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Abstract

Many tracking methods face a fundamental dilemma in
practice: tracking has to be computationally efficient but
verifying if or not the tracker is following the true target
tends to be demanding, especially when the background is
cluttered and/or when occlusion occurs. Due to the lack
of a good solution to this problem, many existing methods
tend to be either computationally intensive with the use of
sophisticated image observation models, or vulnerable to
the false alarms. This greatly threatens long-duration ro-
bust tracking. This paper presents a novel solution to this
dilemma by integrating into the tracking process a set of
auxiliary objects that are automatically discovered in the
video on the fly by data mining. Auxiliary objects have
three properties at least in a short time interval: (1) per-
sistent co-occurrence with the target; (2) consistent motion
correlation with the target; and (3) easy to track. The col-
laborative tracking of these auxiliary objects leads to an
efficient computation as well as a strong verification. Our
extensive experiments have exhibited exciting performance
in very challenging real-world testing cases.

1 Introduction

Although extensive research efforts have been taken, it is
still quite difficult in practice to achieve robust and efficient
long-duration tracking in unconstrained real-world environ-
ments. Most existing methods are in a dilemma: whether to
be fast-but-fallible, or to be robust-but-slow.

This dilemma roots in the opposite requirements of the
two kinds of image likelihood models: one that tends to be
simple for efficient motion estimation and tracking, while
the other tends to be sophisticated for comprehensive ver-
ification of the presence of the true target. We call them
tracking likelihood model or TLM and verification likeli-
hood model or VLM, respectively. For example, efficient
TLMs are generally based on simple image features that
are easily accessible, such as contours [12, 4], color his-

togram [7], or even image templates [5, 10], etc. On the
other hand, VLMs are generally associated with classifiers
that differentiate the true target from the others, thus they
need to either extract the unique invariants or model the
variations of the target’s appearance. As a result, they tend
to be computationally demanding or difficult to model. The
ultimate verification is target recognition. A tracker can
have a separate TLM and VLM. It is also possible to use one
likelihood model for the two purposes, e.g.simply use the
same TLM or VLM for both tasks, or even a smart combi-
nation like the SVM tracker [2]. The computational cost of
either approach is bounded by the complexity of the VLM.

An effective target verification is important, since it tells
if the tracker is following the true target or not. For a fast
tracking, we prefer to use simple TLMs. But many real-
world complications such as clutters, illumination and view
changes, low image quality, motion blur and partial occlu-
sions, all may invalidate these simple TLMs, such that these
simple TLMs are likely to give a large number of false pos-
itive detections with a high confidence level.

Without a strong verification, the tracker is vulnerable.
In addition, an effective verification is very important for
adaptation. In practice, the visual appearances of the target
and/or the dynamic environment may exhibit non-stationary
characteristics. Unless visual invariants can be identified
or the variability can be learned off-line (e.g., by learn-
ing and switching multiple TLMs [10, 16, 14]), the tracker
needs to adapt its TLM to the environment (e.g., by select-
ing the discriminant features on-line [6, 22] or adapting the
TLM [3, 23]). But adaptation is not trivial and it is risky,
as its nature is a chicken-and-egg problem [23] and it gen-
erally lacks a mechanism to prevent model drifting, unless
a strong verification that provides confident supervision can
be asserted for the target in order to keep the risk minimum.

As a common practice, the VLM for verification is de-
signed or trained off-line, by learning the possible variabil-
ities of the target. Various levels of verification can be de-
signed [21]. As mentioned above, the ultimate level is target
recognition. It can be extremely difficult in general, if not
impossible, because the target may have very different vi-
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sual appearances due to the changes of view, lighting, etc.
Therefore, a natural question to ask is: can we have more
efficient but still effective verification?

In this paper, we propose a novel solution to the afore-
mentioned problem by taking the advantage of auxiliary ob-
jects that are automatically discovered on the fly in an un-
supervised fashion by using data mining techniques. Aux-
iliary objects are those that have strong motion correlation
to the target such that the correlation can be employed to
improve the tracking and to provide a computationally ef-
ficient but powerful verification. Specifically, an auxiliary
object should satisfy 3 properties at least in a short time in-
terval: 1) persist co-occurrence with the target, 2) consistent
motion correlation with the target, and 3) easy to track.

Figure 1. Some sample auxiliary objects to the target
head.

Auxiliary objects can be in various forms, e.g. solid se-
mantic objects which bear intrinsic relations with the target,
or some image regions that happen to have motion correla-
tion with the target for a short period. They may reliably
associate with the target for a long duration, or only exist in
a short time interval, or not exist at all. Thus it is impossi-
ble to determine auxiliary objects off-line, but they have to
be discovered on the fly, which is fundamentally different
from [24]. For example, in Figure 1, the targets of interest
are the heads in solid-yellow boxes, and the image regions
in dash-red boxes are the auxiliary objects discovered auto-
matically. We resort to data mining techniques for discover-
ing auxiliary objects by learning their co-occurrence asso-
ciations to the target. Data mining methods originated from
text information processing and relational databases [1],
and found their uses in extracting video objects [19, 20, 15].
To the best of our knowledge, this paper presents an origi-
nal attempt, if not the first, of combining visual tracking and
data mining in a collaborative tracking framework.

This new approach has the following advantages. Firstly,
it is computationally efficient. Because the auxiliary ob-
jects by definition are those easy to track (e.g. color re-
gions), tracking them does not incur significant computa-
tional costs. Secondly, it outputs more accurate tracking
results. The new method tracks the target and the set of

auxiliary objects as a random field in a collaborative man-
ner. It is provably correct that the uncertainty of the motion
estimation is reduced. Thirdly, it also provides an effective
verification, because the learned motion and/or geometric
correlations among the target and the auxiliary objects serve
as a strong cue for verification. Last but not the least, it is in-
telligent and robust. All the auxiliary objects and the motion
correlation (i.e., the random field) are automatically discov-
ered on the fly. The robust fusion embedded can handle par-
tial occlusions and even camouflages. Our extensive tests
on real-world data give quite exciting performance in deal-
ing with challenging cases including large scale changes,
partial occlusions and complicated clutter backgrounds.

2 Intelligent Collaborative Tracking (ICT)

The new approach called intelligent collaborative track-
ing or ICT addresses the following three important issues:

• Mining auxiliary objects (in Sec. 2.1): the methods
of extracting object candidates and learning the asso-
ciations will be discussed. This step not only identifies
a set of auxiliary objects, but also learns the random
fields among them;

• Collaborative tracking (in Sec. 2.2): both the target
and the set of auxiliary objects need to be tracked in
ICT. Because they are not independent, the tracking
is formulated on a random field and is achieved effi-
ciently by the collaborations among all the individual
trackers where an individual tracker influences other
trackers as well as receives influence from others;

• Robust fusion (in Sec: 2.3): for an individual tracker,
there may exist inconsistency among the set of influ-
ences it receives and its own image measurements.
Handling inconsistency is fundamental and critical.

2.1 Mining auxiliary objects

2.1.1 Auxiliary objects

Auxiliary objects (AOs) are those that can help the target
tracker. We abuse a little bit the term “object”. In fact, it
is not necessary for an AO to be a semantic object. In the
tracking scenario, it refers to an informative image region
or image feature that has the following three properties:

1. Frequent co-occurrence with the target;

2. Consistent motion correlation with the target;

3. Suitable for tracking.

Although this definition may cover a large variety of
image regions or features, not all of them are appropri-
ate for balancing the complexity and generality. Since the
prior knowledge about the target and the environments are
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in general not accessible, it is preferable to choose sim-
ple, generic and low-level auxiliary objects, such as im-
age regions or feature points. Feature points are geomet-
rically significant and provide the most localized informa-
tion. There are some outstanding work on invariant fea-
ture points, e.g. [17, 18, 8]. Although feature points may be
salient and therefore suitable for object recognition, because
they can be easily localized, they are in general prone to oc-
clusion, lighting and local geometry changes. Thus they are
not always stable in video. In addition, extracting invari-
ant features needs a good amount of computation, which
makes it hard to achieve real-time performance. Therefore,
although the tracking of feature points can be quite efficient,
we generally do not use feature points as auxiliary objects.

Instead, we choose to use significant image regions. Dif-
ferent from localized image feature points, image regions
reflect the image property in a neighborhood, and they tol-
erate more occlusions and local geometry changes. More
importantly, image regions, if selected properly, can be reli-
ably and efficiently tracked, for example, by the mean-shift
algorithm [7]. Although texture regions may have invari-
ants and can be very significant, our current implementation
does not use them because it takes more computation to spot
them than color regions. Therefore, our current treatment
for data mining is to discover a set of color regions that are
temporally stable and spatially correlated with the target in
a video sequence in an unsupervised way.

2.1.2 Item candidate generation

To follow data mining’s conventions and manifest the dis-
cussion, we define these terms in video data mining task.

Definition 1 We denote an item candidate by s which is a
particular image feature obtained by low-level image pro-
cessing; an item by I which is a quantized item candidate by
a vocabulary V = {I1, . . . , IN} which is learned by clus-
tering all item candidates; an itemset by I, set of items; and
a transaction by T , the itemset at a neighborhood R.

The set of candidate AOs, denoted by C , is a subset of
V that are frequently co-occurrent with the target. In our
implementation, an item candidate is a rough color seg-
ment with its motion parameters, and an item is defined
by I = {H(I),xI}, where H(I) is the average color his-
togram of the item and xI is the motion parameters and
respective covariances.

The item candidates, i.e., the color segments in our case,
are the inputs for mining. Efficient segmentation is more
preferred than a delicate but expensive one since exact
boundaries of the segments are not necessary for mining
and tracking. In our current implementation, we employ
the classical split-merge quad-tree color segmentation [13].
The image is recursively split to the smallest possible ho-
mogenous color regions, and then the adjacent regions with

similar appearances are merged gradually. The most promi-
nent advantage of this method is the computational effi-
ciency. Some segments are not appropriate for tracking, so
we employ some heuristics to prune them, e.g. segments
that are too large (the area over 1/2 of the entire image) or
too small (the area less than 64 pixels), and concave seg-
ments (the area less than 1/2 of the bounding box) are ex-
cluded. Figure. 2 shows some typical segmentation results.

Figure 2. Illustration of the quad-tree color segmenta-
tion. (left) input frame, (middle) over-segmentation, (right)
pruned segmentation.

2.1.3 Transaction generation

To build the vocabularyV so as to construct transactions, we
need to quantize the space of the item candidates. We define
the similarity of two item candidates by the Bhattacharyya
coefficient [7] ρ of the histograms of the segments, and a
k-means clustering is used to generate the vocabulary. Then
each image segment (i.e. item candidate) can be quantized.
For the item inside the region of interest in each frame, we
collect the item and the items that are in the neighborhood of
this item to form a transaction. There are different choices
of the neighborhood. We can use the item itself (i.e. use
a 0 neighbor) or use the item and those that are spatially
adjacent to this item. Thus, for the image sequence, we can
build a transaction database for mining.

2.1.4 Frequent itemset mining

Among the transaction database, an itemset which has a
high co-occurrent frequency will be chosen as a candidate
auxiliary object. There have been extensive research on this
topic in data mining research. We use a modified FP-growth
algorithm [9] which is computationally efficient for this pur-
pose. Because mining is performed online, we need to
take into account the importance of the history images. We
maintain an M frames slide window and count the itemset
frequency f(in) with a forgetting coefficient β = 0.9. One
special case is to treat an item as a transaction, and what we
find are frequent items. If image segmentation does not end

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



up with too many small segments, this special treatment is
good enough for identifying candidate auxiliary object. But
the segmentation tends to over-segment and produces too
many small segments, then we cannot use 0 neighbor for
constructing transactions. Using the nearby items to form
transaction can identify co-occurrent patterns that merge the
adjacent small segments. This is another reason that it is
fine for image segmentation step to be imperfect.

Finding such frequent itemsets only spots the candidate
auxiliary objects that are frequently co-occurrent with the
target, but they are not necessarily to have strong motion
correlations. We need to check if these candidates satisfy
other properties of an auxiliary object. For each candi-
date, we can initialize a mean-shift tracker to check if it
can find its correspondence candidate in the successive im-
age frames. If this tracker loses track for 4 frames in a row,
we assert that this candidate is not suitable for tracking and
remove it. Otherwise, we can form the motion trajectories
over the frames in the slide window for a set of candidate
auxiliary objects. Then, for each such motion trajectory, we
check its correlation with the motion trajectory of the target.
The ones with high correlation will be kept and are used as
the final set of auxiliary objects.

Such a mining process is meaningful, because it has
learned a random field. We denote the motion of the target
by x0 and those of the auxiliary object by xk, k = 1, . . . , K ,
where K is the number of auxiliary objects. They constitute
a random field. The pair-wise potentials ψk0(xk,x0) are
actually learned as a by-product of data mining. In many
cases, auxiliary objects share almost the same motion as the
target, e.g., the torso and the target head. Therefore, we can
use a Gaussian distribution to characterize those potentials.

2.2 Collaborative tracking

Certainly, in the tracking scenario, such a random field
is hidden and they need to be inferred from image evidence.
We formulate this problem under a Markov network with
a special topology, as shown in Figure. 3, where we only
assume pair-wise connections between the target x0 and
the auxiliary object xk and there are no connections among
auxiliary objects. Each of them is associated with its image
evidence zk . We denote Z = {zk, k = 0, . . . , K}. The
core of tracking is to estimate the posteriors p(x0|Z) of the
target and p(xk|Z), k = 1, . . . , K , for the auxiliary objects.

For such a singly connected network, a belief propaga-
tion algorithm with 2-step message passing gives the exact
estimates of the posteriors. Denote p(zi|xi) is the local like-
lihood and ψk0(xk,x0) is pair-wise potential learned in the
data mining step, φk(xk) is the local prior such as the dy-
namics prediction prior for xk, and mij(xj) is the message
passed from xi to xj , and it is a function of xj . At the first
iteration step the target x0 receives all the messages mk0

from every auxiliary object xk , then propagates the mes-

X
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Z
1

Z
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Figure 3. Star topology random field.

sage back to them at the second iteration.
This message passing mechanism implies a collaborative

way for tracking. Notice that if the target and the auxiliary
objects are independent, their independent motion estimates
are p̂k(xk|Z) ∝ φk(xk)p(zk|xk), k = 0, . . . , K . The rela-
tion between the true estimates and independent estimates is
simply captured in a fixed-point equation of the messages:

p(x0|Z) ∝ p̂0(x0|Z)
∏
k

mk0(x0), (1)

mk0(x0) =
∫

xk

p̂k(xk|Z)ψk0(xk,x0)dxk, (2)

p(xk|Z) ∝ p̂k(xk|Z)m0k(xk) k = 1, . . . , K, (3)

m0k(xk) =
∫

x0

p̂0(x0|Z)
∏

xi\xk

mi0(x0)dx0. (4)

This suggests that we can use individual tracker for the tar-
get and auxiliary objects. These individual trackers need to
combine their local estimates and the messages from others,
and iterate. Such a collaborative mechanism leads to a very
efficient solution to tracking the random field. Thus, even
if our new approach involves the tracking of a set of auxil-
iary objects that are tracked by mean-shift, the computation
is manageable because of the efficiency of the collaborative
way and the efficiency of the mean-shift tracker.

Compared with a single tracker for the target, the in-
volvement of auxiliary objects can reduce the uncertainty of
the motion estimate of the target and thus make the track-
ing more confident. We can prove this in a special case
when setting both the potential ψk0(|xk−x0|) to be a Gaus-
sian N(μk0, Σk0) and the local likelihood p(zk|xk) to be a
Gaussian N(μ̂k, Σ̂k) (we ignore the local prior without los-
ing generality). Under this setting, the closed-form belief
propagation gives:

Σ0
−1 = Σ̂−1

0 +
K∑

k=1

(Σ̂k + Σk0)−1, (5)

μ0 = Σ0(Σ̂−1
0 μ̂0 +

K∑
k=1

(Σ̂k + Σk0)−1(μ̂k + μk0)), (6)

where (μ0, Σ0) is the target’s posterior when tracking the
random field. If we assume the local priors to be Gaussian,
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this result still hold but now (μ̂k, Σ̂k) refers to the indepen-
dent (or local) posterior.

Eq. 5 makes it clear that Σ0 is always less than Σ̂0, mean-
ing that the confidence of the collaborative estimate of the
target is higher than that produced by a single target tracker.

2.3 Robust fusion and verification
The closed form analysis for the collaborative tracking

can be explained in the view of information fusion. When
the connection potentials of the target and the auxiliary ob-
jects are set to be extremely tight, i.e., the covariance of Σk0

is 0, this belief propagation is equivalent to the best linear
unbiased estimator (BLUE) for x0; if they are extremely
loose, i.e. Σk0 = ∞, it becomes independent estimation;
otherwise, it is similar as covariance intersection.

However, there is a hidden assumption under this con-
clusion, i.e., the information from all the sources must be
consistent. In a simple term, they must more or less agree
with each other. But in reality, this assumption may not be
valid, when the estimate from the individual tracker may be
completely different or inconsistent for many reasons. If we
use the above mentioned method to fuse these inconsistent
estimates, we amount to end up with a false estimate whose
confidence is rather high. Thus, it is desirable to have a
mechanism to detect the inconsistency and identify the out-
liers for a robust fusion.

Our study [11] gives a new theorem to handle the incon-
sistency. Due to the page limit, we give two criteria that are
very useful for detecting the pair-wise inconsistency.

Theorem 1 Considering two Gaussian sources N(μ1, Σ1)
and N(μ2, Σ2), where μ1, μ2 ∈ Rn, the two sources are
inconsistent if:

1
n

(μ1−μ2)T (Σ1 +Σ2)−1(μ1−μ2) ≥ 2 +
√

Cp +
1√
Cp

,

where Cp is the 2-norm conditional number of Σ1+Σ2, and
they are consistent if:

1
n

(μ1 − μ2)T (Σ1 + Σ2)−1(μ1 − μ2) < 4.

Although these are sufficient conditions in general cases,
they are actually also necessary conditions when n = 1.
These criterion enable simple and quick detection of incon-
sistency. In addition, the estimation that is inconsistent with
all the others will be regarded as an outlier. The outlier can
be the target or the AOs. If the target is an outlier, we assert
that the target is experiencing occlusion or drift, and stop
the mining process temporarily. But we can give an esti-
mation of the target purely based on the predictions from
the auxiliary objects, and search for the image evidence. If
the outlier is an auxiliary object, we simply exclude this
auxiliary object for fusion. After excluding the outliers, we
perform belief propagation again on the rest of the network.
When the majority are not consistent which means the target
estimate can not be verified, the tracking failure is asserted.

3 Experiments

3.1 Experiment settings

We substantialized and implemented the proposed ICT
algorithm in a head tracking system, where the head tracker
is a contour-based elliptical tracker similar to [4], and the
auxiliary trackers are mean-shift trackers. Since fixed num-
ber of edge points along the ellipse are matched, the single
head tracker is quite computationally efficient and runs at
over 50 fps. Although the single head tracker is relatively
robust to illumination and view changes, it is vulnerable to
the clutter background, motion blur and occlusions. In our
experiments, we compare the proposed ICT algorithm with
the single head tracker in a large number of real-world se-
quences captured in unconstrained environments including
both indoor and outdoor scenes. These extensive exper-
iments and exciting results have demonstrated the advan-
tages of the ICT algorithm.

The motion parameter x = {u, v, su, sv} to be recovered
includes the location (u, v) and the scales su and sv. The
color segmentation and the mean-shift tracker work in the
normalized R-G color space with 32×32 bins. Without code
optimization, our C++ implementation of ICT comfortably
runs around 10 fps on average on Pentium 3G for 320×240
images depending on the number of auxiliary objects.

3.2 Quantitative experiments

For a quantitative evaluation, we manually labeled the
ground truth of the sequences kid in yellow and
dancing girl for 1200 and 1600 frames respectively.
The evaluation criterion of tracking error are based on the
relative position errors between the center of the tracking
result and that of the ground truth, and the relative scale
normalized by the ground truth scale. Ideally, the position
differences should be around 0, and the relative scales 1.

As shown in Figure. 4 and Figure. 5, the position differ-
ences of the results in the ICT are much smaller than that
of the single head tracker and the relative scales have much
less fluctuations around 1, which demonstrate the advan-
tages of the ICT, i.e. reducing the false alarm rate and the
estimation covariance. Note that at the end of the sequence
kid in yellow, the single tracker happens to track the
head by chance after the drift. Although the ICT tracker
loses track at around frame 1100 for several frames, it is
able to recover promptly because of the auxiliary objects.

Some key frames are shown in Figure. 6. The first row
shows the results of the single head tracker where the high-
lighted solid-yellow box indicates the location of the head.
The second row is the segmentation and mining results,
where each green rectangle indicates an item in the current
frame. The blue numbers at the corner show the item labels
of the candidate auxiliary objects. The third row illustrates
the fusion results. Each blue box is the estimate of the head

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



Figure 4. Quantitative comparison: (left) position errors,
(right) scale errors, [kid in yellow,1200 frames].

Figure 5. Quantitative comparison: (left) position errors,
(right) scale errors, [dancing girl,1600 frames].

from difference sources (i.e. auxiliary objects or the target).
The white box indicates that estimate is regarded as an out-
lier. The dark red box is the final result of the fusion. The
corresponding labels of the auxiliary objects are shown at
the bottom-right corner. The final tracking results of ICT
are shown in the 4-th row as highlighted solid-yellow box,
and the dash-red boxes are the auxiliary object trackers.

3.3 Occlusion and drift

Figure. 6 samples the results on the sequence kid in

yellow which is very challenging due to a serious occlu-
sion, target out-of-range and the clutters. When the head
moves outside the upper boundary at frame 113, the single
head tracker drifts to a false positive in the clutter back-
ground and is unable to recover. On the contrary, the ICT
tracker asserts the occlusion and keeps tracking correctly.
It freezes the head tracker temporarily and re-initializes it
based on the predictions provided by the auxiliary objects.
When the kid is walking in front of the bush, the background
is so clutter that it causes big problems to the edge-based
tracker. On the other hand, ICT discovers several auxiliary
objects, i.e. the shirt and short pant, which are quite stable
and provide roughly correct estimates of the head location
and rescue the head tracker from the drift at frame 736.

3.4 Quick movement and camouflage

As shown in Figure. 7, the sequence dancing girl

presents quick movements and camouflage. All the girls
are similar in terms of the appearances. This is extremely

difficult for a single head tracker to work, but ICT com-
fortably handles such a challenge. During the dancing, ICT
gradually discovers the spatial relations of the target (a girl
of interest) to the adjacent regions e.g. other girls’ shirts,
although such relations are only valid in short time inter-
val. At frame 757, the single head tracker is trapped by the
shoulder of the girl and unable to recover. At frame 758,
the ICT tracker identifies this false alarm and pulls back the
head tracker with the help of the predictions of the AOs that
are still close to the true target. At frame 1234, the girl of in-
terest suddenly gets down, ICT detects the tracking failure
and resumes tracking quickly. ICT can comfortably track
over 1600 frames for this highly dynamic sequence until the
target moves outside the left boundary for several seconds.

3.5 Scale and view changes

We show the tracking performance when the target un-
dergoes large scale and view changes and demonstrate the
transition of the auxiliary objects in the sequence kid&dad
(Figure. 8). For the single head tracker, when the scale of
the head becomes very small, it drifts to the torso of the kid
from frame 69 and loses track. During the first 300 frames,
the dad walks with the kid with quite stable motion corre-
lation. This is discovered by ICT and the region of dad’s
shirt is mined as the auxiliary object to help track the kid’s
head. When they move close to the camera, the scale and
the view change dramatically so that the learned relation
between dad’s shirt and the kid’s head no longer holds. For-
tunately, ICT spots that the hat to be one good auxiliary
object at large scale and guides the tracking. At the end of
the sequence, the head is completely occluded by the hat
for several seconds. Although this is impossible to recover,
ICT detects and reports the tracking failure, while the single
head tracker tends to drift to a false positive without notice.

3.6 Clutter background

As shown in Figure. 9 (swimming boy), the back-
ground is quite cluttered due to the texture of water and
other people, which makes the single head tracker hope-
less. On the other hand, ICT discovers the two blue life
buoys and the swimming hat and uses them as the auxil-
iary objects. The single head tracker is easily distracted by
the edges in the background and drifts away. When the boy
jumps towards his mom’s arms, ICT uses the life buoys as
well as the orange box on the bank to help locate his head
accurately, which is difficult for the single head tracker.
Note that at the end of this sequence, the kid’s head is oc-
cluded by his mum’s head and ICT switches to the mom.
This is reasonable because the auxiliary objects can not dif-
ferentiate the two heads at the same location.
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Figure 6. Frame # 50, 113, 124, 229, 736 and 866 of kid in yellow,1200 frames. (1st row) the head tracker, (2nd row)
the mining results, (3rd row) the fusion results,(4th row) the ICT tracker.

Figure 7. Frame # 67, 757, 758, 764, 1234 and 1372 of dancing girl,1600 frames. (top) the head tracker, (bottom) the
ICT tracker.

3.7 Discussions

As illustrated in the challenging sequences, there are two
primary reasons why the auxiliary objects greatly help the
tracking: 1) some auxiliary objects have persistent rela-
tions with the target and present fairly accurate estimates
although these relations may not be foreseen; 2) a number of
auxiliary objects have transitional relations with the target
and the majority of them can give rough correct estimates
in a short time interval. In the cases of occlusion or drift, it
is not likely that all the auxiliary objects are occluded or all
auxiliary trackers lose track at the same time, since the aux-
iliary objects may not locate in a close neighborhood of the
target. The mechanism of robust fusion can identify the in-
consistency induced by occlusions or drifts. Although there
are some too difficult cases, e.g. the target is occluded for
long time, ICT fails reasonably because on-line data min-

ing may not be invoked at all. The advantage of ICT is the
ability to detect and report the failure, and leave the system
to other means of re-initialization, while the single tracker
tends not to report the failure but keep working aimlessly.

4 Conclusions

We proposed a novel solution to robust long-duration
tracking by integrating the auxiliary objects discovered on
the fly by data mining. The auxiliary objects provide ex-
tra measurements to the target and reduce the uncertainty
of the estimation. In addition, the learned motion correla-
tions among the auxiliary objects and the target serve as a
strong cue to verify the tracking result to avoid drifting due
to short-term occlusion or tracking lost. The auxiliary ob-
jects are automatically discovered without supervision and
do not incur much extra computation, which makes the ap-
proach generally applicable to different tracking scenarios.
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Figure 8. Frame # 52, 69, 70, 313, 555 and 616 of kid&dad,617 frames. (top) the head tracker, (bottom) the ICT tracker.

Figure 9. Frame # 87, 131, 334, 526, 578 and 848 of swimming boy,900 frames. (top) the head tracker, (bottom) the ICT
tracker.
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