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Abstract
Multibody grouping is a representative of applying sub-
space constraints in computer vision tasks. Under linear
projection models, feature points of multibody reside in
multiple subspaces. We formulate the problem of multi-
body grouping as multiple subspace inference from high-
dimensional data space. The theoretical value and practi-
cal advantage of this formulation come from the relaxation
of the motion independency assumption which has to be
enforced in most factorization based methods. In the pro-
posed method, an Oriented-Frame (OF), which is a multi-
dimensional coordinate frame, is associated with each data
point indicating the point’s preferred subspace structure.
Then, a similarity measurement of these OFs is introduced
and a novel mechanism is devised for conveying the infor-
mation of the inherent subspace structure among the data
points. In contrast to the existing factorization-based algo-
rithms that can not find correct segmentation of correlated
motions such as articulated motion, the proposed method
can robustly handle motion segmentation of both indepen-
dent and correlated cases. Results on controlled and real
experiments show the effectiveness of the proposed sub-
space inference method.

1. Introduction
Most realistic vision tasks involve multibody motions. Am-
ong many proposed segmentation techniques, factorization
method, which was originally developed by Tomasi and
Kanade [1] for structure from motion of a single object, is
particularly interesting. It is revealed that under linear pro-
jection models, points trajectories of a single body over a
sequence of frames lie in a three or less dimensional linear
manifold. Therefore, feature points of multibody reside in
multiple subspaces. Most existing methods cope with inde-
pendent multibody motion by enforcing the constraint that
the trajectory subspaces (defined in Section 2), spanned by
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objects’ feature trajectories, are independent: Tp ∩ Tq=Null
for ∀p �=q, where Tp corresponds to trajectory subspace of
object p. Gear [2] formulated the problem as weighted
graph matching. Costeira and Kanade [3] presented a multi-
body factorization method in which a shape interaction ma-
trix Q is introduced. If any features i and j are from differ-
ent objects, Qij will be zero, otherwise, non-zero. Several
extensions have also been made [4-6].

However, the problem of motion segmentation with cor-
related motions, such as segmenting an articulated struc-
ture, is left unaddressed. For example, a simple scenario of
a moving arm involves two dependently moving objects, the
upper arm and the lower arm. Here, the dependence of mo-
tions is revealed by the intersections of trajectory subspaces,
i.e. Tp∩Tq �=Null, ∃p �=q, where Tp corresponds to trajectory
subspace of object p. In the presence of multiple correlated
motions, the existing methods [2-6] cannot find the correct
segmentation for the reason as explained in Section 2. In
[7], Zelnik-Manor and Irani described the problem of cor-
relation (or dependency) between motions and suggest an
eigenvector segmentation algorithm.

In this paper, we treat the segmentation of multibody
as a problem of multiple subspaces inference: To grasp
the inherent multiple subspace structure within a high-
dimensional data space and classify each data point into its
own subspace no matter whether these subspaces are inde-
pendent or correlated.

Firstly, referring to the tensor representation, each in-
put point is associated with a multi-dimensional coordinate
frame which we call Orientated-Frame (OF), encoding the
most preferred subspace of each point. Then, after defining
a similarity measurement of these OFs, data points commu-
nicate with each other in the process of evolution and voting
about the information of multiple subspace structure. For
any two points in the same subspace, their consistency of
OFs can be enforced. Therefore, outliers are effectively re-
jected due to their incompatibilities with the multiple sub-
space structure. The strength of majority inliers is accu-
mulated to overcome the interference of noise and outliers
resulting in a more robust performance. Exact multiple sub-
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space structure may emerge from the set of filtered inliers.
The process of classifying data points to these subspaces
is equivalent to multibody grouping, in which the indepen-
dence of the subspaces (the independence of motions) is not
assumed. So, the algorithm can segment correlated motions
as well as independent motions.

In Section 2, the problem of multibody grouping and
previous work on subspace inference are briefly reviewed.
Section 3 presents the multiple subspaces inference tech-
nique with its application to multibody grouping. Section 4
provides the experimental results on both synthetic and real
images. Feature points were detected and tracked by using
KLT tracker [8]. Section 5 presents conclusions.

2. Background
2.1. The problem of multibody grouping
Suppose there are m moving objects in the scene, each ob-
ject contains pi 3D points. Their homogeneous coordinates
is represented by a 4×pi matrix Si

Si =




x1
i x2

i · · · xpi

i

y1
i y2

i · · · ypi

i

z1
i z2

i · · · zpi

i

1 1 · · · 1


 . (1)

When a linear projection (orthographic, affine, etc.) is
assumed, we collect the projected image coordinates (u, v)
of these pi points over F frames into a 2F×pi matrix Wi,

Wi = MiSi, (2)

where

Wi =




u11 · · · u1pi

v11 · · · v1pi

u21 · · · u2pi

v21 · · · v2pi

· · · · · · · · ·
uF1 · · · uF pi

vF1 · · · vF pi




, Mi =




M1i

M2i

· · ·
MF i


 ,

Mi is a 2F×4 matrix and Mji (j =1, . . . , F ) is the 2×4
projection matrix related to object i in the jth frame.

The columns of Wi reside in a 4D trajectory subspace Ti

spanned by the columns of Mi. In fact, these columns lie in
a 3D manifold when they are considered to be points in the
2F-D space. Let rp and rq denote the positions of any two
columns of Wi. Their relative position denoted by vector
rpq=rp−rq actually resides in a 3D subspace spanned by
the first 3 columns of Mi, because the last row of Si is all
1’s. Let Wi represent this 3D motion subspace formed by
vectors rpq (p, q ∈ [1, pi], p�=q).

Tracking all features of these m objects through F

frames, we obtain a 2F×P matrix W,

W = [W1W2 . . .Wm] = MS

= [M1M2 . . .Mm]




S1

S2

· · ·
Sm


 ,(3)

where P =
∑m

i=1 pi is the total number of feature points.
The block diagonal form of S is the basic assumption of

previous factorization based methods. If the motions are not
independent, trajectory subspaces spanned by columns of
Mis will have intersections, destroying the block diagonal
form of S. Thus, both the reduced row echelon form in [2]
and the nice property of Q in [3-6] will vanish. Therefore,
those algorithms wouldn’t find the correct segmentation.

2.2. Previous work on subspace inference
Actually, multibody grouping is one of the representatives
of applying subspace constraints in computer vision tasks.
These constraints show that some concerned information
compactly resides in some low-dimensional subspaces.

Inference of surfaces and curves in 3D vision can be
considered as the exploitation of low-dimensional subspace
structures in the 3D space. Szeliski and Tonnesen [9] have
proposed an oriented particle system associating each par-
ticle an oriented trihedral coordinate frame. Interaction po-
tentials are designed which favor meaningful structural ar-
rangements of the particles. Guy and Medioni [10] used
tensor voting to obtain 3D structural information, which is
achieved by a nonlinear voting process.

Beyond the 3D space, subspace constraints also exist in
various vision problems involving higher-dimensional data
structure. Irani [11] showed that multi-frame subspace con-
straints can be used for constraining the 2D correspondence
estimation. Huynh and Heyden [12] utilized a motion’s 4D
subspace constraint for outlier detection. Tang et.al. [13]
formulated the problem of epipolar geometry estimation as
inferring hyperplane (a 7D manifold) in an 8D space anal-
ogous to plane detection in a 3D space. They extended the
idea of tensor voting [10] to N-D and achieved robust per-
formance in hypersurface and hyperjunction detection.

Besides [13], to the best of our knowledge, the al-
gorithmic issues on the inference of subspaces in high-
dimensional space have remained largely unexplored in the
literature. The main difficulty stems from the unavoidable
outliers inherent in the data set. If significant portion of data
is corrupted by noise, the detection of subspaces will be
difficult and the result will be inexact, which will severely
damage the efficiency of applying subspace constraints to
practical applications. One recent work is Generalized Prin-
cipal Component Analysis (GPCA), a geometric method
proposed by Vidal et al. [14]. GPCA shows a sound theoret-
ical approach to the identification of mixture of subspaces
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in noise-free case. However, how to embed techniques to
enhance the performance of GPCA when large amount of
noise presents remains an open issue.

3. Multiple subspaces inference and
applications to multibody grouping

In this Section, we present a novel technique for multiple
subspaces inference and apply it to multibody grouping.
The data input is a 2F×P matrix W. Each data point is a
2F-D vector denoted by ri (i=1, . . . , P ). The number of
objects is unknown. Our purpose is to extract multiple mo-
tion subspaces Wks out of W. Each Wk is a 3D subspace
formed by the vectors rij=ri−rj (i, j ∈ Objectk, i �=j), or
equivalently, the subspace spanned by the first 3 columns of
Mk. Multibody grouping is equivalently achieved by clas-
sifying ri to these motion subspaces Wks.

3.1. Conversion to Oriented-Frames
There is a need to give each point a configuration which
would facilitate the communication of structure information
between data points.

For any points i and j of the same object k, rij=ri−rj

resides in the same 3D motion subspace Wk. Therefore,
the unit vector r̂ij=rij/rij can be used as point j’s con-
tribution for the inference of point i’s subspace, rij being
the norm of rij . We use a Gaussian function to weigh the
strength of these contributions. For the problem of multi-
body grouping, this decaying function is meaningful since
feature points’ trajectories of the same object are always
closer than those of different objects. For practical pur-
poses, if the distance between two points is greater than 2σd,
their mutual influence is ignored. We take σd=0.3×rmed,
where rmed is the median value of all rij for i �=j.

These votes are aggregated as the second order moment
collection (second order symmetric tensor),

Oi =
∑

rij<2σd,j �=i

exp(−r2
ij/σ2

d) · r̂ij · r̂T
ij . (4)

Let λ1≥λ2≥· · ·≥λ2F represent the sorted eigenvalues of
Oi and V1, V1,. . . ,V2F be the corresponding eigenvec-
tors. Because the eigenvalues describe the strength and
agreement measures on the corresponding directions, we
choose 3 dominant principal axes to build up the pre-
ferred 3D motion subspace configuration of the current
point. Thus, each data point i will be associated with
a OFi={OFi1,OFi2,OFi3} consisting of the 3 dominant
eigenvectors of Oi, called an Oriented-Frame.

3.2. Evolution of Oriented-Frames
OFs of points in the same motion subspace are expected
to have similar configurations. However, the initial OFs
may not be accurate due to ambiguities caused by noise
and outliers. A similarity measurement is introduced to

22 ba ×=τ

22 aa ×=τ�

2a

1a 2b

1b

θ

A

B

f

Figure 1: Rotation of plane A to B

compare these OFs and a novel mechanism for rotating
subspace is proposed to enhance the consistency among
them.

3.2.1. Similarity measurement for subspace com-
parison. This subspace similarity measurement is derived
from the concept of principal angles and principal vectors
[15].
Definition 1. Let A and B be two p-D subspaces in an l-D
space. A and B are l×p matrices consisting of orthonormal
bases of A andB. The principal angles 0≤θ1≤· · ·≤θp≤π/2
and principal vectors {u1, . . . ,up}∈A, {v1, . . . ,vp}∈B
are defined as follows:
Computing the SVD of AT B: YT (AT B)Z=diag(σ1,. . .,σp),
where YT Y=ZT Z=I (the p×p identity matrix), then




[u1, . . . ,up] = AY,
[v1, . . . ,vp] = BZ,

cos(θk) = σk, k = 1, . . . , p.
(5)

Any arbitrary orthonormal bases in matrices A and B can
be aligned by the SVD. In this sense, we can define the
similarity measurement between subspaces A and B as

φ(A,B) =
p∏

k=1

cos(θk). (6)

It is obvious that identical subspaces have the maximum
similarity measure of value 1.
Observation 1: the p subspaces spanned by {ui,vi} (i =
1, . . . , p) are mutually orthogonal.

[u1,. . .,up]T [v1,. . .,vp] = diag[(cos(θk))] indicates that
vector ui is orthogonal to vector vj (j �=i).

Moreover, since [u1,. . .,up]T [u1,. . .,up]=YT (AT A)Y=I,
ui is also orthogonal to uj (j �=i). Similarly, vi is orthogonal
to both uj and vj for j �=i. Therefore, the subspace spanned
by {ui,vi} is orthogonal to the subspace spanned by {uj ,vj ,
j �=i}, which further implies that the p subspaces spanned
by {ui,vi} (i=1, . . . , p) are mutually orthogonal.

3.2.2. Mechanism of Rotating subspaces. The mech-
anism for subspace rotation is used to enhance the
consistency among points whose OFs have high similarity
measurement. We begin with a simple example in the 3D
space for ease of visualization. Consider two non-parallel
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planes A and B, they intersect at line f. How to rotate plane
A to B, until these two planes overlap? See Fig. 1

Suppose that {a1,a2} and {b1,b2} are principal vectors
of this subspace pair corresponding to principal angles 0
and cos−1(‖aT

2 b2‖), respectively, then rotating plane A to B
is now equivalent to rotating vector a2 towards b2. We can
apply a torque τ=a2×b2 on a2, which induces a clockwise
rotation on a2 and makes the instantaneous change of a2

along the direction ȧ2=τ×a2. This rotation can increase the
similarity of these two planes according to Eq.( 6).

Observation 2: Let S(2)
ab denote the subspace spanned by

a2 and b2 and S(2)⊥

ab denote the orthogonal complement of

S(2)
ab . In order to rotate a2 towards b2, the direction of in-

stantaneous displacement of a2, i.e. ȧ2, resides in the sub-

space S(2)
ab and is perpendicular to both S(2)⊥

ab and a2.
The cross product of two 3D vectors may also be viewed

as the orthogonal complement of the subspace spanned by
the concerned two vectors. Inspired by this idea, rotating a2

towards b2 requires two steps. First, S(2)⊥

ab is calculated by
cross product of a2 and b2 as the so called “torque”. Sec-
ondly, ȧ2 is computed (by cross product) as the orthogonal

complement of subspace spanned by S(2)⊥

ab (the torque) and

a2. So, ȧ2 is perpendicular to both S(2)⊥

ab and a2, which also

indicates that ȧ2 is restricted in the subspace S(2)
ab .

From Observation 2, the mechanism for rotating an N-D
vector a towards another N-D vector b narrowing the angle
α=cos−1(‖aT b‖) can be deduced. Let Sab denote the sub-
space spanned by a and b. First, the orthogonal complement
of Sab, denoted by S⊥

ab, is calculated. Comparing with 3D
case, S⊥

ab can be considered as a “N-D torque”. Secondly,
the orthogonal complement of subspace spanned by S⊥

ab and
a is computed and denoted as ar, which can be regarded as
the “high-dimensional cross product” of “N-D torque” and
a analogously in 3D case. Then the direction of the instan-
taneous displacement of a is obtained as ȧ=ar·aT

r b
/
‖aT

r b‖ .
It can be easily verified that the angle between a+µȧ and b
is smaller than that between a and b, where µ is a small
scalar controlling the magnitude of rotation (µ=0.01).

Then, let us consider the rotation of p-D subspaces A
towards B in N-D space. Similarly, given the correspond-
ing principal angles and principal vectors {uk,vk,θk,k =
1, . . . , p}, we can find the instantaneous change, u̇i, for ro-
tating ui towards vi using the above mechanism. Denote

S(i)
uv , S(i′)

uv and A′
as the subspaces spanned by {ui, vi},

{ui+µu̇i, vi} and {u1,. . . ,ui−1,ui+µu̇i,ui+1,. . . , up}, re-

spectively. Since u̇i is restricted in S(i)
uv (Observation 2), we

have S(i)
uv ≡ S(i′)

uv , which means after the rotation, the struc-
ture of mutually orthogonal subspaces spanned by {ui,vi}
(i=1, . . . , p) is unaltered. In fact, {ui+µu̇i,vi} is still a pair
of principal vectors of A′

and B (Observation 1). Since no
impact is made on other principal vector pairs, rotating ui

towards vi results in that only the ith principal angle de-
creases and the other principal angles remain unchanged.

This nice property indicates that the process of rotating
a p-D subspace to another can be divided into p steps by
rotating u1 to v1, u2 to v2, . . . , and up to vp successively.
Through this manipulation, the two subspaces can gradu-
ally become identical in the sense of having the maximum
similarity measure of value 1 according to Eq. (6).

3.2.3. Evolution of Oriented-Frames. Points with
similar OFs can then rotate their OFs to enhance the
saliency of their motion subspace structure.

We define a similarity measurement matrix of OF as

Φ = {φ(i,j) : φ(i,j) =
3∏

k=1

cos(θk), ∀i, j ≤ P}. (7)

where θk (k=1,2,3) are principal angels of subspace pair
spanned by OFi and OFj . In our experiment, if φ(i,j) >0.7,
we let OFi rotate towards OFj to obtain a greater φ(i,j).
OFs of all data points and Φ are thus updated simultane-
ously and consistency among same motion subspace can be
enhanced.

3.3. Voting between data points
The voting stage comes after the evolution. For the infer-
ence of the underlying motion subspace structure of ri, only
using the spatial relationship rij (Section 3.1) is not suffi-
cient. The 3 vectors of OFj , which build up the potential
underlying motion subspace of rj , could also be utilized
to propagate the jth point’s structural information to other
points. Furthermore, if φ(i,j)>φ(i,k), the vote from point j
to i should be more reliable than the one from k to i.

Taking these into consideration, the summation of vote
collected at point i in the voting stage will be reformed as

Oi =
∑

rij<2σd,j �=i

φ(i,j)exp(−r2
ij/σ2

d)·
(
r̂ij · r̂T

ij +
∑3

k=1 OFjk ·OFT
jk

)
.

(8)

Thus, the information involved in the voting process is ap-
parently enriched and additional efficiency is brought to the
communication between data points.

3.4. Outlier rejection and subspaces inference
After the evolution and voting, consistency among points
with similar OFs is enhanced. Because outliers are unlikely
to accidentally form salient structured arrangements. So, if
a point i, its OFi receives little structural agreement from
others, i.e.

∑
rij<2σd,j �=i φ(i,j) < φthres, point i can be

isolated as an outlier. The threshold φthres has no significant
effect on the filtered result if kept within a reasonable range.

To improve accuracy, we need to run several passes of
evolution and voting stages to filter out outliers progres-
sively. Typically, only four to five passes are needed.
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Figure 2: Synthetic correlated motions. (a) A view of syn-
thetic scene. (b) Detected feature points on three moving
spheres are shown by “x”, “+” and “o”, respectively.

In our extensive experiments, the φ(i,j) is mostly close
to 1 for pair of points i and j in the same subspace. This
property considerably facilitates the grouping decision. If
φ(i,j) >0.99, point i and j will be put in the same group.
Then, we calculate the second order symmetric tensor of the
relative positions of the inliers for each group. And the un-
derlying 3D motion subspace configuration Wks can be ob-
tained by spanning the 3 dominant eigenvectors of this ten-
sors. Then, data points can be checked against the inferred
multiple motion subspaces, producing a set of grouped in-
liers. For the problem of multibody grouping, both segmen-
tation of feature points and the number of moving objects
can be discovered simultaneously.

4. Experimental results
Robust performance of our algorithm on both synthetic and
real data containing multiple independent motions and cor-
related motions are shown in this section.

4.1. Synthetic data
We carried out two experiments on synthetic data. One of
them is correlated motion segmentation. The other shows
our method’s robustness against noise and outliers.

In the first experiment, 22, 30 and 42 points are randomly
chosen from three transparent spheres as shown in Fig. 2(a).
7 frames with resolution 100×100 are captured. Gaussian
noise with 2 pixels of the standard deviation is added and
100 false trajectories are randomly fabricated into the data
matrix W. Each sphere undergoes random translation and
different rotation around y-axis. Using orthographic pro-
jection, the motion matrices will have the form

M =




M1

M2

· · ·
MF


 =




R
(1)
11 0 R

(1)
13 t

(1)
x

0 1 0 t
(1)
y

R
(2)
11 0 R

(2)
13 t

(2)
x

0 1 0 t
(2)
y

· · · · · ·
R

(F )
11 0 R

(F )
13 t

(F )
x

0 1 0 t
(F )
y




. (9)

Note that the second column of M are same for all
spheres, so, their motions are correlated. i.e. The motion
subspaces spanned by the first 3 columns of Ms have in-
tersections. Therefore, the methods in [2-6] cannot find

(a) (b) (c)
Figure 3: The sequential changes of similarity matrix Φ are
shown from (a) to (c). These illustrate that the consistency
within the same group is effectively enhanced through evo-
lution and voting

Figure 4: Comparison of the error rate.

the correct segmentation. While by using our method, all
outliers are correctly discarded and 20 out of 22 points of
sphere1, 30 out of 30 points of sphere2, 42 out of 42 points
of sphere3 are properly classified as shown in Fig. 2(b).

The essential character of our method is the mechanism
of evolution and the scheme of voting. To demonstrate their
effectiveness, Fig. 3 shows the change of OF similarity ma-
trix Φ. These are the forms of Φ after being thresholded and
grouped. The three blocks correspond to three spheres.

The second experiment tested our method’s robustness
to noise and outliers. Comparison is made by applying the
simple thresholding method and the discriminant method
similar to [4] to the same data set. There are 2 arbitrarily
moving objects, each has 25 feature points. In the presence
of 20 or 25 fabricated outliers and a zero-mean Gaussian
noise with a standard deviation ε ranging from 0 to 6 pixels
added to the coordinates of feature points, Fig 4 plots the re-
sults of the three methods. The first part of the X-coordinate
is ε. The second part of the X-coordinate is the number of
outliers (NOutlier). The Y-coordinate is the average error
rate of 10 trials for each pair of (ε, NOutlier). From this
comparison, it shows that our algorithm, which works up to
ε=6 (pixels), performs the best and is robust to noise and
outliers.

4.2. Real images
In this Section, random wrong outliers are added and all
the outlier to inlier ratios in the real data are greater than
one. Fig. 5(a)-(c) show the scene containing a moving back-
ground and a moving vehicle. 68 tracked features within 8
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(a) (b) (c)
Figure 5: Segmentation results on vehicle sequences.

frames are used and 70 fake trajectories are imported. The
detected two moving groups are shown by “o” and “+”.
Black “�” in (a) denote some detected outliers.

The algorithm is also applied on articulated motion se-
quences. By analyzing the “ground truth” obtained by man-
ually picked true feature trajectories, the motion matrices
Ms of the linked moving parts indeed have intersections
and are correlated. i.e motion subspaces Wi ∩ Wj �=Null.
Fig. 6(a)-(c) show the segmentation result on a sequence of
8 frames, which contains 47 tracked features and 50 fabri-
cated outliers. Correctly grouped features of the upper arm,
lower arm and book are shown by “o”, “+” and “x”, respec-
tively. Squares in (a) denote some outliers. Fig. 6(d)-(f)
show the result on another sequence of 8 frames, which
contains 36 tracked features and 50 random, wrong out-
liers. “x” and “+” represent properly classified features of
the lower arm and fingers. Squares in (d) are some detected
outliers.

5. Conclusion
In this paper, attempts have been made to develop an effec-
tive, efficient and unconventional approach for the inference
of multiple subspaces from high-dimensional data. We use
this technique to address the problem of multibody group-
ing. Unlike other methods, independence of the motions of
objects is no longer an imposed constraint in our algorithm.
A generalized mechanism of rotation in high-dimensional
space together with the scheme of voting facilitate the emer-
gence of the underlying multiple subspace structure. In-
liers and outliers are discriminated efficiently due to the data
point’s structural compatibility with this multiple subspace
structure. Robust performance against a large amount of
outliers and noise is achieved. In the future work, we plan
to work on more difficult problem of segmenting correlated
motions with partially occluded tracks.
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