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Abstract

The solutions to many vision problems involve integrat-
ing measurements from multiple sources. Most existing
methods rely on a hidden assumption, i.e., these measure-
ments are consistent. In reality, unfortunately, this may not
hold. The fact that naively fusing inconsistent measure-
ments amounts to failing these methods indicates that this is
not a trivial problem. This paper presents a novel approach
to handling it. A new theorem is proven that gives two alge-
braic criteria to examine the consistency and inconsistency.
In addition, a more general criterion is presented. Based
on the theoretical analysis, a new information integration
method is proposed and leads to encouraging results when
applied to the task of visual tracking.

1 Introduction

In many vision problems, estimations are made based
on integrating measurements from multiple sources to re-
duce the uncertainty. A measurement can generally be char-
acterized as a mean vector and an uncertainty covariance
(multi-modal measurement can be treated as multiple mea-
surements). To list a few examples, the different sources can
be different visual cues such as color and contour [14, 11],
different components of one object [13, 10, 3, 4], neigh-
borhood pixels in motion estimation [1], and dynamics and
image observations in visual tracking [5].
Most existing integration methods assume the consis-

tency among various sources [6, 7]. If the different sources
are independent and consistent, the optimal integration
can be obtained from the best linear unbiased estimator
(BLUE) [7]. If they are correlated but consistent, the co-
variance intersection (CI) [6] obtains a consistent and con-
servative estimate. However, the consistency assumption
may not hold in practice. In principle, if two measurements
can be regarded as being generated from the same model
(e.g., a Gaussian), then they are consistent. Otherwise they
are inconsistent. The measurements from different sources

can be very confident (i.e., small covariance) but are quite
different. They do not agree with one another and it makes
less sense to fuse them together forcefully. Measurement
inconsistency fails both the BLUE and CI.
Indeed, this problem is not uncommon in computer vi-

sion applications. For example, a wrong dynamic predic-
tion in Bayesian visual tracking is very likely to be in-
consistent with the detected image observations. This is
especially true when the target presents sudden dynamic
changes. Such kind of inconsistency shall fail Kalman filter-
ing that is based on BLUE. In part-based tracking, the mea-
surements of different parts may be conflicting when some
parts are distracted by camouflages. The aperture problem
in motion estimation is another example [1].
Unfortunately, the handling of inconsistency is not well

addressed in the literature. Therefore, it is desirable to carry
out some basic study of inconsistency in order to identify
the solution to robust measurement integration. We are par-
ticularly interested in answering two questions: (a) how can
we detect inconsistency from the measurements? And (b)
how can we handle it in integration? We need to develop
principled criteria to characterize inconsistency and develop
efficient method to detect and resolve it.
This paper describes a novel distributed integration ap-

proach based on the theory of Markov networks. Although
Markov networks were widely applied to solve visual infer-
ence problems [2, 10, 13], the study of information fusion of
the inference over Markov networks is largely remained un-
explored. We proved a new theorem that provides two alge-
braic criteria to examine the consistency and inconsistency
for pair-wise measurements. In addition a general criterion
is proposed to detect inconsistency in a general setting.
Since the presence of inconsistency implies the presence

of false or outlier measurements, our method can automat-
ically identify the inconsistent measurements and eliminate
the false ones for further integration. Based on the pro-
posed integration approach, we have developed a robust
part-based tracking algorithm in which measurements of
various parts are robustly integrated for tracking, even when
there exists some inconsistent ones.
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There are some previous works that were aware of the in-
consistency problem such as the covariance union (CU) [12]
and the variable bandwidth density fusion (VBDF) [1].
They either increase the covariance of the integrated es-
timate to achieve covariance consistency with each of the
integrated measurements [12], or seek for the most salient
mode across all scales of the measurements kernel den-
sity [1]. None of them provides a principled criterion to
evaluate measurement inconsistency, i.e., they are not able
to determine when two measurements can be regarded as
being obtained from one model.

2 Formulation of multi-source integration

Markov network provides a principled methodology for
the distributed integration of multiple sources. The joint
posterior defined on a Markov network is

(X|Z) = 1 Y
{ } E

(x x )
Y
V
(x z ) (1)

where is a normalization constant, X = {x : =
1 }, Z = {z : = 1 } and is the number
of sources modeled in the Markov network.
Each x denotes the integrated estimate at node , and z

is the local measurement of source . Set V indicates the set
of {x z } pairs and each pair has a compatibility function
(x z ). Let x , z be in R , since the measurement is a
{z } pair, (x z ) is in nature a Gaussian, i.e.,

(x z ) =
1p

(2 ) | |e
( 1

2 (z x ) 1(z x )) (2)

Set E defines the neighborhood relationships in the Markov
network. If x is the neighbor of x , then x can provide a
predictive estimate (x ) for x . (x x ) is the compati-
bility function of the neighboring x and x , i.e., a Gaussian

(x x ) =
exp

n
(x (x )) (x (x ))

2 2

o
p
(2 )

(3)

=
exp

n
(x A x ) (x A x )

2 2

o
p
(2 )

(4)

which indicates if x and (x ) can be regarded as being
drawn from one common model and 2 is the scalar vari-
ance. When is nonlinear, we linearize it by Taylor ex-
pansion, i.e., = (0) and A =

(x )
x |x =0 is the

× Jacobian. So we only consider the setting of Eq. 4.
The 2 indeed models the uncertainties between the local
estimate x and the neighborhood estimateA x + .
The integration of all the measurements is to perform

the Bayesian inference on Eq. 1. Nevertheless, when some

measurements are inconsistent with the others, it indicates
there are false ones. Blindly integrating them will jeopar-
dize the whole integration process. Let O = {O =
1 } be the binary set to indicate if z is false, i.e.,
O = 1 means it is and vice versa. O divides Z into two
sets, i.e., the false set ZO and the normal set ZŌ = Z \ZO.
Reliable integration requires eliminating the false ones, i.e.,
we should perform the Bayesian inference on

(X|ZŌ) =
1
0
Y

{ } E
(x x )

Y
z ZŌ

(x z ) (5)

where 0 is again for normalization. Before we can achieve
that, we need a rigorously criteria to judge inconsistency.
For integration, this concept is always qualitative [12], we
proceed to provide principled quantitative criteria.

3 Measurements inconsistency

Intuitively, assume A and be known, given all
the {z }, the estimate of 2 is a natural indicator of
whether x and A x + is consensus, i.e., if 2 is
very small, then they are consensus since (x x ) is ap-
proaching to a delta function, and vice versa. Denote
= { 2 : { } E}, Eq. 1 is indeed (X| Z). The

MAP estimate of x and the ML estimate of can be ob-
tained by the following Bayesian EM algorithm [8], i.e.,

x = ( 1 +
X
N( )

1
2 I)

1

× ( 1z +
X
N( )

1
2 (A x + )) (6)

2 =
1
(x A x ) (x A x ) (7)

Fixing , the E-Step in Eq. 6 obtains the MAP estimate
of x by fixed-point iteration. It is actually performing
the BLUE [7] fusion of the local estimate and neighbor-
hood estimate. Fixing X, the M-Step in Eq. 7 maximizes
(X| Z) w.r.t. . Combining the two steps together
also constitutes a fixed-point iteration for 2 . In practice,
we add a small regularization constant (e.g., 0 01) on the
right-side of Eq. 7 to avoid the numerical problem of zero.
Another intuition is that the consensus between the es-

timate of x and A x + is equivalent to the consis-
tency of the measurements {z } and {z }. There-
fore, when z and z are consistent, the estimate of x and
A x + will be consensus, i.e., they will be almost
the same. From Eq. 7, the estimate of 2 will always ap-
proach to zero, i.e., zero is the only fixed-point. On the
contrary, if they are inconsistent, then the estimate of x
andA x + may deviate from each other, i.e., the con-
vergent results of 2 may be non-zero. This indicates that

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



there exists non-zero fixed-point for 2 . These motivate us
for the following definition for inconsistency.

Definition 3.1 If zero is the only fixed-point for 2 in the
Bayesian EM, {z } and {z } are consistent; if there
exists non-zero fixed-points for 2 , they are inconsistent.

This definition motivates us to detect the inconsistency by
checking the convergent value of 2 . We thus have the
following criterion to test consistency.

Criterion 3.2 With a proper initialization, if the convergent
results of 2 in the Bayesian EM approaches to zero, then
{z } and {z } are consistent. If it converges to a
non-zero value, then they are inconsistent.

In practice, a proper initialization should guarantee 2 to
converge to a non-zero fixed-point if there exists one, such a
condition is necessary because zero is always a trivial fixed-
point (see App. A). For better mathematical understanding
of Definition 3.1, we proved the following Theorem 3.3 by
studying the convergence of the Bayesian EM for pair-wise
measurements. In Corollary 3.4, we also present a guidance
to choose the proper initialization for Criterion 3.2 .

Theorem 3.3 For a Markov network which models the in-
tegration of two sources, denote ẑ2 = A12z2 + 12, ˆ2 =
A12 2A12, P = 1 + ˆ

2 which is real positive definite,
the 2-norm conditional number and 2 the largest

eigenvalue ofP, and ˆ212 as the convergent results of 2
12 in

the Bayesian EM. We have

(a) There exists a zero and at least one non-zero ˆ212 if
1
(z1 ẑ2) P

1(z1 ẑ2) 2 +
p

+
1p (8)

(b) ˆ212 can only be zero if
1
(z1 ẑ2) P

1(z1 ẑ2) 4 (9)

(c) When there exists non-zero ˆ212, at least one of them is
such that 0 ˆ212

2

The proof is presented in App. A. Highlighted by Theo-
rem 3.3(c), we have the following corollary.

Corollary 3.4 Under the same condition of Theorem 3.3,
initializing 2

12 to be the largest eigen-value 2 or the
trace (P) of P in the Bayesian EM can guarantee a non-
zero convergence for 2

12 if there exists one.

The proof is presented in App. B. Theorem 3.3 and Corol-
lary 3.4 provide a sound mathematical justification of Def-
inition 3.1 about inconsistency and consistency. We denote
the left side of Eq. 8 and Eq. 9 as (z1 z2), which is in fact
a Mahalanobis distance. In principle, when (z1 z2) is too

large, statistically {z1 1} and {z2 2} are significantly
deviated from each other and thus they are inconsistent. In
this case there exists at least one non-zero convergence of
2
12. On the other hand, if (z1 z2) is small, statistically
{z1 1} and {z2 2} are not deviated from each other
and thus they are consistent. Then there will be only zero
convergence for 2

12.
Theorem 3.3(a) and (b) present two algebraic criteria

(sufficient conditions) to judge if {z1 1} and {z2 2} are
inconsistent or consistent, i.e., if Eq. 8 holds, then they are
inconsistent, and they are consistent if Eq. 9 holds. The fol-
lowing remarks would make the understanding more clear:

• Since = 2+
p

+ 1 4, if 4 (z1 z2)

, we can not directly tell if there exists a non-zero
ˆ212. In other words, we can not immediately decide
the consistency unless we run the Bayesian EM.

• In one dimensional case, i.e., = 1, we have = 4.
Then the inconsistency/consistency of z1 and z2 can
be determined by testing if (z1 z2) R 4.

• For 2, if is good to be near 1, then would
be very close to 4. The interval [4 ) would be very
tight. Then either or 4 can be approximately used
for detecting inconsistency similar to the case = 1.

• For 2, if is not good to be very large, then
À 4. We must run the Bayesian EM with a proper

initialization to judge the consistency when (z1 z2)
falls in [4 ).

• In a general setting, from Corollary 3.4, the largest
eigenvalue or the trace of + +

P
N( )

is a proper initialization, where N ( ) is the neigh-
borhood of and . The trace is preferable since it can
be more efficiently obtained.

4 Detection of inconsistency and falseness

Based on Criterion 3.2, let be the binary variable
to indicate whether {z } and {z } are inconsistent,
i.e., = 1 represents that they are and vice versa. Then
the criterion to identify the inconsistency is

=

½
0 2

1 2 (10)

where is the same regularization constant added in Eq. 7.
After the detection of inconsistency, the majority rule is

adopted to determine if {z } is false, i.e., if {z }
is inconsistent with the majority of its neighbors, then it is
false, and vice versa. Without any other knowledge, the
majority rule may be the best one to discriminate false mea-
surements. The basic assumptions are that there are at least
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three sources and the majority of the sources will obtain
correct and thus consistent measurements. Since O is the
binary variable to indicate if z is false, suppose part has
neighbors, then

O =

(
0

P
N( ) b 2 c

1
P

N( ) b 2 c
(11)

where b 2 c is the largest integer that is not larger than 2 .
However, when the degrees (i.e., the number of neigh-

boring nodes) of the nodes in the Markov network are
highly unbalanced, the majority rule may fail even if there
are less than 50% false measurements. One such example
would be that the connections of 6 nodes form a circle
and meanwhile the nodes x1, x2 and x3 are connected with
all the other nodes. Then if the measurements z1, z2 and z3
are false and thus inconsistent with the others, all the other
measurements will be regarded as “false” from Eq. 11.
Such a problem may not exist when the degrees of the

nodes are well balanced. This reveals to us that in order to
well exploit Eq. 11, we must construct a balanced Markov
network to integrate the multiple sources, i.e., the degrees
of the nodes must be close to one another.

5 Robust integration for visual tracking

Given all {z }s, we propose a two-stage robust inte-
gration approach:

1. False discrimination: Perform the Bayesian
EM on the original Markov networkM defined by
Eq. 1 and then identify the false measurements set ZO
based on Eq. 11.

2. Robust Integration: Remove all z ZO,
from M . This forms the reduced Markov network
M defined by Eq. 5. Perform the Bayesian EM on
M to obtain the estimates for all x with ZO being
removed from Eq. 6 and Eq. 7.

It is a completely distributed robust integration approach,
where all the operations are performed individually at each
node of the Markov network. After the false measurement
at one source node has been eliminated, as we can observe
from Eq. 6 (eliminating z and from it), the estimate of
x will rely purely on the neighborhood estimates.
It can be immediately applied to part-based visual track-

ing, where (x x ) captures the structured constraints be-
tween two neighboring parts. It is also general to incor-
porate different tracking algorithms to obtain the part mea-
surements {z }, such as particle filtering [5] and flow
based Lucas-Kanade tracker (LK) [9], etc..
There are three situations: (1) The measurements of all

the parts are normal and consistent. (2) The measurements

(a). 2
12 (b). 2

13 (c). 2
23

Figure 1. The change of 2 in the Bayesian
EM. First row: measurement z3 is false. Sec-
ond row: measurement z3 is missing. Third
row: all the measurements are consistent.

of some parts are missing, i.e., the (x z ) is a Gaussian
with large co-variance. This might happen when the visual
pattern of the target undergoes large variations but the visual
model does not capture it well. (3) The measurements of
some parts are inconsistent with those of the other. This im-
plies that somemeasurements are false and it may be caused
by either occlusion, clutter or camouflage in visual tracking.
Our robust integration approach handles all these three sit-
uations in a unified way.

6 Experiments

6.1 Illustrative numerical example

We adopt a 2 numerical example to demonstrate how
2 changes during the Bayesian EM. The Markov net-
work models three sources, which are neighbors of one an-
other. Without loss of generality, we set all A = I and

= 0. In all the simulations, we fix z1 = [2 1 2 2] ,
z2 = [2 2 2 1] and 1 = 2 = [2 0 1 0; 1 0 2 0]. We
then set {z3 3} to be different values to simulate the three
situations. Highlighted by Corollary 3.4, we always initial-
ize all 2 to be the trace of 1 + 2 + 3.
We firstly simulate the case of false measurement, e.g.,

z3 = [8 0 9 0] and 3 = [2 0 1 0; 1 0 2 0]. It is obvi-
ous that {z3 3} is false. The changes of 2

12, 2
13 and

2
23 are presented in the first row of Fig. 1. As we can ob-
serve, 2

12 converges to 0 01, and both 2
13 and 2

23 con-
verges to 18 25. Using Eq. 11, we easily identify z3 as
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(a). #16 (b). #66 (c). #88 (d). #90 (e). #102 (f). #184

Figure 2. Rresults with flow measurement: the red, green, and yellow color denote false, normal and
missing measurements, respectively.

a false measurement and it will be eliminated in the ro-
bust inference step. The MAP estimates before false elim-
ination are x1 = [2 83 2 87] , x2 = [2 83 2 87] and
x3 = [6 65 7 55] , which are erroneous and can be rec-
tified after we eliminated z3.
We then simulate the case of missing measurement, e.g.,

z3 = [8 0 9 0] with 3 = [10 0 1 0; 1 0 10 0]. Although
z3 is deviated from z1 and z2, its covariance 3 is pretty
large so it is still consistent with the others. The changes
of 2 are presented in the second row of Fig. 1. We can
observe that all of them converge to 0 01. In fact, the MAP
estimates are [2 89 2 94] for all x . We can see z3 has
been counted far less than the other two measurements and
the bias has largely been rectified in the estimates.
Last we simulate the easiest case where all the measure-

ments are reliable and consistent, e.g., z3 = [1 9 1 8] with
3 = [2 0 1 0; 1 0 2 0]. The change of 2 is presented in

the third row of Fig. 1. Again, they all converge to 0 01 as
expected. The final MAP estimates are [2 07 2 03] for all
x . We have extensively run the simulations with different
settings. The results are coherent with what are presented.

6.2 Robust part based tracking

6.2.1 Part based tracking with LK tracker

(a). LK#90 (b). Holistic PF#108

Figure 3. Typical tracking failure (a). LK track-
ing frame #90. (b). Particle filtering with
holistic appearance model frame #108

We first present the results using LK tracker [9] to ob-
tain the part measurements. The test video clip is from the
comedy cartoon “Tom and Jerry”. The target is the poor cat
Tom’s face. Those “good features” [9] in Tom’s face region

are detected to be the node of the Markov network. The face
region is manually cropped as a rectangle in the first frame.
Each node is associated with a 7 × 7 image patch (the

appearance model) centering at the feature point, and it is
connected with the three nearest nodes. The x is the 2
position of the th good feature. At the current frame, we
set A = I2 and set to be the relative position of part
and in the previous frame. Each z is obtained by the
flow based LK tracker. The is obtained by evaluating
the response distribution using SSD similar to that in [15].
We show some sample results in Fig. 2 (detailed results

in “330.wmv”). Our algorithm successfully identifies the
false, missing and normal measurements, as shown in red,
yellow and green, respectively. The video has 187 frames
and our algorithm obtains robust results. With 50 parts, it
runs at 10 frames/second without code optimization.
The pure LK tracker and the particle filtering (PF) with a

holistic appearance model are easy to fail in this video clip.
We show the typical failure cases in Fig. 3. The failures
are due to the dramatic expression change (Fig. 3(a)), the
sudden view changes and abrupt motion of Tom (Fig. 3(b)).
The number of particles for holistic PF is 200 and all algo-
rithms are initialized with the same rectangle.

6.2.2 Part based tracking with particle filtering

In this section, we present the tracking results using par-
ticle filtering [5] to obtain the part measurement. The x
is four dimensional (two for translations and two for scal-
ings). The target parts are selected manually and a fully
connected Markov network is adopted. TheA and are
estimated from some manually annotated images by least
square fitting. There is a residue error 2

0 from the least
square fitting. It was used as the 2 in the robust integra-
tion step, i.e., after removing the false measurements, we fix
2 = 2

0 and perform the Bayesian inference using Eq. 6.
Note each component has a template image patch to build
the appearance based likelihood model (x z ). The mean
estimates and the covariances of the posterior particle sets
are adopted as the part measurements {z } .
We present sample results on different video sequences

in Fig. 4 and Fig. 5. These test videos are typical, where
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(a). #8 (b). #86 (c). #128 (d). #303 (e). #710 (f). #808

(a). #116 (b). #128 (c). #138 (d). #144 (e). #148 (f). #154

Figure 4. Comparison of robust integration by the proposed approach and blind integration without
inconsistency detection and false elimination – First row: Proposed integrating approach (green-
normal, red-false, yellow-missing). Second row: Blind integrating.

(a). #8 (b). #54 (c). #88 (d). #249 (e). #256 (f). #290

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #399

Figure 5. Results with PF measurement: Results in the first row are enlarged for better visual quality
(green-normal, red-false, yellow-missing).

the targets present large appearance variations due to the
significant view, scale, lighting changes and the presence
of occlusions. Fig. 4 shows the results of tracking the face
of a kid. The first row of Fig. 4 shows the results of the
proposed approach, where inconsistent measurements are
detected and those false ones are eliminated. For compar-
ison, the second row of Fig. 4 shows the results of blind
integration without inconsistency detection and false elimi-
nation. Note how the tracking results have been distracted
due to the integration of those false measurements during
occlusion. The video has 820 frames.
In Fig. 5, we present the results on two car video se-

quences, which have 348 and 399 frames, respectively. De-
tailed video results are presented in “330.wmv”. We also
tested the accuracy of the results shown in the first row of
Fig. 5 on the two translation parameters. 300 frames are
labeled and the centroid points of the labeled rectangle is
adopted as the ground truth. For the tracking results, the

Figure 6. Root square error of the results on
the car sequences in the first row of Fig. 5.

centroid point of all the part rectangles is used as the overall
translation parameters. We then calculate the root square er-
ror at each frame, as shown in Fig. 6. The root mean square
error is 2 36 pixels with stand deviation 0 78 on 320× 240
images. This shows the accuracy of the proposed approach.
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(a). #208 (b). #317 (c). #430 (d). #466 (e). #588 (f). #673

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #322

Figure 7. Tracking a group of persons: First row: Our integrating approach (green-normal, red-false,
yellow-missing). Second row: Blind integration. The results are enlarged for better visual quality.

6.2.3 Tracking a group of objects

Adirect generalization of part based tracking is to track sev-
eral objects moving in a group. We tested the robust inte-
gration on part of a video sequence1 where three persons
walking in a corridor of a shopping mall. Again, a fully
connectedMarkov network is adopted and the measurement
of each person is obtained by particle filter. Some sample
results are presented in the first row of Fig. 7. In Fig. 7(b)
(first row), frame #317, the left person has been occluded
by another person and the measurement is false. Our algo-
rithm clearly identified and corrected it. For comparison,
we also present the results by blind integration in the sec-
ond row of Fig. 7. Note how it fails due to occlusion. The
video sequence of the three persons has 697 frames. More
video results can be found in “330.wmv”.

7 Conclusions and future work

We proposed a novel distributed framework for detecting
and integrating of inconsistent measurements. The model-
ing is based on Markov networks. The Bayesian EM infer-
ence reveals the iterative integration of the measurements,
from which principled criteria were developed to detect in-
consistency. We regard measurements which are inconsis-
tent with the majority of their neighbors as false. They
will be eliminated and the integration is performed again,
i.e., the estimates in those nodes with false measurements
will only rely on the measurements from its neighbors. We
applied the proposed robust integration framework for part
based visual tracking and promising results were obtained.
Future work may include the automatic part selection,

and better means to handle the integration in unbalanced

1From the EC Funded CAVIAR project/IST 2001 37540, found at
URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Markov networks. We are also interested in exploiting the
integration framework to other vision applications.
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A Proof of Theorem 3.3

Proof Fixing 2
12, Eq. 6 guarantees to iteratively obtain the

exact MAP estimate on the joint posterior Gaussian. We de-
note x̂2 =A12x2+ 12 and S = P+ 2

12I. The convergent
results in the E-Step in Eq. 6 is the same as,·

x1
x̂2

¸
=

·
( 2
12I+ ˆ2)S

1z1 + 1S
1ẑ2

ˆ
2S

1z1 + (
2
12I+ 1)S

1ẑ2

¸
(12)

Embedding it to the M-Step in Eq. 7, we have

2
12 =

1 2
12

2
12(z1 ẑ2) S

1S 1(z1 ẑ2) (13)

Since zero is a solution of 2
12 for Eq. 13, we only need to

analyze the existence of non-zero solutions of 2
12 for

1 2
12(z1 ẑ2) S

1S 1(z1 ẑ2) 1 = 0 (14)

Since P is real positive definite, there exists an orthonor-
mal matrix Q such that P = QD Q where D =

[ 2
1

2 ] and 2
1

2 0. Let =
2
1
2 .

We then have S = QD Q and S 1 = Q D 1Q,
where D = [ 2

1 +
2
12

2 + 2
12] and D 1 =

[ 1
2
1+

2
12

1
2+ 2

12
]. Denote z̃ = Q(z1 ẑ2) =

[ 1̃ ˜ ] , we have

1 2
12(z1 ẑ2) S

2(z1 ẑ2) =
1X

=1

2
12˜

2

( 2 + 2
12)

2
(15)

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



1
(z1 ẑ2) P

1(z1 ẑ2) =
1X

=1

˜2

2 (16)

From Eq 15, we only need to analyze the solution of 2
12 for

( 2
12) =

1X
=1

˜2

2 ·
1

2 +
2

2
12
+

2
12
2

1 = 0 (17)

We proceed to prove the three cases in Theorem 3.3.

(a). Eq. 8 means = 1 P
=1

˜2

2 2 +
q

2
1
2 +

q
2

2
1

4. When 2
12 = 1 = ( 2) 2

1 , for any , we
have 1

2+
2

2
12
+

2
12
2

1
2+0+ 2 =

1 . Thus ( 1)

1
P

=1
˜2

2 · 1 1 = 0. When 2
12 = 2 =

p
2
1

2 , for
any , 1

2+
2

2
12
+

2
12
2

1

2+
2

2
+ 2

2
1

= 1

2+

r
2
1
2 +

r
2

2
1

1 , thus ( 2)
1
P

=1
˜2

2 · 1 1 = 0. Since
0 2 1 and (·) is continuous, there exists a
3 where 2 3 1 and ( 3) = 0. This proves
Theorem 3.3(a).

(b). Eq. 9 means = 1 P
=1

˜2

2 4, then ( 2
12)

1
P

=1
˜2

2 · 14 1 = 4 1 0 for all 2
12 0.

Thus Eq. 17 has no non-zero solution. Theorem 3.3(b)
is proven.

(c). Let ( 2 ) = max ( 2
12), we show that it must

be such that 2 2 2
1 . Define ( 2

12) =
1 ˜

2

2
1

2+
2

2
12
+

2
12
2

thus ( 2
12) =

P
( 2
12) 1. Each

( 2
12) is monotonically increasing for 0 2

12
2

and monotonically decreasing for 2
12

2. There-
fore ( 2

12)must be monotonically increasing for 0
2
12

2 and monotonically decreasing for 2
12

2
1 .

This tells us that the global maximum of ( 2
12) can

only be taken in 2 2
12

2
1 , thus 2 2 2

1 .
The existence of a non-zero convergent value of 2

12

implies a non-zero solution for Eq. 17. We have
( 2 ) 0 otherwise ( 2

12) 0 for all 2
12 and

there is no solution for Eq. 17. Since (0) 1 and
( 2
12) is continuous, there must exist a 4 such that

0 4
2 2

1 and ( 4) = 0. This immediately
proves Theorem 3.3(c).

B Proof of Corollary 3.4

Proof The Bayesian EM constitutes a fixed-point iteration
of 2

12 in Eq. 13. From Theorem 3.3(c), when non-zero
fixed-points exist, at least one of them, ˆ212, is such that 0
ˆ212

2 (P). Then, if the fixed-point iteration

is initialized at 2 or (P), it can never surpass ˆ212 to
converge to zero since they are scalars. This indicates that
2 and ( ) are proper initialization for 2

12.
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