
Tracking Non-stationary Appearances and Dynamic Feature Selection

Ming Yang Ying Wu
ECE Department, Northwestern University
2145 Sheridan Road, Evanston, IL 60208

{mya671,yingwu}@ece.northwestern.edu

Abstract

Since the appearance changes of the target jeopardize
visual measurements and often lead to tracking failure in
practice, trackers need to be adaptive to non-stationary ap-
pearances or to dynamically select features to track. How-
ever, this idea is threatened by the risk of adaptation drift
that roots in its ill-posed nature, unless good constraints are
imposed. Different from most existing adaptation schemes,
we enforce three novel constraints for the optimal adapta-
tion: (1) negative data, (2) bottom-up pair-wise data con-
straints, and (3) adaptation dynamics. Substantializing the
general adaptation problem as a subspace adaptation prob-
lem, this paper gives a closed-form solution as well as a
practical iterative algorithm. Extensive experiments have
shown that the proposed approach can largely alleviate
adaptation drift and achieve better tracking results.

1 Introduction

Tracking targets in video is a fundamental research prob-
lem in video analysis and is important for a large variety
applications including video surveillance and vision-based
interfaces. Recent years have witnessed a steady advance
in both theory and practice, e.g., the sampling-based meth-
ods [8, 14] and the kernel-based methods [4, 6]. Although
many tracking tasks can be successfully handled by these
techniques, the real situations in practice, e.g., long duration
tracking and unconstrained environments, still pose enor-
mous challenges to these techniques. One common diffi-
culty arisen from these real situations is the non-stationary
visual characteristics of the target due to the view or illumi-
nation changes, leading to the changes in target appearances
over time. Such appearance changes can jeopardize the vi-
sual measurements and lead to tracking failure.

Two general approaches can be taken to overcome this
challenge. One of them is to use the visual invariants of
the targets. But in general finding invariants itself is very
difficult, if not impossible, although learning methods can
be employed [1, 2, 5, 12]. Another approach is to adapt

the tracker to the changes, for example, by updating the ap-
pearance models [9, 7, 13, 14], or selecting best visual fea-
tures [3]. Unlike the invariants-based methods that require
off-line learning of the visual measurement models (the ap-
pearance models), the adaptation-based methods trend to be
more flexible, since the measurement models are adaptive
or the features used for tracking can be adaptively selected.

In the practice of most existing adaptation-based meth-
ods, it is not uncommon to observe the adaptation drift, i.e.,
the appearance models adapt to other image regions than
the target of interest and lead to tracking failure. Many ad
hoc remedies have been proposed to alleviate the drift, e.g.,
by enforcing the similarity to the initial model [3, 7] which
confines the range of possible adaptations. However, in gen-
eral, such a phenomenon of adaptation drift is not accidental
but widely exists in a large variety of adaptation schemes,
and poses a threat to adaptation-based visual trackers. Thus,
it worths an in-depth investigation to facilitate careful de-
signs of the adaptation schemes.

In most existing adaptive tracking methods, the model
at the current time instant is updated by the new data that
are closest to the model at previous time step, with a hidden
assumption that the best model (or feature) up to time t− 1
is also the best for time t. Unfortunately, this assumption
may not universally hold. As a result, when this assumption
becomes invalid, the data closest to the model at time t − 1
may actually be far from the right model at time t, and thus
deviating the adaptation and failing the tracker.

The nature of the adaptive tracking problem lies in a
chicken-and-egg dilemma: the right data at time t are found
by the right model at time t, while the right model can only
be adapted by using the right data at time t. If no constraints
are enforced, any new data can lead to a valid and stable
adaptation, since the adapted model trends to best fit the
new data. Therefore, in order to make this problem well-
posed, good constraints need to be introduced, and they
should be reasonable and allow a wide range of adaptation.

In this paper, we substantialize the general adaptation
problem as a subspace adaptation problem in non-stationary
appearance tracking, where the target visual appearances at

a short time interval are represented as a linear subspace.
We analyze the ill-posed adaptive tracking problem in this
setting. In our approach, we enforce three novel constraints
for the optimal adaptation: (1) negative data that are eas-
ily available, (2) pair-wise data constraints that are used
to identify positive data from bottom-up, and (3) adapta-
tion dynamics that smooth the updating process. In this pa-
per, we give a closed-form solution to this subspace track-
ing problem and also provide a practical iterative algorithm.
Our method not only estimates the motion parameters of the
target, but also keeps track the appearance subspaces.

2 Related Work
Visual appearance is critical for tracking, since the target

is tracked or detected based on the matching between the
observed visual evidence (or measurements) and the visual
appearance model. We generally call the model that stipu-
lates the matching as the observation model or the measure-
ment model. The visual appearances of an object shall bear
a manifold of the image space. Depending on the features
used to describe the target and on the variances of the ap-
pearances, such a manifold can be quite nonlinear and com-
plex. Therefore, the complexity in the appearances largely
determines the degrees of difficulty of the tracking task.

We can roughly categorize the observation models in
various tracking algorithms into three classes: (1) with fixed
appearance templates, (2) with known appearance mani-
folds; (3) with adaptive appearance manifolds on-the-fly.

In the observation models with fixed appearance tem-
plates, the motion parameters to be estimated (denoted by
x) are the only variables that affect the appearance changes.
We denote the image observations as z and the hypothe-
sized one as ẑ(x). Then the observation model needs to
measure the similarity of z and ẑ(x), or the likelihood
p(z|x) = p(z|ẑ(x)). If z is a vector, i.e., z ∈ R

m, this
class of observation models is concerned with the distance
between two vectors. The image observations z can be
edges [8], color histograms [4], etc. Most tracking algo-
rithms employ this type of observation models.

There are cases where the motion parameters of inter-
est are not the only contribution to the appearance changes,
but there can be many other factors. We denote it by
ẑ(x, θ). For example, the illumination also affects the ap-
pearance [5] (e.g., in tracking a face), or the non-rigidity of
the target changes the appearances (e.g., in tracking a walk-
ing person), but we may not be interested in recovering too
many delicate non-rigid motion parameters. Thus, there are
uncertainties in the appearances model itself, and the obser-
vation model needs to integrate all these uncertainties, i.e.,

p(z|x) =
∫

θ

p(z|x, θ)p(θ|x)dθ =
∫

θ

p(z|ẑ(x, θ))p(θ|x)dθ.

In other words, given a motion hypothesis x, its hypothe-
sized observation ẑ(x) is no longer a vector, but a manifold

in R
m, and the observation model needs to calculate the dis-

tance of the evidence z to this manifold. Depending on the
free parameters θ, such a manifold can be as simple as a
linear subspace [2, 5], or as complex as a highly non-linear
one [1, 12]. The second class of observation models as-
sumes a known manifold, which can be learned from train-
ing data off-line in advance.

Although the appearance manifolds exist, in most cases,
they are quite complex, and the learning task itself is chal-
lenging enough. In addition, in real applications, we may
not have the luxury of being able to learn the manifolds
of arbitrary objects for two reasons: we may not be able
to collect enough training data, and the applications may
not allow the off-line processing. Thus, we need to re-
cover and update the appearance manifolds online during
the tracking [9, 13, 14]. In general, we make a reasonable
assumption that the manifold at a short time interval is lin-
ear [7, 10]. The method of online feature selection, e.g.,
in [3], can also be categorized in this class, since the se-
lected features span a subspace. In these methods, model
drift is one of the common and fundamental challenges.

This paper studies the problem of adaptive appearance
models. The differences from the existing work include an
in-depth analysis of the adaptation drift, and a novel solu-
tion that alleviates the drift by enforcing both bottom-up and
top-down constraints.

3 The Nature of the Problem

Although the appearance manifold of a target can be
quite complex and nonlinear, it is reasonable to assume the
linearity over a short time interval. In this paper, we assume
the appearances (or visual features) z ∈ R

m lie in a linear
subspace L spanned by r linearly independent columns of a
linear transform A ∈ R

m×r, i.e., z is a linear combination
of the columns of A. We write z = Ay.

The projection of z to the subspace R
r is given by the

least square solution of z = Ay, i.e.,

y = (AT A)−1AT z = A†z,

where A† = (AT A)−1AT is the pseudo-inverse of A. The
reconstruction of the projection in R

m is given by:

z̄ = AA†z = Pz,

where P = AA† ∈ R
m×m is called the projection ma-

trix. Unlike the orthonormal basis, the projection matrix
is unique for a subspace. We can decompose the Hilbert
space R

m into two orthogonal subspaces: a r-dimensional
subspace characterized by P and its (m − r)-dimensional
orthogonal complement characterized by P⊥ = I − P.

Therefore, the subspace L delineated by a random vector
process {z} is given by the following optimization problem:

P∗ = arg min
P

E(||z − Pz||2) = arg min
P

E(||P⊥z||2).

It is easy to prove that the optimal subspace is spanned by
the r principal components of the data covariance matrix.
This problem is well-posed since the samples from {z} are
given, thus the covariance matrix is known.

However, in the tracking scenario, the problem becomes:

{P∗
t ,x

∗
t } = arg min

Pt,xt

E(||P⊥
t z(xt)||2), (1)

where xt is the motion parameters to be tracked. In this
setting, we are facing a dilemma: if {x} can not be deter-
mined, then neither can P, and vice versa. Namely, given
any tracking result, good or bad, we can always find an op-
timal subspace that can best explain this particular result.

Unlike some other chicken-and-egg problems, this prob-
lem is even worse since no constraints on either P or {x}
are imposed. Therefore, this problem is ill-posed and the
formulation allows arbitrary subspace adaptations.

From the analysis above, it is clear that constraints need
to be added to make this problem well-posed. A commonly
used constraint is the “smoothness” of the adaptation, i.e.,
the updated model should not deviate much from the previ-
ous one, and most existing methods [3, 7, 9, 10] solve this
dilemma in the following manner:

x∗
t = arg min

xt

E(||P⊥
t−1z(xt)||2)

P∗
t = arg min

Pt

E(||P⊥
t z(x∗

t)||2).

In this adaptation scheme, at time t, the data that are the
closest to the subspace at the previous time instant are found
first, and then are used to update the subspace. This ap-
proach is valid only if the following assumption holds: the
optimal subspace at t − 1 is also optimal for time t. In re-
ality, this assumption may not necessarily be true, since a
data point that is the closest to the subspace Lt may not be
the closest to Lt−1. Thus, we often observe that the model
adaptation can not keep up with the real changes and the
model gradually drifts away. When the data found based on
Pt−1 in fact deviate from Pt significantly, the adaptation is
catastrophic. Although this approach makes the original ill-
posed problem in Eq. 1 well-posed, it is prone to drift and
thus not robust.

4 Our Solution

From the analysis in Section 3, it is clear that we need
more constraints than the adaptation dynamics constraint
alone. In the tracking problem, at time t before the tar-
get is detected, all the observation data are unlabelled data,
i.e., we can not tell if or not a certain observation should
be associated (or classified) to the target appearance sub-
space. The adaptation dynamics constraint is a top-down
constraint, which does not provide much supervised infor-
mation to the data at time t. Therefore, to make the adap-
tation more robust, we need to also identify and employ

bottom-up data-driven constraints, beside the smoothness
constraint.

In this paper, we propose to integrate the following three
constraints:
• Adaptation smoothness constraints. The smoothness

constraints are essential for the tracking process, since
the process of the data at time t should take advantage
of the subspace at time t − 1. There are many ways
to represent and use this type of constraints. The most
common scheme as indicated in Section 3 enforces a
very strong smoothness constraint. In our approach,
we treat the constraint as a penalty which can be bal-
anced with other types of constraints. The penalty is
proportional to the distance of two subspaces, i.e., the
Frobenius norm of the difference of the two projection
matrices ||Pt − Pt−1||2F ;

• Negative data constraints. At the current time t, al-
though it is difficult to obtain the positive data (i.e.,
the visual observations that are truly produced by the
target), negative data are everywhere. In fact, positive
data are very rare in all the set of possible observation
data. The negative data may help to constrain the tar-
get appearance subspaces. We denote the positive data
at time t by z+

t , and the negative data by z−t ;
• Pair-wise data constraints. Given a pair of data points,

it is relatively easier to determine if or not they be-
long to the same class. Such pair-wise data constraints
are also widely available. A large number pair-wise
constraints may lead to a rough clustering of the data.
Based on the smoothness constraints, we can deter-
mine a set of possible positive data to constrain the
subspace updating. The detailed is in Section 4.4.

4.1 Formulation

When processing the current frame t, the following are
assumed to be known: (1) the projection matrix of the pre-
vious appearance subspace Pt−1, (2) a set of negative data
collected from the current image frame, {z−t }, (3) a set
of possible positive data identified based on the pair-wise
constraints, {z+

t }, (4) previous negative covariance matrix
C−

t−1 and positive covariance matrix C+
t−1.

An optimal subspace should have the following proper-
ties. The negative data should be far from their projections
onto this subspace; the positive data should be close to their
projections, and this subspace should be close to the pre-
vious one. Therefore, we form an optimization problem to
solve for the optimal subspace at current time t:

min
At

J0(At) = min
At

{E(||z+
t − Ptz+

t ||2) + E(||Ptz−t ||2)
+α||Pt − Pt−1||2F }, (2)

where Pt = AtA
†
t is the projection matrix and α > 0 is

a weighting factor. We denote by C+
t = E(z+

t z+T
t), and

C−
t = E(z−t z−T

t). It is easy to show Eq. 2 is equivalent to
the following:

min
At

J1(At) = min
At

{tr(PtC−
t) − tr(PtC+

t)

+α||Pt − Pt−1||2F }, (3)

where tr(·) denotes the trace of a matrix.

4.2 An Closed-form Solution

Theorem 1 The solution to the problem in Eq. 3 is given by
Pt = UUT , where U is constituted by the r eigenvectors
that corresponds to the r smallest eigenvalues of a symmet-
ric matrix

Ĉ = C−
t − C+

t + αI − αPt−1.

The proof of this theorem is given in the Appendix. Please
note that the solution to At is not unique, but the projection
matrix Pt is. If we require At spanned by r orthogonal
vectors, then At = U. Please also note the eigenvalues of
Ĉ may be negative.

By considering the data in previous time instants, we can
use a forgetting factor β < 1, which can down-weight the
influence of the data from previous times. This is equivalent
to the use of exponentially-weighted sliding window over
time. Thus, we can write:

Ct =
t∑

k=1

βt−kE(zkzT
k) = βCt−1 + E(ztzT

t).

This way, we can update both C+
t and C−

t .

4.3 An Iterative Algorithm

Section 4.2 gives a closed-form solution to the subspace,
but this solution involves the eigenvalue decomposition of a
m × m matrix Ĉ, where m is the dimension of the visual
observation vectors and thus can be quite large. To achieve
a less demanding computation, we develop an iterative al-
gorithm in this section, by formulating another optimization
problem as:

min
U

J2(U) = min
U

{E(||z+
t − UUT z+

t ||2)
+E(||UUT z−t ||2) + α||UUT − Pt−1||2F }

s.t. UT U = I, (4)

where U ∈ R
m×r is constituted by r orthonormal columns.

The gradient of J2 is given by:

∇J2(U) =
∂J2(U)

∂U
∝ (C−

t −C+
t +αI−αPt−1)U. (5)

To find the optimal solution of U, we can use the gradi-
ent descent iterations:

Uk ←− Uk−1 − µ∇J2(Uk−1), (6)

during which the columns of Uk need to be orthogonalized
after each update.

To speed up the iteration, we can also perform an approx-
imation. When the subspace is to be updated by the positive
data z+

t , the PAST algorithm [15] can be adopted for fast
updating. When the updating is directed by the negative
data z−t , we can use the gradient-based method in Eq. 5.

4.4 Pair-wise Constraints

Although the target can not be detected directly, the
low level image features which distinguish the target object
from its neighborhood may give some hints about the tar-
get. Here we employ a graph cut algorithm [11] to roughly
cluster some sample appearances collected within the pre-
dicted target regions. Then we may be able to find possible
positive data and negative data from bottom-up.

Suppose the predicated region for the target is a rectan-
gle region centered at (u, v) with width w and height h. We
draw uniform samples (i.e., 15×15 image patches) to cover
a rectangle region (u±w, v±h). For each sample patch, the
kernel-weighted [4] hue histogram h with 64 bins is calcu-
lated. The affinity matrix, obtained based on the similarity
of all pairs of these histograms, is:

S = [Sij], where Sij = exp

{
(ρ(hi,hj) − µ)2

2σ2

}
, (7)

where ρ(·) is the Bhattacharya coefficient, µ is the mean of
all coefficients, σ is their standard deviation. These sample
patches can be grouped into 3−5 clusters by the eigenvalue
decomposition of the affinity matrix.

It is not necessary to have a perfect clustering, as ob-
served in our experiments. The image region delineated by
the cluster with the minimum mean L2 distance to the pre-
vious target subspace indicates the possible locations that
the target may present. In practice, we can simply treat its
geometry centroid as the possible location of the target and
the corresponding appearance vector as the possible posi-
tive data z+

t .

4.5 Selecting Negative Data

The negative data should be selected carefully. Because
if the negative data are too far from the target, the data point
may already lie in the orthogonal complement of the target
subspace, then minimizing the projections of the negative
data may not help. In addition, if the negative data are too
close to the target, they may lie partly in the target subspace
such that the estimated target subspace is pushed away from
its true place. Our selection of negative data is heuristic
based on the clustering in Section. 4.4: in the image regions
spanned by all the negative clusters, we find the locations
whose appearances (or features) are close to the previous
target manifold, and treat these appearance data as negative
data z−t in order to distinguish the target from the negative

clusters. This heuristics works well in our experiments, but
a more principled selection deserves more investigation.

5 Experiments

5.1 Setup and Comparison Baseline

In our experiments, the motion x = {u, v, s}, where
(u, v) is the location of the target and s is its scale. The
corresponding appearance region is normalized to a 20×20
window and rasterized to a feature vector z ∈ R

400. Since
the target appearances during tracking may become totally
different from the first frame, the remedy of always includ-
ing the initial appearance in the model [3, 7] does not apply.

For comparison, we implemented a subspace updating
tracker similar to the method in [7], where the nearest ap-
pearance observation zi to the previous target subspace
Pt−1 is used to update the orthonormal basis of the sub-
space by using Gram-Schmidt and dropping the oldest ba-
sis. We refer to this method Nearest Updating. The method
is referred as Nearest+Negative when the positive data are
collected by the nearest scheme and the negative data are
used in updating the same way as in our approach. In all
these methods, the adaptation applies every 4 frames.

5.2 Impact of the Positive and Negative Data

In this quantitative study, we show that the use of neg-
ative and possible positive data do help. We have manu-
ally annotated a video with 300 frames, in which a head
presents a 180o out-of-plane rotation, and collect the ground
truth appearance data for each frame (denoted by z∗t). The
comparison is based on the L2 distance of the ground truth
data z∗t to the subspaces estimated by various methods. A
smaller distance implies a better method.

As shown in Figure 1(a), the distance curve for the Near-
est+Negative scheme is slightly lower than that for Nearest
Updating, showing negative data can help to keep the adap-
tation away from the wrong subspaces. We also observed in
our experiments that the negative data themselves may not
be able to precisely drive the adaptation to the right places.

We compare the proposed with Nearest+Negative in Fig-
ure 1(b), in which the curve of our approach is apparently
lower than that of Nearest Updating. This verifies that the
possible positive data from bottom-up do help.

These two comparisons validate that the proposed ap-
proach are more capable of following the changes of
the non-stationary appearances. Some sample frames are
shown in Figure 2, where the top row is the results of the
proposed method, the middle row shows the location of the
possible positive cluster and possible positive data is shown
at the top-left corner of each frame, and the bottom row
shows the results of Nearest Updating and the nearest data
is shown at the top-left corner as well. The details can be
viewed in the submitted video head180.avi.

5.3 Impact of the Clustering Procedure

In this experiment, we compare our method with Nearest
Updating in the situation of partial occlusion. We need to
track a face, but the partial occlusion makes it difficult when
the person drinks and the face moves behind a computer.

Figure 3. Clustering performance in face.avi: top row
shows the drift process of Nearest Updating around frame
272; middle row lists 6 positive data at frame 272; bottom
row lists 6 positive data at frame 284.

When the face moves slowly behind the computer, Near-
est Updating drifts and erroneously adapts to a more stable
appearance, i.e., a back portion of the computer. In Figure 3,
the top row illustrates this drift process in detail.

The middle row in Figure 3 presents 6 appearance data
from the possible positive cluster in our method at the 272-
th frame. Obviously, some of them are not faces, since the
clustering is quite rough. But our heuristic of selecting the
centroid of the cluster does help and leads to a correct adap-
tation. Similarly, the bottom row shows the situation of our
method at the 284-th frame. As the person moves upward,
our method correctly follows the face.

This also shows that a rough clustering is sufficient for
our method which is more robust than Nearest Updating.
Some sample frames are shown in Figure 4, where the top
row is our method and the bottom row is that of Nearest
Updating. The details of this demo can be viewed in the
video face.avi.

5.4 Tracking a Head with 360o Rotations

Figure 5 shows the results of tracking a head presenting
360o out-of-plane rotation (The demo is in head360.avi).
The appearances of different views of the head are sig-
nificantly different, which makes the tracking difficult and
also challenges the adaptation. Our experiment shows that
Nearest Updating tends to stick to the past appearances and
thus reducing the likelihood of including new appearances.
For example, when the front face gradually disappears, this
scheme is unable to adapt to the hairs to track the back head.
In all of our experiments, this scheme loses track when
the head fades away. On the contrary, since the bottom-
up information (i.e., the negative and possible positive data)

(a) Nearest Updating vs. Nearest+Negative Updating (b) Nearest+Negative Updating vs. Our approach

Figure 1. Comparison of the distances of the ground truth data to the updated subspaces given by three schemes.

Figure 2. Tracking a head with 180o rotation [head180.avi]. (top) our method, (middle) clustering, (bottom) Nearest Updat-
ing.

hints the emerging appearances, it can successfully track the
head, although the bottom-up processing is quite rough.

5.5 Tracking a Head in Real Environments

Figure 6 shows the results of the experiment of track-
ing the head of a person walking in a real environment.
The appearance of the head undergoes large changes, and
there is also scale changes. Our result shows that Near-
est Updating drifts to the background when the appearances
of the black hair that the subspace has initially learned al-
most disappears. This happens when the person moves to-
wards the camera. On the contrary, the proposed method
can work comfortably and stably in the case. The details
can be viewed in walking.avi.

5.6 Tracking with In-plane Rotations

In general, 2D in-plane rotation also induces significant
changes to the target appearance. In this experiment, the
black background is similar to the panel of the watch such

that the adaptation in Nearest Updating deviates from the
true subspace and it drifts rapidly. On the contrary, although
the proposed method is also distracted at frame 444, it is
able to recover quickly thanks to the help from the pair-
wise constraints. Sample frames are shown in Figure 7 and
details in watch.avi.

5.7 Discussions

All the above experiments have validated the proposed
approach. When the target model experiences drastic
changes, we can explain the reason why the methods shar-
ing the same nature as Nearest Updating deteriorates in two
aspects. First, these methods trend to adhere to the old
model as much as possible and are reluctant to include the
changes. When the model changes completely or the orig-
inal features disappear, the updated model will drift away
from the true one eventually. Second, when the drift starts,
there is no mechanism in these methods to force them back,
thus the drift is unstable and catastrophic.

Figure 4. Tracking partial occlusion target [face.avi]. (top) our method, (middle) clustering, (bottom) Nearest Updating.

Figure 5. Tracking a head with 360o out-of-plane rotation [head360.avi]. (top) our method, (bottom) clustering.

On the contrary, since our method utilizes the informa-
tion from bottom-up, it can be thought as feedbacks that
makes our method stable and avoids catastrophic drift to a
large extent. As a result, the proposed method can be more
robust and stable to cope with the adaptation drift.

6 Conclusions

We present an analysis of the adaptive tracking problem.
If no constraints imposed, this problem is ill-posed. Differ-
ent from the commonly used nearest updating scheme, we
propose to impose both top-down smoothness constraints
and the bottom-up data-driven constraints from current ob-
servances. Our method is based on the minimization bal-
ancing three factors: (1) distance of positive data to the sub-
space, (2) the projections of the negative data, and (3) the
smoothness of two consecutive subspaces. The proposed
method can largely alleviate the risk of adaptation drift and
thus achieving better tracking performance.

Our further study will include the investigation of the
situation when the smoothness constraint and bottom-up in-
formation are contradicted, and the best way of balancing
and fusing these three types of constraints.

Appendix

Lemma 1 The solution of the following problem:

min
A

tr(AT CA), s.t., AT A = I, (8)

where A ∈ R
m×r, and C = ZZT ∈ R

m×m, is give by the
eigenvectors that corresponds to the r smallest eigenvalues
of C.

Proof: It is easy to figure it out. Actually this is the same as
the proof of PCA.

Based on the Lemma, the proof of Theorem 1 is given
by the following: Performing SVD on At, we have At =
UΣVT , where U ∈ R

m×r, Σ ∈ R
r×r, V ∈ R

r×r. It is
easy to see: Pt = UUT . Then the optimization problem in
Eq. 3 is equivalent to:

min
U

J3(U) = min
U

{tr(UT C−
t U) − tr(UT C+

t U)

+α||UUT − Pt−1||2F }, s.t. UT U = I. (9)

The Lagrangian is given by:

L(U) = J3(U) + λ(UT U − I).

Figure 6. Tracking a head [walking.avi]. (top) our method, (bottom) clustering.

Figure 7. Tracking a watch with in-plane rotations [watch.avi]. (top) our method, (bottom) clustering.

Let U = [e1, . . . , er], and we have:

∂L

∂e
= 2(C−

t − C+
t)e + 2α(eeT − Pt−1)e + 2λe

= 2(C−
t − C+

t + αI − αPt−1)e + 2λe.

Thus, e is an eigenvector of Ĉ = C−
t −C+

t +αI−αPt−1.
The minimization problem is solved by finding the r eigen-
vectors that correspond to the r smallest eigenvalues of Ĉ.
Q.E.D.

Acknowledgments

This work was supported in part by NSF Grant IIS-
0347877, IIS-0308222 and Northwestern faculty startup
funds.

References

[1] S. Avidan. Support vector tracking. IEEE Trans. Pattern
Anal. Machine Intell., 26(8):1064–1072, Aug. 2004.

[2] M. J. Black and A. D.Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation. In ECCV’96, pages 329–342, Apr. 1996.

[3] R. T. Collins and Y. Liu. On-line selection of discriminative
tracking features. In ICCV’03, volume 2, pages 346–352,
Nice, France, Oct. 13-16, 2003.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Real-time track-
ing of non-rigid objects using mean shift. In CVPR’00, vol-
ume 2, pages 142–149, Hilton Head Island, South Carolina,
June 13-15, 2000.

[5] G. Hager and P. Belhumeur. Real-time tracking of im-
age regions with changes in geoemtry and illumination. In
CVPR’96, pages 403–410, San Francisco, June 18-20, 1996.

[6] G. Hager, M. Dewan, and C. Stewart. Multiple kernel track-
ing with SSD. In CVPR’04, volume 1, pages 790–797,
Washington, DC, Jun.27-Jul.2 2004.

[7] J. Ho, K.-C. Lee, M.-H. Yang, and D. Kriegman. Visual
tracking using learned linear subspace. In CVPR’04, vol-
ume 1, pages 782–789, Jun.27-Jul.2 2004.

[8] M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. In ECCV’96, pages 343–356,
Cambridge, UK, 1996.

[9] A. Jepson, D. Fleet, and T. El-Maraghi. Robust online ap-
pearance models for visual tracking. In CVPR’01, volume 1,
pages 415–422, Hawaii, Dec. 8-14, 2001.

[10] D. Ross, J. Lim, and M.-H. Yang. Adaptive probabilis-
tic visual tracking with incremental subspace update. In
ECCV’04, volume 1, pages 215–227, Prague, Czech Repub-
lic, May 2004.

[11] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. In CVPR’97, pages 731–737, June 17-19, 1997.

[12] K. Toyama and A. Blake. Probabilistic tracking in a met-
ric space. In ICCV’01, volume 2, pages 50–57, Vancouver,
Canada, July 7-14, 2001.

[13] J. Vermaak, P. Perez, M. Gangnet, and A. Blake. Towards
improved observation models for visual tracking: Selective
adaptation. In ECCV’02, volume 1, pages 645–660, Copen-
hagen, Denmark, May 2002.

[14] Y. Wu and T. S. Huang. Robust visual tracking by co-
inference learning. In ICCV’01, volume 2, pages 26–33,
Vancouver, Canada, July 7-14, 2001.

[15] B. Yang. Projection approximation subspace tracking. IEEE
Trans. Signal Processing, 43(1):95–107, Jan. 1995.

