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Abstract

This paper presents an algorithm for tracking the articu-
late hand motion in monocular video sequences. The task is
challenging due to the high degrees of freedom involved in
the hand motion. The complexity can be reduced by consid-
ering the natural motion constraints. To take advantage of
the constraints, we propose to use a nonparametric repre-
sentation of the feasible configuration space and employ a
Monte Carlo Nelder-Mead simplex search algorithm. The
tracker combines the strengths of both sequential Monte
Carlo and direct search algorithms. First, its multiple hy-
potheses nature increases the chance of the simplex method
to identify the global maximum. Second, the direct search
algorithm produces a set of more representative particles.
Experiment results show that this hybrid approach is robust
for tracking the hand motion.

1. Introduction

One of the fundamental component in a natural HCI in-
terface is the human motion understanding from visual in-
put. Although the most reliable results are still obtained
from the use of external sensors, recent advances demon-
strate that vision-based techniques can offer an inexpensive
and non-invasive alternative for capturing human motions.
In this paper we present a model-based approach for track-
ing the highly articulate human hand motion. One of the
main challenge is the large degrees of freedom (DOF) in-
volved in the human hand motion; thus, estimating the cor-
rect hand configuration parameters becomes equivalent to a
search problem in the high dimensional space which forbids
exhaustive or simple search without any prior knowledge.

The model-based hand tracking approach [5, 6, 7, 8,
9, 10, 13] can produce a very accurate estimate when the
tracker and model are well initialized. This approach com-
pares real hand image features to several hand model pro-

jections. The model configuration that generates the best
match determines the current hand state. However, model-
based hand tracking requires the estimation of roughly 27
parameters. To cope with the high DOF problem, previ-
ous works have shown that the dimensionality of the feasi-
ble space can be significantly reduced by considering mo-
tion constraints [5, 8, 13]. To incorporate the motion con-
straints in the model-based approach, we must determine
the structure of the feasible configuration space, and employ
an efficient search algorithm associated with this represen-
tation. Previous works [2, 3] generally identify the lower-
dimensional manifold using piecewise linear assumption. A
clustering algorithm is first applied to produce locally sim-
ilar patches, which is then approximated by a linear mani-
fold in a lower dimensional space. It is generally a difficult
problem in determining a suitable clustering algorithm and
to construct an accurate manifold approximation.

We propose a novel representation for the feasible con-
figuration space using a set of discrete samples collected
from CyberGlove. Each sample corresponds to one hand
configuration. By using the entire set of samples directly,
we avoid the representation error due to incorrect struc-
ture assumptions and lossy dimensionality reduction tech-
niques. To search in this discrete space, we propose to use
a Monte Carlo Nelder-Mead (NM) simplex search. NM
method is a classical direct search algorithm that is used for
the cases when gradients can not be accessed or evaluated.
The multiple hypotheses variant is employed to effectively
deal with the local minima problem when a nonconvex ob-
jective function is used.

2. The Feasible Configuration Space

Although the global and local hand motions can be esti-
mated separately, the finger motion still involves roughly
20 degrees of freedom (DOFs) [5]; therefore, exhaustive
searching without any prior knowledge of the feasible space
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is a nearly impossible task. How to model natural config-
uration distribution of the feasible states is the key in suc-
cessfully reducing the computational complexity. Wu et al
[13] showed that it is possible to reduce the dimensionality
to 7 using anatomical constraints and PCA.

We propose to adopt a nonparametric representation and
model the feasible space directly from the set of NC col-
lected Cyberglove data. The entire feasible space Ψ is de-
fined by the set {θi, i = 1 . . . NC}, where each θ ∈ R20

represents one sampled configuration. Then a kd-tree struc-
ture is constructed so that given any point θ ∈ R20, we
can quickly find an approximated nearest neighbor θ′ ∈ Ψ.
One of the benefits of using this representation is that no
learning is required to find a closed form of the manifold
parametrization of Ψ. Therefore, this approach avoids the
error induced from incorrect manifold approximations. The
model can be better refined when more samples are col-
lected. This advantage is gained as a trade off for the cost
of the computer memory, which is inexpensive nowadays.

3. The Direct Search Algorithm

3.1. Nelder-Mead Simplex Algorithm

With the feasible configuration space Ψ defined, we need
to design a search algorithm that is appropriate for this
structure. Given the object state xt at time t, the goal is
to identify xt+1 which minimizes certain objective func-
tion f(x). We choose the non-gradient Nelder-Mead (NM)
method [11] because Ψ has several properties that make
it unfavorable for the numerical optimization. First, be-
cause Ψ uses a nonparametric representation in a high di-
mensional space, it is difficult to obtain an estimate of the
derivative for the objective function f(x). Second, although
we could define f(x) for every x, it is difficult to obtain the
closed form of f(x) due to its nonlinear nature. Third, the
representation has several discontinuities due to the exis-
tence of many infeasible configurations. Because of these
properties, it is impossible to obtain the gradient and we
must rule out the gradient descent algorithms, such as New-
ton methods.

The NM method maintains at each iteration a nonde-
generate simplex S, which is a geometric object defined
by a convex hull of n + 1 points {x0, . . . , xn}in n dimen-
sional space. Through a sequence of elementary geomet-
ric transformations, the initial simplex moves towards the
minimum. At each step, the worst vertex with highest cost
xmax = arg max

x∈S
f(x) is selected and reflected with re-

spect to the centroid x = 1
n (

∑n
i=0 xi − xmax) to obtain

xr. Then depending on f(xr), we either keep xr, or per-
form an expansion or a contraction to acquire the new vertex
xnewwhich replaces xmax such that f(xnew) < f(xmax).
The iteration for NM-method typically terminates for a suf-

ficiently small simplex or when a maximum number of iter-
ation is reached.

3.2. Two Stage NM Method

The basic form of NM method does not take advantage
of the motion constraints embedded in Ψ. To incorporate
the constraints in the search, we implement a two stage hi-
erarchical simplex search. In the coarse search phase, we
begin with a larger simplex and restrict the simplex vertices
θi to be one of the samples θj ∈ Ψ. At the kth iteration, a
new vertex θnew is generated as described in Sec. 3.1, and a
nearby configuration θ′ is located to replace θmax for Sk+1

t .

θk+1
t = θ′ = [θnew]+ = arg min

θ∈Ψ
‖ θnew − θ ‖

By constraining the searching to the discrete space Ψ, the
hand motion constraints are automatically enforced in the
searching. Since the data we collected can not possibly
cover the entire feasible space, there exist gaps and dis-
continuities in Ψ. Searching only in the discrete domain
will not guarantee an optimal convergence; therefore, after
the initial simplex converges to a smaller region in the first
stage, we must continue the iteration in the continuous do-
main with a more strict termination condition.

4. Monte Carlo NM Simplex Tracking

The NM simplex search fails when the objective func-
tion contains several local minima. Because of the noise
presented in the image feature extraction, and the nontrivial
definition of the cost function (Sec 5), the objective func-
tion can not be convex. One approach to tackle this prob-
lem is to utilize the multiple hypotheses approach and run
several simplex searches at each frame. A well established
formulation of the probabilistic tracking algorithm that uses
multiple hypotheses can be shown with the Bayes rule [1]:

p(xt+1|zt+1) ∝ p(zt+1|xt+1)p(xt+1|zt) (1)

where xt is the target state at time t and zt = {z1, . . . zt}
is the history of image observations. A practical imple-
mentation of the algorithm is the sequential Monte Carlo
simulation aka particle filtering, which uses a set of N ran-
dom samples {s(n)

t , π
(n)
t } to approximate arbitrary nonlin-

ear multi-modal pdf. One of the problem with particle fil-
tering is the degeneracy phenomenon where the weights for
many of the samples become insignificant during the evo-
lution process and a large computational effort is wasted to
maintain these samples. Many algorithms were suggested
to reduce this effect, such as resampling [4] and importance
sampling [13].

We propose to combine both NM method and particle
filtering in order to take advantage of both approaches. In-
stead of using a set of random samples to model the pdf
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evolution, we use a set of simplices each generated from a
mode of the pdf. The new algorithm shares the advantages
of each approach to reduce the limitations induced by em-
ploying NM simplex search or SMC alone. First, the imple-
mentation of multiple hypotheses increases the chances of
reaching the global minimum. Second, the prior p(xt+1|zt)
(Eq. 1) is considered in estimating a more accurate hand
state estimation. Third, each of the new sample generated
will be close to a mode with a significant weight. Although
forcing every sample to be at one of the peak will lead to
sample impoverishment, we argue that the procedure for
generating the initial simplex from a point is similar to a
perturbation procedure which will increase the diversity of
sample representation.

The algorithm begins by drawing random samples x̃i
t,

i = 1, . . . , N from {s(n)
t , π

(n)
t } based on p(xt|zt). Then

an initial simplex Si0 is generated from each x̃i
t, which cor-

responds to a mode in p(xt|zt). To incorporate the linear
manifold constraint observed by Wu [13], each of the ver-
tex in the initial simplex is generated from the importance
function q(xt|zt) as described in [13]. Next the two stage
simplex search is carried out to obtain a local minimum cor-
responding to a mode of the pdf:

Si∗′ = NMd(Si0)

Si∗ = NMc(Si∗′) (2)

where NMd and NMc denotes the discrete and continu-
ous NM operations respectively. Each operation takes an
initial set of vertices and outputs a converged simplex. The
search terminates when

n∑

j=0

‖ xk
j − xk+1

j ‖2< ε (3)

where xk
j ∈ Sk and Sk is the simplex generated at the kth

iteration. The new sample xi
t+1 is the centroid of the con-

verged simplex:

xi
t+1 =

1
n + 1

∑

xj∈Si∗
xj (4)

If the simplex converged according to Eq. 3, then the weight
πi

t+1 = p(zt+1|xt+1) is computed as described in Sec. 5.
Otherwise πi

t+1 = 0.

5. Experiments

In our experiments, we use a 3D hand model with each
finger phalanx represented using a truncated cylinder. The
continuous space stochastic NM simplex search is applied
for global parameter estimation. Then the two stage simplex

search (Sec. 4) is employed to recover the finger motion.
These two steps are repeated until the results converge [12].
To measure the likelihood of hypothesis, the hand model is
first projected onto the image plane as described in [10] to
obtain the edge points that define the projected shape. If
K projected edge samples are generated, edge detection is
performed on the points along the normal of this sample.
Assuming that M image edge points {zm,m = 1, . . . , M}
are observed, and the clutter is a Poisson process with den-
sity λ, then,

pe
k(z|xk) ∝ 1 +

1√
2πσeqλ

M∑

m=1

exp− (zm − xk)2

2σ2
e

We noticed that with edge points alone could not provide
a good likelihood estimation. Therefore we also consider
the silhouette measurement. The segmented foreground
pixels are XORed with the model silhouette image, and the

likelihood is computed as ps ∝ exp− (AI−AM )2

2σ2
s

. Since
a well matched projection contributes lower cost, the ob-
jective function at time t is defined as the negative of the
likelihood function:

f(x, z) = −p(z|x) ∝ −ps
K∏

k=1

pe
k (5)

In the video sequence, the fingers bend and extend while
the hand moves simultaneously (Figure 1). We used 30 sim-
plices for finger articulation tracking and 10 simplices for
global motion. The algorithm takes about 2 sec/frame to
run on an Intel 2GHz PC. We have also tested the sequence
using CONDENSATION algorithm with 5000 samples, and
the algorithm fails after about 10 frames. The projection of
each estimated configuration is superimposed on the hand
image, and a reconstructed 3D hand model is shown below
each corresponding image for better visualizations. The ex-
periment results show that our algorithm is robust and suc-
cessful in tracking complex hand motions in a cluttered en-
vironment.

6. Conclusions

This paper proposes to track the articulate hand motion
by constructing a nonparametric representation of the feasi-
ble configuration space and employing a multiple hypothe-
ses variant of NM simplex search algorithm. The feasible
space is modelled directly from real hand motion data and
avoids the errors induced from incorrect manifold assump-
tions. The NM simplex search algorithm, which requires no
knowledge of gradients, is particularly suitable for search-
ing in this discrete space. Since direct search methods are
often trapped in local optima, we extend the algorithm to
embed the NM search in a particle filter. The experiment re-
sults show that our algorithm is robust in tracking the hand
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Figure 1. Simultaneously tracking finger articulation and global hand motion. The projected edge points are superimposed with
the real hand image. Below each real hand image, a corresponding reconstructed 3d hand model is shown for better visualization.

motions in cluttered background. We are currently studying
the convergence analysis of this algorithm and the extension
to general tracking problems. Another future extension of
the work would be to incorporate temporal constraints in the
tracker.
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