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ABSTRACT
Automatically discovering repetitive clips from large video
database is a challenging problem due to the enormous com-
putational cost involved in exploring the huge solution space.
Without any a priori knowledge of the contents, lengths and
total number of the repetitive clips, we need to discover all
of them in the video database. To address the large compu-
tational cost, we propose a novel method which translates
repetitive clip mining to the continuous path finding prob-
lem in a matching trellis, where sequence matching can be
accelerated by taking advantage of the temporal redundan-
cies in the videos. By applying the locality sensitive hash-
ing (LSH) for efficient similarity query and the proposed
continuous path finding algorithm, our method is of only
quadratic complexity of the database size. Experiments con-
ducted on a 10.5-hour TRECVID news dataset have shown
the effectiveness, which can discover repetitive clips of var-
ious lengths and contents in only 25 minutes, with features
extracted off-line.

Categories and Subject Descriptors
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Search and Retrieval
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1. INTRODUCTION
Recent research of repetitive clip discovery present many

potential applications in multimedia database, including com-
mercial recognition and detection [5], object skipping for
compression [2], news topic detection and tracking [11] [4],
news broadcast structure analysis [9] [7].
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Compared with video clip search, where an input query
is usually provided, repetitive clip mining is a more chal-
lenging problem because of its unsupervised characteristics
[8]. For example, it is generally a priori unknown (i) where
the repetitive clips are and (ii) how long they are; or even
(iii) whether such repetitive clips exist. Exhaustive search
through all possible clip lengths and locations is computa-
tionally demanding for large database, e.g., can be of com-
plexity O(N4) with database size N (see the Appendix).
One possible solution to address the large computational
cost is through translating video sequences into symbolic se-
quences, where efficient matching methods can be applied in
finding video repetitions [7]. However, the quantization er-
rors introduced in such a translation may significantly affect
the performance, especially when the inappropriate cluster
number is selected. In [9], a self-similarity matrix is pro-
posed for video repetition mining, with computational cost
of complexity O(N3) due to the exhaustive search of the pos-
sible clip lengths. Some other repetition discovery methods
in image or video shot level, such as near-duplicate image
detection [11] and identical shot detection [4] [6], cannot be
directly extended to repetition mining in video clip level,
where repetitive clips are likely of various lengths, and are
composed of different number of shots.

We propose an efficient repetitive clip mining method in
this paper, with complexity less than O(N2). Firstly we
chop the long video sequence into fixed length video seg-

ments (VS) with overlaps. The similarity between two VS
is measured based on their visual signatures. Such signa-
tures combine the color and spatial-temporal information
together, thus are discriminative features and are also ro-
bust to video coding variations. For each VS, we search
for its best matches in the database, through the ε-nearest
neighbor (ε-NN) query. Once obtained the ε-NN query re-
sults of each VS, a matching trellis can be built as illustrated
in Fig. 1. The repetition mining problem can thus be for-
mulated as a continuous path finding problem in the trellis.
Through searching for the continuous paths in the trellis,
our method can (1) automatically discover all the repetitive
clips without knowing the total number of them in advance;
and (2) dynamically determine the length of each repetitive
clip instead of exhaustive search. By applying Locality Sen-
sitive Hashing for efficient ε-NN query, building the trellis
is of complexity less than O(N2). The proposed continu-
ous path search is of complexity O(NK2). Thus the total
complexity of our method is less than O(N2). We introduce
our algorithm in Sec. 2, followed by the experiments (Sec. 3)
and conclusion (Sec. 4).
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Figure 1: Mining repetitive clips by searching “continuous” paths. Each node in the trellis denotes a fixed-length

video segment (VS) labeled by its temporal index. The VS sequence in the top-row denotes the video database of

length N , and each column represents the matches of the VS in the top-row. Take the first column for example, the

1st VS has four matches in the database: {120th, 501st, 324th, 971st}. There are four continuous paths (highlighted) in

the trellis, where each path is composed of a sequence of VS with consecutive temporal indices. These continuous

paths indicate repetitions of the corresponding sequence in the top-row. For example, the VS sequence [2 − 6] in the

top-row has two repetitions at positions [501 − 505] and [970 − 974] (blue path). The gray paths ([334 − 335] and [680 − 681])

are considered invalid because they are not long enough.

2. ALGORITHM
2.1 Visual signature extraction

For video matching, it is desirable that the visual features
are robust under video coding variations, such as compres-
sion rate, frame size and color format changes. Moreover,
the visual features should also be unique enough to identify
different videos. Considering the above two requirements,
we choose two types of compact visual signatures to charac-
terize each VS: (1) color signature and (2) spatial signature.

Color Signature

To characterize the color information of a VS, we use three
average color histograms of all its frames, corresponding to
three color channels. Let hC

i denote the color histogram
of the ith frame under color channel C ∈ {Y, Cb, Cr}, the
average color histograms (normalized) to characterize a VS
are denoted as:

H
C =

1

L

L�

i=1

hC
i , and

B�

j=1

H
C(j) = 1, (1)

where L is the length of the clip, B = 24 is the number of
bins of the histogram. The summation of two histograms is
the summation of each corresponding bin.

Spatial Signature

To compensate for the spatial information missing from the
color signatures, we apply the ordinal measure method [10]
to generate spatial signatures. Firstly, an image is parti-
tioned into m × n equal size grids. We then calculate the
average intensity value of each of the m × n sub-images.
By performing the ordinal measure, these sub-images are
ranked based on their intensity values. The brightest sub-
image, which is of the highest intensity, is ranked as the 1th,
and the darkest sub-image is ranked as the (m×n)th. In our
implementation, we partition an image into 2×2 sub-images,
hence there are in total (2 × 2)! = 24 possible ordinal mea-
sure results for an image. We associate each possible ordinal
measure result to an integer pattern code p. Therefore an
image I can be mapped into one of these 24 pattern codes af-
ter ordinal measure: M(I) = p ∈ {1, 2, ..., 24}, where M(·)
is the ordinal measure function. If two images are identical,

then their ordinal measure values should also be the same.
Similar to the color signatures, such spatial signatures are
invariant to coding variations. Moreover, the spatial signa-
tures are insensitive to global color shifting, i.e., the rank of
the sub-images are stable.

In order to obtain more distinguishable spatial signatures
to identify different images, we apply three different spa-
tial layouts when partitioning an image, which is illustrated
in Fig. 2. An image is mapped three times, corresponding
to ordinal measure functions: M1(·), M2(·) and M3(·) re-
spectively. Given two different images Ia and Ib, the error
probability that all of their three hash values are identical
is as small as:

P [M1(Ia) = M1(Ib),M2(Ia) = M2(Ib),M3(Ia) = M3(Ib)]

= (
1

(m × n)!
)3 = (

1

24
)3 = 0.000072,

where we assume M1, M2 and M3 are independent.

1


4  3  2  1


4


2
 3


1


4

3

2


Ordinal


Measure


M

1

(I) = 2


  M

2

(I) = 24


M

3

(I) = 1


Pattern


Code


Look-up


Table


Figure 2: Ordinal measure for a single image under

three different spatial layouts: 2 × 2, 1 × 4 and 4 × 1.

To characterize a VS of length L, we apply the ordinal
measure to every frame and accumulate all these pattern
codes M(Ik)(k = 1, 2, ..., L) to form a histogram. As we
have three spatial layouts, there are three corresponding pat-

tern histograms (normalized):

B�

j=1

J
M (j) = 1, M ∈ {M1,M2,M3}, (2)

where M denotes the spatial layout, B = 24, and each
bin JM (j) presents the percentage of frames that share the



same pattern code j. These pattern histograms describe the
spatial-temporal pattern of the VS.

Finally, to combine the color and spatial signatures, we
concatenate the 3 color histograms and 3 spatial pattern his-
tograms into a single normalized histogram F. Since each
individual histogram is of 24-dimension, finally a VS is char-
acterized by a feature vector: F ∈ Rd (d = 24 × 6 = 144).

2.2 Repetitive clip discovery
To build the trellis in Fig. 1, the first step is to find the

matches of each VS to establish columns in the trellis. We
briefly explain the ε-NN query problem as follows. Suppose
the video database is represented as a set of VS: V = {vi}

n
i=1,

where i denotes the temporal index. Given a query vi ∈ V,
namely a feature vector Fi ∈ Rd, our task of ε-NN query is
to find vj ∈ V, such that ‖Fi − Fj‖ ≤ ε, where ε ≥ 0 is a
matching threshold and ‖·‖ denotes the Euclidean distance.
To avoid redundant matches caused by segment overlaps,
e.g., vi may match vi+1 due to heavy overlaps, we filter
those temporal neighbors from the ε-NN query results for
each VS. Formally, we define the retrieved ε-NN of a VS vi

as its match-set Ni, which corresponds to the ith column in
the trellis:

Ni = {vj : ‖Fj − Fi‖ ≤ ε, |i − j| ≥ τ}, (3)

where we set τ = 15 seconds as the threshold. It is worth
noting that exhaustive linear search for ε-NN is computa-
tionally expensive for large database (e.g. O(N)), and we
need to query N times. To speed up the ε-NN search, we
apply the Locality Sensitive Hash (LSH) method [1], which
provides a randomized solution for the high-dimensional ε-
NN query problem. Instead of searching for the exact ε-NN,
LSH searches for the approximate ε-NN and thus can trade
the performance for the search speed. Sub-linear complexity
can be obtained by using LSH for ε-NN query.

After building the matching trellis, the next step is to find
continuous paths. However, discovering all the continuous
paths through an exhaustive check is computationally ex-
pensive. Suppose K is the average length of the columns
(i.e. the average size of the ε-NN set) and N is the length
of the trellis, there are in total KN full paths (of length
N) in the trellis. For each full path, we need to check if it
contains short continuous sub-path. Thus the total cost for
exhaustive check is O(NKN ).

Motivated by the idea of dynamic programming, we pro-
pose a novel method that can efficiently discover continuous
paths in O(NK2). For each pair of neighboring vi and vi+1

in the original VS sequence, we compare their match-sets
Ni and Ni+1 to check if their match-sets contain continuous
pairs:

∃vk ∈ Ni, vl ∈ Ni+1, such that L ≤ l − k ≤ U, (4)

where k and l are the temporal indices of the continuous
pair; L and U are the continuation requirements. Fig. 1
gives an example when applying strict requirement L =
U = 1: vk and vl should be consecutive VS. For exam-
ple, there are three continuous pairs between match-sets
N2 and N3: (501, 502), (971, 972), (334, 335), where N2 =
{501, 120, 567, 334, 970} and N3 = {300, 335, 971, 502}. Each
found continuous pair (vk, vl) either initializes a new contin-
uous path or is a continuation of an existing path. At each
time step, we check the existing paths to see if they can
grow in the next step, i.e., can find a continuous pair in the

next step. If an existing continuous path cannot grow in the
next step, it will be terminated. To finish the whole trellis,
we need to check N − 1 steps, where for each step we need
to compare K2 pairs (on average) to find continuous pairs.
Therefore the total cost to discover all the continuous paths
is of complexity around O(NK2).

When a continuous path is discovered in the trellis, we
represent it by its start and end frame: P = [s, e], s, e ∈
V. A continuous path is valid only if it lasts long enough.
Finally we collect all the valid continuous paths to form the
candidate set P = {Pi : |Pi| ≥ λ}T

i=1, where λ = 5 seconds
is the minimum valid length. To recover all repetitive clips
in the original video sequence O = {Ii}

N
i=1, we map each

continuous path Pi ∈ P back to O. For example, given
a continuous path P = [s, e] ∈ P , we vote for each frame
s ≤ Ii ≤ e in the original sequence {Ii}

N
i=1. The more votes

a frame Ii receive, the more repetitive instances it has. For
a VS that does not repeat in the database, none of its frames
will be voted.

3. EXPERIMENTAL RESULTS
The video database contains 22 streams of half-hour ABC

news video collected from the TRECVID dataset. All these
half-hour segments are combined into one video sequence
with total length of 10.5 hours. The frame rate is 30 fps and
frame size is 352× 240 or 352× 264. We also collect a set of
47 commercial clips from the video database for evaluation.
The length of these commercials varies from 15 to 60 sec-
onds. Each of these commercials has 2 to 8 re-occurrences
in the database and we obtain the ground truth through ex-
haustive search. These 47 repetitive clips have in total 153
instances in the database, which may suffer from slight color
variations. Our task is to discover all these repetitive com-
mercials. As commercials contain dynamic contents, it is
difficult to obtain accurate shot boundaries. Consequently,
shot-based approach is not suitable in discovering the whole
commercial clip. An ε-NN trellis is built for this 10.5-hour
sequence, where each node denotes a VS of 8 seconds with
an interval of 0.4 seconds. Thus each VS has an overlap of
7.6 seconds with its neighbors. We have in total N = 94, 512
VS in the database. All the experiments were performed on
a standard Pentium-4 3.19GHz PC with 1 GB RAM. The
algorithm is implemented in C++.

3.1 Computational cost
The computational costs of our mining method are from

two aspects: (1) building of the ε-NN Trellis, and (2) con-
tinuous path search through the trellis. Table 1 compares
the computational CPU cost of (1) using our proposed algo-
rithm, (2) the self-similarity matrix method proposed in [9]
and (3) the naive method (discussed in the Appendix) but
using a fast linear search method in [3], which can search
for a clip in a 24-hour video database in less than 1 second.
We estimate the CPU cost of method [9] by assuming the
possible clip lengths it needs to exhaustively check are from
5 to 125 seconds.

The ε-NN query speed is very fast by applying LSH with
ε = 0.1. In our database of size N = 94, 512, the average
time for each ε-NN query is only 15 milliseconds. The aver-
age number of ε-NN found for each VS is around K = 24.
Thus the trellis is of size approximately K×N = 24×94, 512.
Compared with [9], which uses an N ×N self-similarity ma-
trix to describe the relations between VS, our trellis is a more



compact representation, of size around K × N (K << N).
In discovering continuous paths from the matching trellis,
the continuous requirements in Eq. 4 are set as: L = 0 and
U = 2.

Table 1: Computational Cost Comparison

Method Complexity CPU Cost∗

build of the ε-NN Trellis < O(N2) 1357.7 sec
continuous path finding O(NK2) 101.4 sec

proposed method (total cost) < O(N2) 1459.1 sec
self-similarity matrix [9] O(N3) 689 min

naive method [3] O(N4) 41335 h
∗ file I/O cost is not included

3.2 Repetitive clip mining results
We evaluate the performance of our method in both sim-

ulated data and real TRECVID news video data. The simu-
lation is on a 5-hour video. We manually insert 10 different
clips into this 5-hour video database. Each clip is 30-second
long and has 5 re-occurrences in the database. A continuous
path is valid only if it can last for 10 seconds. We evaluate
the performance in the simulated data by the precision and
recall scores as follows:

Recall = #detects/(#detects + #miss detects);

Precision = #detects/(#detects + #false detects).

For the TRECVID news video data, we evaluate the per-
formance by comparing the discovered repetitive video se-
quences with the ground truth obtained from exhaustive
search for the 47 commercials. The recall score reflects how
many re-occurrences of these 47 commercials are discovered;
however, the precision score is not provided because some
discovered repetitions, such as anchor person shots, are not

included in our 47-commercial set. Fig. 3 presents some
repetitions discovered in the TRECVID dataset. It is worth
noting that the anchor person shots are actually not identi-
cal from each other, e.g. they are of various lengths and re-
porting different news. Because it is hard to decide whether
anchor person shots should be treated as correct detections,
which is application dependent, we exclude the precision
score since it cannot fairly evaluate the performance.

Figure 3: Repetitive clip discovery examples from the

TRECVID dataset: anchor person shot 1 (left), anchor

person shot 2 (middle) and commercial (right).

The following table 2 shows the recall scores for the sim-
ulated and real data; and the precision score for the simu-
lated data only. The miss detection is mainly caused by the
discontinuation in finding continuous paths. Many possible
affects can introduce such discontinuations, such as imper-
fectness of the visual signatures due to color and frame size
variations, and miss retrieval of LSH.

4. CONCLUSION
This paper presents a novel repetitive clip mining algo-

rithm for video database with quadratic complexity. The

Table 2: Performance Evaluation
Data Precision Recall

Simulated Data (5 h) 93.1% 95.0%
TRECVID video (10.5 h) N.A. 86.3%

algorithm is fast, feature independent and fully automatic.
Although our experiments only dealt with video data, the
proposed method can be easily extended to other types of
sequence database for mining repetitive temporal patterns,
where the only requirement is to define the similarity be-
tween segments.

APPENDIX
Let N denote the database size, we need to check for candi-
date clips of various lengths and at any possible locations for
repetition mining. The total number of candidates for repet-
itive clips can be counted as follows, where N−K+1 denotes
the possible number of locations for the clip of length K:

N�

K=1

(N − K + 1) × K =

N�

K=1

((N + 1)K − K2)

=
(N + 1)(N + 1)N

2
−

N(N + 1)(2N + 1)

6

=
N3 + 3N2 + 2N

6
.

Thus our candidate pool is of size O(N3). For each can-
didate, we need to search for the whole database to find
re-occurrences. Finally the total cost for the naive method
is of complexity O(N4).
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