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Abstract

Coalescence, meaning the tracker associates more than one
trajectories to some targets while loses track for others, is a
challenging problem for visual tracking of multiple targets,
especially when similar targets move close or present oc-
clusions. Existing approaches that are based on joint data
association are confronted by the combinatorial complexity
due to the concatenation of the state spaces of individual
targets. This paper presents a novel collaborative approach
with linear complexity to the coalescence problem. The ba-
sic idea is the collaborative inference mechanism, in which
the estimate of an individual target is not only determined
by its own observation and dynamics, but also through the
interaction and collaboration with the estimates of its adja-
cent targets, which leads to a competition mechanism that
enables different targets to compete for the common image
observations. The theoretical foundation of the new ap-
proach is based on Markov networks. Variational analysis
of this Markov network reveals a mean field approximation
to the posterior density of each target, therefore provides a
computationally efficient way for such a difficult inference
problem. In addition, a mean field Monte Carlo (MFMC)
algorithm is designed to achieve Bayesian inference by sim-
ulating the competition among a set of low dimensional
particle filters. Compared with the existing solutions, the
proposed new collaborative approach stands out by its ef-
fectiveness and low computational cost to the coalescence
problem, as pronounced in the extensive experiments.

1 Introduction

Multiple target tracking in video is an important prob-
lem in many emerging applications, such as for intelligent
video surveillance where tracking multiple targets is essen-
tial for action recognition and event detection, for sports
video analysis where tracking multiple athletes can help
coaches for decision making and performance analysis, and
for video conferencing where effective low bit rate video
communication requires the accurate localization and track-

ing of the attendees.

If targets are distinctive from each other, they can be
tracked independently by using multiple independent track-
ers (M.i.T.) with least confusion. However, many real ap-
plication scenarios prevent such a simple solution for two
reasons: the targets may present more or less the same ap-
pearances, and it is infeasible to initialize specific trackers
for different targets. For example, it is difficult to track mul-
tiple soccer players in a soccer field, since all soccer players
are in uniform sports wear, which makes image observa-
tions less discriminative. In this circumstance, the tracker
has to use the same target model and observation model to
handle all the targets. In this sense, the tracker has to cope
with “identical” targets simultaneously.

Due to the use of one single model for tracking multi-
ple similar targets, both M.i.T. and the CONDENSATION algo-
rithm [7, 2] can not work well. Since each individual tracker
in M.i.T. tends to track the target that fits the model best, the
targets that receive weaker image evidence are likely to be
ignored, especially when the targets move close or present
occlusions. As a single target tracker, CONDENSATION may
also be used for multiple targets, since it can estimate the
non-Gaussian posterior density of the targets which implies
the presence of multiple targets. However, when the poste-
rior distribution is propagating over frames by particles, it is
likely that the targets that attract more particles will domi-
nate the dispersion of particles, which will gradually reduce
the number of particles for the targets that have weaker im-
age observations, and finally lose track of them. In both
cases, we observe the “coalescence” phenomenon, i.e. the
multiple target tracker associates more than one trajectories
to some targets while loses track for others.

A possible solution to this coalescence problem is based
on joint data association that enumerates all the possible as-
sociations between targets and observations. Various meth-
ods have been developed (see Section 2 for details), such as
joint probabilistic data association filter (JPDAF) [1, 12],
sampling based multiple target tracking with background
subtraction [15] or background model [8] and partitioned
sampling [11]. The essence of their methods is the introduc-
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tion of the joint state space representation which concate-
nates together all the state spaces of the individual targets
such that they can be jointly inferred based on the collected
image observations. The coalescence problem may be cor-
rectly handled during the joint inference. However, these
approaches are not scalable due to their nature of exponen-
tial complexity. For example, with the increasing number of
targets, JPDAF-based methods suffer from the combinato-
rial complexity due to the exhaustive enumeration for data
associations; and sampling based approaches are confronted
by the exponential demand of the increase of particles.

In this paper we propose a new tracking algorithm to
cope with the coalescence problem with linear complex-
ity. The basic idea is a collaborative inference mecha-
nism, where the state estimate of each target is not only
determined by its own observation and dynamics, but also
through the interaction and collaboration with the state es-
timates of its adjacent targets, which leads to a competition
mechanism that enables different targets to compete for the
common resources, i.e. image observations. The theoret-
ical foundation of the new approach is based on Markov
networks, in which each hidden node in the network repre-
sents the state of an individual target, and the links in the
network correlate a target to those who compete image ob-
servations against it. The structure of the Markov network
can change according to the spatial relations of the targets
during the tracking process. We call it an ad hoc Markov
network. Since such a Markov network is likely to con-
tain loops, variational analysis is employed and reveals a
mean field approximation to the posteriors of the targets,
therefore it provides a computationally efficient way to this
difficult inference problem. In addition, we design a mean
field Monte Carlo (MFMC) algorithm that efficiently imple-
ments this mean field inference by simulating the competi-
tion among a set of low dimensional particle filters.

With linear complexity in terms of the number of tar-
gets, the new approach cope with multiple target tracking
in a distributed and collaborative fashion. The competition
mechanism introduced by the collaborative inference math-
ematically incorporates the essence of joint data association
where one single observation cannot support more than one
target, therefore the coalescence problem can be naturally
handled. Compared with the existing solutions, the new col-
laborative approach stands out by its effectiveness and low
computational cost to the coalescence problem, as shown in
the extensive experiments.

2 Related Work

Various multiple target tracking methods have been devel-
oped to handle the coalescence problem. They either em-
ploy background models [4, 15, 8] or not [12, 11]. The
background models provide strong cues for target detection,

and the extracted moving blobs greatly facilitate image ob-
servations for tracking. Recognizing the merging and split-
ting of the blobs is an important bottom-up clue to solve
the coalescence problem. The limitation of these methods
is the assumption of static cameras which make possible
the modeling of backgrounds and thus confines its applica-
tions. In this paper, the proposed approach does not rely on
background models, thus it can work for unknown and con-
stantly changing backgrounds as shown in the experiments.

According to the implementation of tracking, the ex-
isting methods can be categorized into either paramet-
ric [1, 12] or non-parametric [15, 8, 5, 11]. The paramet-
ric methods extend Kalman filters to joint probabilistic data
association filters (JPDAF) [1, 12] and handle the coales-
cence problem by the joint data association principle in
which one image observation can only support a single tar-
get hypothesis and one target hypothesis can only occupy a
single observation. Based on Monte Carlo techniques, non-
parametric methods [15, 8, 5, 11] can obtain non-Gaussian
Bayesian inference in a top-down process that generates and
evaluates a large number of hypotheses. These methods
generally handle the coalescence problem through the mod-
eling of the priors in the joint state space of all the targets.
However, the above approaches that deal with the joint state
space directly are not scalable due to its nature of combina-
torial or exponential complexity.

Different from the centralized joint state space represen-
tation, a distributed representation is proposed in this pa-
per that leads to efficient solutions with linear complexity.
Based on this new representation, a collaborative mean field
Monte Carlo (MFMC) algorithm is proposed for multiple
target tracking, in which a set of low dimensional particle
filters compete against each other to solve the coalescence
problem.

3 The Distributed Representation

We denote the state of an individual target by xi, the joint
state by X = {x1, . . . ,xM} for M targets, the image ob-
servation of xi by zi, and the joint observation by Z.

3.1 Conditional Dependency

When multiple targets move close or present occlusions, it
is generally difficult to distinguish and segment these spa-
tially adjacent targets from image observations, thus we
can not simply factorize the joint image observation, i.e.,
p(Z) �= ∏

i p(zi).
As a result, the image observations under this circum-

stance have to be treated as they are jointly produced by
all these targets, i.e., we need to model the joint likelihood
p(Z|x1, . . . ,xM ). In this case, when the joint image obser-
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vation is given, the posteriors of different targets are condi-
tionally dependent, i.e.,

p(x1, . . . ,xM |Z) �=
∏

i

p(xi|Z).

This conditional dependency of multiple targets is the
root of the reason why M.i.T. and CONDENSATION can not
cope with the coalescence problem. It also makes clear why
the centralized methods that deal with the joint state space
are confronted by the high dimensionality, since they have
to model p(Z|X) as a centralized entity.

We present in the next sections a new distributed model
to cope with this problem with linear complexity and a
collaborative algorithm is developed for tracking multiple
identical targets.

3.2 Our Formulation: ad hoc Markov Net-
work

Since the motions of the multiple targets become dependent
when they are spatially adjacent, we can consider to model
the prior of the joint target states, i.e., p(X). This prior
can be very complicated due to the unknown correlations,
but we can approximate it by a Gibbs distribution in gen-
eral. Here we present a specific Gibbs model which leads
to a theoretically plausible and practically efficient tracking
algorithm.

Figure 1: The Markov Network for multiple targets.

The theoretical foundation of the new approach is based
on Markov networks, as shown in Figure 1, which con-
sists of two layers. The hidden layer is an undirected graph
Gx = {V, E} where each node represents the state or mo-
tion parameters (such as an affine motion) of a target xi,
and the link between a pair of targets represents the motion
correlation (of dependency) between them (as described be-
low). In addition, the observable layer are nodes that repre-
sent the image observations and are individually associated
with their corresponding hidden nodes. A directed link from

the target xi to its local image observation zi represents the
observation likelihood p(zi|xi). Since the local observation
zi conditionally independent of others given xi, we have :

p(Z|X) =
n∏

i=1

pi(zi|xi). (1)

The core problem here is to infer the posterior p(X|Z).
The structure of the graph in the hidden layer depends

on the spatial relations among the targets’ states. The tar-
get that is not close to others is represented by an isolated
vertex in the graph (such as x6 and x7 in Figure 1) . If
two targets are close enough (in the sense the the specific
image observer or detector used for tracking is unable to
separate their image observations), there is an undirected
link between them in the graph to represent their motion
dependency (such a x3 and x4 in Figure 1), and a poten-
tial function is associated with this link to parameterize the
motion correlation.

Since the targets are moving, their spatial relations
change with time and the structure of the Markov network
also change with time. Therefore, we name this type of
graphical model as ad hoc Markov Network. Once the
spatial relations of the targets are roughly determined, the
structure of the network is fixed. The neighborhood of a
target is those that are linked with it, and we denote the
neighborhood of xi by N (i).

In this formulation, the prior p(X) is modelled as a
Gibbs distribution and can be factorized as:

p(X) =
1
Zc

∏
c∈C

ψc(Xc) (2)

where c is a clique in the set of cliques C in the undirected
graph, Xc is the set of hidden nodes associated with the
clique and ψc(Xc) is the potential function of this clique,
and Zc is a normalization term or the partition function. Our
model allows two types of cliques: the first order clique, i.e.,
i ∈ V , and second order clique, i.e., (i, j) ∈ E, where C =
V

⋃
E. The associated potential function ψc is denoted by

ψi and ψij , respectively. Thus, Eq. 2 can also be written as:

p(X) =
1
Zc

∏
(i,j)∈E

ψij(xi,xj)
∏
i∈V

ψi(xi) (3)

where ψi(xi) provides a local prior for xi which can be the
dynamics prior or the prior given by other modalities, and
ψij(xi,xj) presents the motion dependency between neigh-
borhood nodes xi and xj .

It is critical to model the motion dependency or correla-
tion mentioned above. The motion of two targets become
dependent a posteriori only because their image observa-
tions can not be separated. But when one target has been as-
sociated with part of the total image observations, the other
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target can only obtain the rest of the observations, since the
same piece of image evidence can not support the existence
of two different targets. Therefore, we can approximate the
motion dependency of them by a competition correlation,
i.e., targets compete against each other for the common im-
age resources. In other words, if one target occupies a re-
gion in the state space, it will lower the probability of others
to occupy the same region. As a specific example, the com-
petition potential function can be modelled as:

ψij(xi,xj) ∝ 1 − e−d(xi,xj)
T Σ−1d(xi,xj) (4)

where d(xi,xj) = xi − xj is the distance between the
two targets in the state space, and Σ characterizes the size
of competition region in the state space. Eq. 4 is like an
upside-down Gaussian, which reduces the probability of the
events where two targets occupy the same position in the
state space. When competing for image resources, the target
that is unlikely to win will be diffused around the winner.

z2,t-1 z3,t-1 z4,t-1

z1,t-1

z5,t-1

x3,t-1

x2,t-1

x4,t-1

x1,t-1

x5,t-1

z2,t z3,t z4,t

z1,t

z5,t

x3,t

x2,t

x4,t

x1,t

x5,t

Figure 2: Dynamic Markov Network for multiple targets.

Putting the above Markov network in the temporal con-
text by accommodating the dynamics model p(xi,t|xi,t−1)
for each target, we can model the visual dynamics of multi-
ple targets in a more complicated graphical model, which
can be called as a dynamic ad hoc Markov Network, as
shown in Figure 2. In this figure, the structures of the
Markov networks in two consecutive time frames are a lit-
tle different, which illustrates the changes of motion corre-
lations among the targets, due to the change of the spatial
relations among them.

In all the notations, the subscript t represents the time
index. In addition, we denote the collection of all the image
observation up to time t by Zt = {Z1, . . . ,Zt}. In this
formulation, the multiple target tracking problem is to infer
the posterior of each target p(xi,t|Zt), which will be solved
in the following sections.

4 Mean Field Inference

Belief propagation [3] is generally used to obtain exact
Bayesian inference for non-loopy Markov networks. How-
ever, this method may not be appropriate for analyzing the
Markov networks introduced in the previous section for
multiple target tracking, because these Markov networks are
likely to contain loops when three or more targets are linked
together. In contrast to belief propagation, variational anal-
ysis methods [10, 9, 16] are more flexible to the structure of
the network. Although only the approximate inference can
be obtained, they provide lower bounds of the approxima-
tion as a theoretical benefit. Thus we perform variational
analysis for the above Markov networks in this section. For
clarity, we first analyze the static Markov network and then
generalize the results to the dynamic Markov network.

The fundamental idea of the probabilistic variational
method is the employment of a variational distribution
Q(X) with variational parameters as a variation of the den-
sity we want to infer, e.g., the posterior p(X|Z) in our
case. Variational analysis aims at finding the optimal vari-
ational distribution Q∗(X) that minimizes the Kullback-
Leibler (KL) divergence between them, i.e.,

Q∗(X) = arg min
Q

KL(Q(X)||p(X|Z)) (5)

This is feasible when the appropriate forms of the vari-
ational densities are adopted. For simplicity, a fully factor-
ized form is usually employed, i.e.,

Q(X) =
M∏
i

Qi(xi) (6)

where Qi(xi) is an independent distribution of the hidden
node xi. Since Qi has to be a probability density function,
this becomes a constrained optimization problem with the
following Lagrangian for each Qi:

L(Qi) = KL(Qi) + λ(
∫

xi

Qi − 1) (7)

When using the Gibbs model for p(X) in Eq. 3, it is easy to
show the solution is a set of fixed point equations [16]:

Qi(xi) ←− 1
Z ′

i

pi(zi|xi)ψi(xi)Mi(xi), where

Mi(xi) = exp{
∑

k∈N (i)

∫
xk

Qk(xk) log ψik(xi,xk)}, (8)

where Z ′
i is a constant, and N (i) is the neighborhood of the

subpart i, and i = {1, . . . , M}. The iterative updating of
Qi(xi) decreases the KL-divergence and reaches an equi-
librium. These fixed point equations are called mean field
equations.
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The same procedure can also be applied to the dynamic
Markov network, and the mean field equations can be de-
rived:

Qi,t(xi,t) ←− 1
Z ′

i

pi(zi,t|xi,t)

×
∫

p(xi,t|xi,t−1)Qi,t−1(xi)

× Mi,t(xi,t) (9)

where the second term
∫

p(xi,t|xi,t−1)Qi,t−1(xi) is ac-
tually very similar to the dynamics prediction prior, i.e.,
p(xi,t|Zt−1).

The mean field equations are very meaningful, since they
reveal a collaborative solution to the very difficult Bayesian
inference problem: the posterior of a target xi is not only
determined by its local prior ψi(xi) (such as the dynamics
prediction prior) and its local image likelihood pi(zi|xi),
but also the beliefs of its neighborhood targets that compete
image resources against it. The influence of the competition
is summarized in the “message” term, as defined in Eq. 8,
that is passed to xi during the mean field iterations.

Based on this mean field iteration, it is clear that the com-
putational complexity of the collaborative tracker is linear
with respect to the number of targets and the number of it-
erations, which is a significant improvement of the methods
that deal with the joint state space directly.

During collaborative tracking, when the competition
mechanism takes place, the distribution of the targets that
are unlikely to win the competition will be diffused around
the target that is likely to win, until other image observa-
tions become available in the future. Once some targets do
not compete, i.e., without motion correlation, their image
observations can be readily separated and thus these targets
and be tracked independently. At this time, the collaborative
tracker acts as the same as M.i.T..

5 Mean Field Monte Carlo

Since the image observation likelihoods are generally non-
Gaussian due to the presence of clutters for example, it is
not plausible to express the mean field equations in para-
metric forms by assuming all the densities are Gaussian.
Thus, we describe in this section a non-parametric imple-
mentation of the mean field inference, called Mean Field
Monte Carlo (MFMC).

In MFMC, a set of particle is employed to represent the
variational density Qi(xi) for each target xi, i.e.,

qk
i (xi) ∼ {s(n)

i (k), π(n)
i (k)}N

n=1

where s and π denote the sample and its weight and N is
the number of samples. Based on Eq. 9, the Monte Carlo
can be summarized as in Figure 3.

1. Set k=0, sample Qi(xi,t−1) for {s̃(n)
i,t−1(k), 1}N

n=1.

2. ∀ s̃
(n)(k)
i,t−1 , sample s

(n)
i,t (k) from p(xi,t|xi,t−1).

3. Iteration: k = k + 1;

(a) calculate the “message” from neighbors:

m
(n)
i,t =

∑
j∈N (i)

N∑
m=1

π
(m)
j,t (k−1) log ψij(s

(n)
i,t (k), s

(m)
j,t (k−1)).

(b) Perform observation for each s
(n)
i (k),

w
(n)
i,t = p(zi,t|s(n)

i,t (k)).

(c) Re-weight the particles by:

π
(n)
i,t (k) = em

(n)
i,t × w

(n)
i,t .

(d) normalize to obtain

Qk
i,t(xi,t) ∼ {s(n)

i,t (k), π
(n)
i,t (k)}

.
Figure 3: The mean field Monte Carlo (MFMC) algorithm.

An equilibrium will be reached after several iterations.
Then the optimal variational distributions Qi,t(xi,t) can be
treated as the approximation to the posterior p(xi,t|Zt). In
general, mean field equations converge very quickly due to
the nature of the fixed point. Although we have not obtained
the rigorous results on the convergence rate, we always ob-
serve the convergence in less than five iterations in our ex-
periments.

The significance of the above tracking algorithm is its
distributed and collaborative mechanism, where each indi-
vidual target is associated with a particle filter. These parti-
cle filters are not independent but competitive through mes-
sage passing and mean field iterations.

Most recently, Sudderth et al [14], Isard [6] and Sigal
et al [13] have developed algorithms for the interactions
among multiple particle sets. These algorithms are based
on belief propagation, while the above MFMC algorithm is
based on probabilistic variational analysis. Although be-
lief propagation and mean field iteration share the same
paradigm of message passing, the difference between them
are the contents of the “messages” and the theoretical anal-
ysis for the case of loopy graphs. Theoretically, MFMC
is a very good choice for tracking multiple targets as de-
scribed in the previous sections, which is also supported by
the extensive and very promising experiment results as will
be reported in next section.

6 Experiments

Extensive and comparative experiments on both synthetic
and real data are reported in this section. In all these ex-
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periments, the individual tracker is a 2D appearance-based
region tracker, in which the target state xi is modelled by
2D affine parameters, the dynamic model p(xi,t|xi,t−1) is a
2nd order dynamic model, the likelihood function p(zi|xi)
is calculated by matching a PCA-based appearance model
which is trained in advance, and 200 particles are used to
represent the posterior of each target state. In all these ex-
periments, our collaborative tracker runs comfortablely at
15-20 fps on a PIV 2GHz PC.

6.1 Proof-of-concept

To clearly demonstrate the basic idea and the correctness of
our approach, we firstly test our algorithm by a synthetic
video sequence, in which five identical and moving tennis
are casted into a real dynamic scene. This synthetic testing
case prevents the subtraction of the background to obtain
easy detection of the targets. Each tennis presents an inde-
pendent const velocity motion and is bounced by the image
borders. This sequence challenges many existing method
due to the frequent present of occlusions.

Equipped with the competition mechanism, our collab-
orative tracker performs excellently. Sample frames from
the results are shown in Figure 4 and details can be seen in
the video "Tennis1 MFMC.avi". We use different colored
rectangles to display the estimated target positions. An in-
dex is also attached to each rectangle to identify these tennis
uniquely. The blue lines in Figure 4 that link the different
targets are the visual illustration of the structure of the ad
hoc Markov network. Therefore, by observing the changing
structure of the network over frames, we can clearly learn
that which tennis are subject to the collaborative inference
and which are simply being tracked by an individual tracker.

Although our collaborative tracker does not deliberately
address the identity switching problem, we find in our ex-
periments that our approach seems to have such a capability
to nicely handle this problem when combined with motion
coherence and dynamic predictions. This can be easily vali-
dated by the subjective evaluation on the tracking sequence.

We also compare our results with those obtained by the
multiple independent trackers, as shown in Figure 5. The
number of particles for each target in the M.i.T. algorithm is
the same as in our algorithm. However, M.i.T. can not pro-
duce satisfactory results, where the coalescence problems
always happen during the tracking. The submitted video
for this M.i.T. implementation is "Tennis1 MiT.avi".

6.2 Lab Environments

The second and third test sequences are taken in the lab-
oratory environment. In the second sequence, a person is
moving a tennis to cross behind a row of other 4 tennis that
act as several identical camouflages. Obviously, the occlud-

ing tennis increase the burden of correct tracking of the oc-
cluded tennis. As expected, our collaborative framework
can still effectively handle the difficulty and lead to a very
robust tracking to the occluded target, even successfully
keeping the identity of those five tennis. Sample frames of
the results are shown in Figure 6 and details can be obtained
from the video "Tennis2 MFMC.avi".

The third sequence contains 2 moving tennis and 3 still
tennis, where different configuration of the structure of ad
hoc Markov network is intentionally exploited by changing
the positions of the two movable tennis. Once again, our
collaborative framework successfully keeps tracking those
five tennis. Sample frames are shown in Figure 7 and the
video is "Tennis3 MFMC.avi".

6.3 Real Scenarios

Both our collaborative tracking framework and M.i.T. track-
ers have been tested on real scenarios. In the first scenario,
two persons are walking around in the scene and occlusion
continuously happens between these two persons. It is easy
for our collaborative tracker to obtain very robust results, as
shown in Figure 8 and the video "TwoHumans MFMC.avi",
while M.i.T. can not work well as shown in Figure 9 and
video "TwoHumans MiT.avi".

Finally, a sequence that contains three women soccer
players drilling in a field is tested. As expected, our new
method provides robust and stable results, as can be seen in
Figure 10 and video "ThreeHumans MFMC.avi".

7 Discussion and Conclusions

Coalescence that means the tracker associates more than
one trajectories to some targets while loses track for oth-
ers is a challenging problem in multiple targets tracking. In
this paper, we present a novel collaborative approach with
linear complexity to this problem. The basic idea is the
collaborative inference mechanism, in which the estimate
of an individual target is not only determined by its own
observation and dynamics, but also through the interaction
and collaboration with the estimates of its adjacent targets,
which leads to a competition mechanism that enables differ-
ent targets to compete for the common resources, i.e. im-
age observations. The theoretical foundation of the new ap-
proach is based on Markov networks, in which the links of
the network introduce the competition for image resources
among targets. Variational analysis of this Markov network
reveals a mean field approximation to the posterior densi-
ties of each targets. Therefore a mean field Monte Carlo
(MFMC) algorithm is designed to efficiently implement this
mean field approximation inference by simulating the com-
petition among a set of low dimensional particle filters. The
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Figure 4: MFMC tracker: 5 tennis in a synthetic video. The blue links among the targets illustrate the structure of the ad hoc Markov
network. Details please see Tennis1 MFMC.avi.

Figure 5: M.i.T. tracker: 5 tennis in a synthetic video. Details please see Tennis1 MiT.avi.

effectiveness of handling coalescence and the great com-
putational efficiency have been demonstrated by extensive
experiments on various scenarios.

Since in our current framework the addition and dele-
tion of the targets have not be implemented yet, one pos-
sible future work is to extend the algorithm to handle it.
Because the current Markov network in our approach does
have the capability to change the structure configuration, so
there should be no theoretical obstacle to prevent us from
solving the problem of targets addition and deletion in our
framework.
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Figure 6: MFMC tracker: a tennis moving behind a row of 4 tennis. The blue links among the targets illustrate the structure of the ad hoc
Markov network. Details please see "Tennis2 MFMC.avi".

Figure 7: MFMC tracker: 2 tennis moving around 3 static tennis. The blue links among the targets illustrate the structure of the ad hoc
Markov network. Details please see "Tennis3 MFMC.avi".

Figure 8: MFMC tracker: two people walking. The blue links among the targets illustrate the structure of the ad hoc Markov network.
Details please see "TwoHumans MFMC.avi".

Figure 9: M.i.T. tracker: two people walking. Details please see "TwoHumans MiT.avi" .

Figure 10: MFMC tracker: three women soccer players drilling. The blue links among the targets illustrate the structure of the ad hoc
Markov network. Details please see "ThreeHumans MFMC.avi".
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