of objects or prior assumption
about existence of degeneracy. The experimental results on
synthetic and real data both demonstrate the effectiveness of
our algorithm.

1. INTRODUCTION

Multibody motion segmentation is an important issue in com-
puter vision. A number of algorithms have been proposed
to address this problem. Ref. [1] presents a method based
on evaluating the similarities of some image-level cues. In
Ref. [2], rigidity constraints are introduced. Hence, the seg-
mentation process is under the control of optimizing an en-
ergy function or maximizing a posteriori (MAP) criterion.
However, only using the image-based or model-based algo-
rithms alone has limited applicability because of the ambi-
guities produced by noise and outliers.

Recently, factorization method, a novel algorithm orig-
inally developed by Tomasi and Kanade [3], has attracted
much popularity. It reveals the fact that under linear pro-
jection models, trajectories of a single body lie in a low
dimensional subspace of frame space. And in the case of
shape degeneracy (object has less than three independent
dimensions such as a line or a plane) or motion degeneracy
(object performs pure rotation or pure translation), the di-
mension of that subspace would be even lower. So, feature
points of multibody actually reside in multiple subspaces.

Started with a data matrixC, whose columns correspond to
the features’ trajectories imaged in a sequence of frames,
the segmentation of independently moving objects can be
achieved by grouping columns ofC into a set of indepen-
dent subspaces. However, when noise or outliers present,
the number and dimensions of these subspaces are quite
hard to estimate.

Gear [4] formulated this problem as probability analysis
of the bipartite graph. Both the partition and the dimensions
of the subspaces are determined by maximum likelihood es-
timation, which may involve local minima and high compu-
tational cost.

Costeira and Kanade [5] presented a multibody factor-
ization method, in which a shape interaction matrixQ is in-
troduced.Q=VVT whereV comes from the singular value
decomposition (SVD) ofC. Elements ofQ has a nice prop-
erty that if any featuresi andj are from different objects,
Qij will be zero, otherwise, non-zero. They then grouped
features by thresholding and sortingQ. Ichimura [6] ap-
plied a discriminant criterion to select the most represen-
tative vectors inQ for grouping features.

Unfortunately, the performance of algorithms based on
Q degrades quickly when noise or outliers exist. This degra-
dation results from thatQ only records the relationships be-
tween individual features. A single spike of noise could
jeopardize the estimates of both the number of objects and
the dimensions of objects’ subspaces.

Wu et al. [7] devised a method by performing orthogo-
nal subspace decomposition onQ together with a subspace
grouping technique. More robust performance is obtained.
However, degeneracy is not discussed.

It will be shown in Section 2 that columns ofVT , which
comes from the SVD ofC, span a set of mutually orthog-
onal subspaces called objects’ shape subspaces. And the
segmentation of feature points to objects is equivalent to
groupingVT ’s columns to those shape subspaces. In this
paper, we present a novel approach towards this problem.
Bases of the space spanned byVT are extracted and prop-
erly grouped to build up shape subspaces. A suitable mem-
bership function is introduced for grouping features as well
as detecting outliers. Influence of noise can be considerably
alleviated by utilizing the mutual orthogonality of those sub-



spaces. Estimations of both the number and dimensions
of those subspaces are efficiently and simultaneously per-
formed without knowing the prior knowledge of either the
number of objects or the existence of degeneracy.

Independent subspace analysis (ISA) [8] is applied to
estimate the relationship between those extracted bases of
the objects’ shape subspaces. ISA, an extension of ICA
[9], is used to find a partition of independent subspaces
within a data set that the projection norms of the data on
those subspaces have maximally sparse distribution. All
data points are involved in a global optimization framework
to obtain the description of the intrinsic structure of the data
space. This attempt is geometrically meaningful, which
makes our approach different from the existing factoriza-
tion based methods. And more robust performance is ex-
pected than the clustering process which is merely based on
individual similarity measurement matrixQ. Besides, the
proposed method can handle any case of degeneracy in the
context of independent motion segmentation.

The paper is organized as follows. In Section 2, factor-
ization method and Independent Subspace Analysis (ISA)
are briefly reviewed. In Section 3, our algorithm for multi-
body motion segmentation is described. Experimental re-
sults are shown in Section 4. And conclusion is summarized
in Section 5.

2. BACKGROUND

2.1. Factorization method

We assume that a camera is observing a scene composed of
independently moving, rigid bodies and the correspondence
and trajectories of feature points in the image sequence have
already been discovered.

SupposeN objects are contained inF frames, each has
ni features. The homogeneous coordinates of features on
objecti is represented by a4× ni matrixSi as follows,

Si =
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When a linear projection (orthographic, affine, etc.) is as-
sumed, we collect the projected image coordinates (u, v) of
theseni points overF frames into a 2F×ni matrix Ci,
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whereM i is a 2F×4 matrix andM ij (j=1, . . . , F ) is the
2×4 projection matrix related to objecti in the jth frame.
Assume at least four non-coplanar feature points are chosen
from each object, it is obvious thatni columns ofCi reside
in a 4D subspace spanned by columns ofM i.

All feature points across all frames can be compactly
written into a 2F×P matrixC,

C = [C1C2 . . .CN ]

= [M1M2 . . .MN ] ·




S1

S2

· · ·
SN


 (3)

whereP = Σni is the total number of features in the scene.
Since the motions of all objects are independent, the

rank ofC is 4N (degenerate case will be discussed later). By
singular value decompositionC=UΣVT , whereU∈2F×4N,
Σ∈4N×4N andV∈P×4N, the shape interaction matrixQ
can be computed byQ=VVT and

Qij

{
= 0 if featurei andj belong to different objects
6= 0 if featurei andj belong to same object

(4)
Assume we have grouped feature points of different ob-

jects, we could expressVT asVT =[V1 V2. . .VN ], where
Vi=[V1

i V2
i . . .V

ni
i ]. DenoteSPi=span{V1

i V2
i . . .V

ni
i } as

the shape subspace for objecti. According to the nice prop-
erty ofQ in Eq. (4), it is proved [7] that in noise-free case,

SPi ⊥ SPj ,∀i 6= j (5)

It means that the shape subspaces of objects are mutu-
ally orthogonal. In reality, with no information about fea-
ture grouping, we might obtain aC? whose columns are
permutation ofC, as well asV?T , a permuted version of
VT . But this does not violate the mutual orthogonality of
shape subspacesSPi.

2.2. Independent subspace analysis (ISA)

Independent subspace analysis is an extended version of in-
dependent component analysis (ICA). In ICA model, an ob-
servedn-D vectorx is represented as a linear combinations
of n bases vectorsA=[a1, . . . ,an],

x = As =
n∑

i=1

aisi (6)

wheres=(s1, . . . , sn)T is different for each observed vector
x and the componentssi=<wi,x> are statistically indepen-
dent. ‘<>’ denotes dot-product andW=[w1, . . . ,wn]T is
the inverse of matrixA. The ICA model can be reformulated
asx=

∑n
i=1 x(i) by definingx(i)=aisi. This shows thatx is

a sum ofn independent vectorsx(1), . . ., x(n).



While in ISA model, the decomposition intoL inde-
pendent subspaces,Rn=SISA−1 ⊕ · · · ⊕ SISA−L, is real-
ized. And vectorx here admits a unique decomposition as
x =

∑L
l=1x(l) with x(l)∈SISA−l. The vectorsx(1), . . ., x(L)

are called thelinear componentsof x and they are indepen-
dent [10],

x(l) =
∑

i∈Sl

aisi, x =
L∑

l=1

x(l) (7)

TheSISA−l are spanned by a set of bases vectors{ai|i ∈
Sl}, whereSl denotes the set of indices ofai belonging to
that subspace. This decomposition also indicates a partition
of si into the correspondingL groups.

According to the invariant feature subspace theory [8],
the independence oflinear componentsx(l) can be inter-
preted as the independence of projection norms ofx on these
subspaces. In other words, the independence of (squared)
norms of the projections on these subspaces,

∑
i∈Sl s2

i (l=
1, . . . , L), are to be maximized. Thus, givenP observedn-D
vectorsx. The ISA model can be formulated as a maximum
likelihood estimation problem [8].

logL(W) =
P∑

k=1

L∑

l=1

log p(
∑

i∈Sl

s2
i,k) + P log|detW| (8)

wherep(·) is some known density functions (often assumed
to be exponential) of the projection norms. Gradient ascent
algorithm [8] or Newton method [11] can be used to esti-
mate both the basis matrixA=[a1,. . .,an], W=[w1,. . .,wn]T

and the realization ofsi,k=<wi,xk> for i=1, . . . , n, k =
1, . . . , P . Compared with ICA, this model specifies the in-
formation thatsi within the same group are dependent, but
thosesi in different groups are independent.

In ICA applications, the correlation coefficient between
ABS(si) and ABS(sj) is zero, which is calculated as,

I(si, sj) =< ABS(si), ABS(sj) > /(‖si‖ · ‖sj‖) (9)

where ABS(Y) returns the absolute value of the elements of
Y, si = (si,1, si,1, . . . , si,P ) is aP -dimensional vector and
‖ · ‖ denotes norm function. But, in the case of ISA,

I(si, sj)
{

> 0 if si andsj are dependent
= 0 if si andsj are independent

(10)

According toI (si, sj), a partition ofL groups withinsi can
be found easily: Only ifI (si, sj)>0, we groupsi andsj to
the same group. Acomponent similarity matrixfor group-
ing componentssi is then defined asI,

I = {Iij : Iij = I(si, sj),∀i, j ≤ n} (11)

Note that the process of clustering componentssi dose not
need the prior knowledge of the number or dimensions of
those subspaces.
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Fig. 1. (a) Componentssi. (b) The result ofI permuted
according to the formation of the independent groups.

To demonstrate the effectiveness of ISA, we generate 4
mutually orthogonal subspaces of dimensions 3, 3, 3 and 4
in a 13D space. 30 samples from each subspace are selected
to form a 13×120 observation matrixX=[x1, x1, . . . ,x120].
By applying Fast-ICA [11] onX, Fig. 1(a) shows the result
of si, i=1, . . . , 13. Obviously, there are totally 4 groups
consisting of componentsS1={1,10,12}, S2={2,6,9}, S3=
{3,5,7,13}, andS4={4,8,11}, respectively. This waveform
of si interprets the concept of “independence between pro-
jection norms”: Assumexk ∈ SISA−p, its projection result
onto its own subspace{si,k|i ∈ Sp} has no correlation with
its projection results onto other subspaces{sj,k|j /∈ Sp}.

Fig. 1(b) represents the matrixI which has been per-
muted according to the formation of the independent groups
of thesesi. The higher theIij is, the greater the brightness.

3. MOTION SEGMENTATION BASED ON ISA

Given a 2F×P matrix C?, the purpose of our algorithm is
to find a set of mutually orthogonal (i.e. independent) shape
subspacesSPi from ther × P matrix V?T , wherer is the
rank ofC? andP is the number of imaged features.

3.1. Estimation of the number of subspaces

Each column ofV?T is regarded as an observedr-D vec-
tor. After applying Fast-ICA onV?T , a r × r basis matrix
A, the correspondingr componentssi and thecomponent
similarity matrixI are obtained.

BecauseIij is a similarity measurement of relevant bases,
the greater theIij is, the more possible thatsi andsj belong
to one independent subspace. Due to local measurement er-
rors, the entryIij may exhibit a small nonzero value for
independent componentssi andsj . However, this distur-
bance does not bring too much difficulty. Referring to the
nearest-neighbor algorithm [12], we begin with the largest
Iij , either by merging a componentsi into one set or by
merging two sets into one, iteratively. Thus, the number of
subspaces and dimension of each subspace can be acquired
simultaneously. The only constraints in this clustering pro-
cedure are that dimension of any subspace is at most 4 and



the adoptedIij for clustering is bigger than a certain thresh-
old.

Note that the entry ofI is a kind of global structure
based similarity measurement, which evaluates the simi-
larities between extracted bases of data space. All feature
points are involved in the maximization process in Eq. (8)
to achieve a maximally sparse distribution of their projec-
tion results on those inferred subspaces. So, more accurate
description of the data space structure and more robust per-
formance are expected than the clustering process which is
merely based on individual similarity measurement matrix
Q.

3.2. Feature grouping and outlier rejection

After groupingsi into N groups, hereN is theautomati-
cally obtainednumber of moving objects, theN subspaces
SISA−l can be constructed by spanning basis setsBl={ai|i ∈
Sl}, l=1, . . . , N . In fact, theseSISA−l exactly correspond
to the shape subspaceSP l. Because both of them describe
the inherent structure of independent subspaces within the
same data set. In the following, we useSP l denote these
subspaces. The grouping of feature points to the bodies now
is equivalent to grouping the columns ofV?T to those de-
rived subspacesSP l. For this purpose, a membership func-
tion is defined as,

Mem(i, l) = ‖πl ·V?T
i ‖/‖V?T

i ‖ (12)

whereπl = Bl(BT
l Bl)−1BT

l is the projection matrix onto
SP l. Eq. (12) describes the degree to which theith column
of V?T belongs to the subspaceSP l,

Mem(i, l)
{

= 1 if vectori lies inSP l

= 0 if vectori is orthogonal toSP l

(13)
In real applications, noise and outliers will make the mu-

tual orthogonality ofSP l distorted. In our extensive exper-
iments, the inlier’s membership to its own subspace will be
mostly around 1, but is nearly 0 to other subspaces. Thus,
outliers could be simply identified if memberships of such
feature points to all the shape subspaces are nearly equal or
comparable.

If Mem(i, l)<0.99, featurei will not be classified to the
subspaceSP l. The benefit of this thresholding is that out-
liers are detected and discarded by multi-pass formed by
these subspaces. We then classify the filtered inlier column
i to the shape subspaceSP l′ which produces the largest
membership value,l′ = arg maxlMem(i, l).

3.3. Summary of algorithm

The outline of the proposed algorithm for multibody seg-
mentation is summarized below:

1. Given C?, obtain ther × P matrix V?T by SVD,
wherer is the rank ofC?.

2. Computesi (i=1, . . . , r) and evaluate thecomponent
similarity matrixI by applying ISA toV?T .

3. UseI to discover the grouping of these components
si and the number (N ) of these groups. Then con-
struct the corresponding shape subspacesSP l, l =
1, . . . , N .

4. Evaluate the membership function using Eq. (12) to
group features into multibodies and discard outliers.

After this clustering procedure, the grouping of columns
of V?T to shape subspacesSP l, l=1, . . . , N is discovered.
This is equivalent to grouping feature points to theN ob-
jects. Neither prior knowledge of number of objects nor
prior assumption about existence of degeneracy is assumed.

Recall that the clustering process in Section 3.1 is able
to estimate the dimensions of each subspace. As long as
these motions are linearly independent, the presented algo-
rithm can robustly handle any case of shape degeneracy or
motion degeneracy. This happens, for example, when the
object undergoes pure rotation (corresponding to a 3D sub-
space) or when the object is a 2D (corresponding to a 3D
subspace) or a 1D (corresponding to a 2D subspace) entity.

Another case of degeneracy is when the transformation
of one object is coupled with another. This case is more
complex and will be our further study.

3.4. Determination of parameterr

In Section 3.3, the valuer, rank of C?, is essential since
the rank specifies the rows of singular vectorsV?T . Let
σ1 ≥ σ2 ≥ · · · ≥ σrnoise

be singular values ofC?, where

σrnoise
=min(2F, P ). In our experiment, we define the rank

of C? as the smallestrestthat satisfies,

rest∑

i=1

σ2
i

/rnoise∑

i=1

σ2
i ≥ 0.98 (14)

For more accuracy, we run the algorithm for several times
with the rank ofC? in some range, e.g.r∈[rest-3,rest+3].
The following energy function is used to choose the optimal
segmentation result which produces the minimum energy,

E(r) = A

P∑

i=1

N∑

j=1

N∑

k=1,k 6=j

Mem(i, j)Mem(i, k)

+B(P −
P∑

i=1

N∑
j=1

Mem(i, j))2 (A = B = 1) (15)

The first component ofE(r) is minimized if for∀i, at
most one of the membership functions Mem(i, j) j ∈ [1, N ]
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Fig. 2. (a) A view of 1st synthetic scene containing 3 mov-
ing objects and several outliers. (b) Change in the value of
E(r) for differentr in 1st synthetic data set.

is nonzero. The second component is minimized if the sum-
mation of Mem(i, j) is equal toP . Reflect the definition and
property of the membership function in Eq. (12), (13). The
minimum energyE(r) obviously favors the case that the
obtained subspaces are mutually orthogonal and all features
are correctly classified. If the value of currentr is incor-
rect, disharmony with the original data structure makes it
less likely to yield the minimum energy over allr.

4. EXPERIMENTAL RESULTS

Experiments on synthetic and real data are carried out to
demonstrate the effectiveness of our algorithm.

4.1. Synthetic data

In one of the synthetic experiment, three transparent full 3D
objects (rank 4), a sphere, a cylinder and a cubic, are gen-
erated (r=4×3=12). Totally 90 points are randomly cho-
sen, 30 points from each object. We let these three sets of
points undergo independent motions. Using orthographic
projection, 10 frames with resolution 100×100 pixels are
captured. Gaussian noise with standard deviation of 2 pix-
els is added and 30 fake trajectories are fabricated in the
image stream.

Fig. 2(a) shows a view of the synthetic scene. Points
are features while squares denote outliers. Fig. 2(b) shows
the minimum energy according to Eq. (15) under different
rankr of V?T . r=12 is obviously the most favorable result
coinciding with the actual situation.

The 2nd experiment is conducted on more complicated
synthetic data set. Image resolution is 100×100 pixels and
the standard deviation of simulated Gaussian noise is 1 pixel.
120 points are randomly chosen from 4 transparent entities,
two spheres and two planes (rank 3), each containing 30
points. All of them move in an arbitrary way except that
one of the spheres performs pure rotation (rank 3) across the
sequence. So, both shape degeneracy and motion degener-
acy are allowed (r=4+3+3+3=13). 50 outliers are imported.
Fig. 3(a) shows the minimum energy according to Eq. (15).
r=13 is obviously the most favorable result coinciding with
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Fig. 3. (a) Change in the value ofE(r) for differentr in 2nd

synthetic data set. (b) Visualization of all feature’s member-
ship functions to each subspace. (Totally 4 objects)

the actual situation. For convenience of visualization, the
membership functions of these features to the 4 extracted
subspaces are transformed to gray scale between [0, 255],
as shown in Fig. 3(b). We can see that each subspace’s
response to its inliers is very apparent while outliers have
comparable impress on all subspaces.

Table 1 summarized the segmentation results on these
two synthetic data. Our method acts more accurately in our
extensive experiments, in which the inlier to outlier ratio is
not so severe as in the shown synthetic data sets.

4.2. Real image sequences

Adequate results are shown for real image sequences. Fea-
ture points were extracted using the corner detector pro-
posed in [13]. Detected features are tracked by normalized
correlation. Fig. 4(a)-(c) show 3 views from collected 16
frames. The background is not still due to hand-held video
camera’s vibration. “+” and “o” denote good features of ve-
hicle and background correctly grouped by the algorithm.
Fig. 4(d)-(f) show another sequence containing 12 frames.
“+” and “o” denote properly grouped features of vehicle and
background, respectively.

Fig. 5 show 3 views from an image sequence of 20 frames.
Features that belong to two books and a face are properly
classified and denoted by “x”, “+” and “o”, respectively.
The results are promising.

However, currently there are no available public data
sets of this topic. And quantitative comparison with the ex-
isting methods is hampered by the difficulties of selecting
thresholding parameters for clustering, which is the essen-
tial procedure for efficient and faithful implementation of
other methods. Qualitative comparison is in Section 5.

5. CONCLUSIONS

In this paper, we have provided a novel attempt for the prob-
lem of independent multibody motion segmentation. Due to
the mutually orthogonal subspace structure ofV?T , bases of
these subspaces are extracted and properly grouped by us-
ing ISA. Outliers are efficiently discarded by a introduced



Table 1. Segmentation results on synthetic data

1st set of synthetic data 2nd set of synthetic data
cubic cylinder sphere outliers sphere1 sphere2 plane1 plane2 outliers

input features 30 30 30 30 30 30 30 30 50
clustering result 29 29 29 33 31 33 22 27 57
true inliers (true outliers) 29 29 29 30 30 30 22 27 46
false outliers (false inliers) 0 0 0 3 1 3 0 0 11

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

Fig. 4. Two vehicle sequences. Moving vehicles and mov-
ing backgrounds are shown by “+” and “o”, respectively.
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(c)

Fig. 5. Face sequence. Three moving groups are shown by
“x”, “+” and “o”, respectively.

membership function. A reasonable energy function is also
created for selection of optimal segmentation result. The al-
gorithm can robustly handle any degenerate cases with nei-
ther prior knowledge of the number of objects nor prior as-
sumption about existence of degeneracy.

Unlike most previous methods based on point-level sim-
ilarity measurements, in our algorithm, the evaluatedcom-
ponent similarity matrixI can be regarded as a qualitatively
group-level similarity measure. It helps achieve better and
more reliable performance confirmed by experiments.

Focus of our future work will be coupled motion seg-
mentation and quantitative analysis of motions.
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