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Abstract

Effective image prior is necessary for image super res-
olution, due to its severely under-determined nature. Al-
though the edge smoothness prior can be effective, it is gen-
erally difficult to have analytical forms to evaluate the edge
smoothness, especially for soft edges that exhibit gradual
intensity transitions. This paper finds the connection be-
tween the soft edge smoothness and a soft cut metric on an
image grid by generalizing the Geocuts method [5], and
proves that the soft edge smoothness measure approximates
the average length of all level lines in an intensity image.
This new finding not only leads to an analytical character-
ization of the soft edge smoothness prior, but also gives an
intuitive geometric explanation. Regularizing the super res-
olution problem by this new form of prior can simultane-
ously minimize the length of all level lines, and thus result-
ing in visually appealing results. In addition, this paper
presents a novel combination of this soft edge smoothness
prior and the alpha matting technique for color image SR,
by normalizing edge segments with their alpha channel de-
scription, to achieve a unified treatment of edges with dif-
ferent contrast and scale.

1. Introduction
The objective of image super resolution (SR) [18] is to

obtain high quality images from low resolution inputs. It
is widely applicable in video communication, object recog-
nition, HDTV, image compression, et al. There are many
cases that only one low resolution image is available. In
this paper, we mainly focus on super resolution (or image
hallucination) from one single low resolution input image.

Generally speaking, low resolution images are generated
by smoothing and down-sampling target scenes with low-
quality image sensors. The task of recovering the original
high resolution (HR) image from a single low resolution
(LR) input is an inverse problem of this generation proce-
dure. One criterion of solving this inverse problem is to
minimize the reconstruction error. In other words, the re-

sult which can produce the same low resolution image as
the input one is preferred. Back-projection [17] is proposed
to minimize the reconstrution error efficiently by an itera-
tive algorithm. However, since a lot of information is lost
in the generation process, this problem is severely under-
determined. There might be multiple solutions to minimize
this error, even for multiple LR input images [2, 22]. To
overcome this difficulty, image priors need to be incorpo-
rated for regularizing the inverse problem.

One of the most widely used priors is the edge smooth-
ness prior that prefers a HR image with smooth edges. This
is reasonable, because the human perception seems to favor
this choice. Given the severely under-determined nature of
super resolution, such a prior is especially important for get-
ting rid of chessboard effect at region boundaries, which is
a common drawback of simple interpolation-based method,
like bilinear or bicubic. However, in practice, there are two
main difficulties in incorporating this prior:

1. An edge in an intensity image is much more complex
than a single geometric curve. In reality, an image edge
exhibits a gradual intensity transition. We call it a soft edge
in our paper (see Fig. 1(b) for an example). Working on soft
edges is more meaningful for super resolution because they
are more realistic in practice. But it is difficult to quantify
such a prior and evaluate the smoothness of soft edges.

2. Natural color images show a large variety of edges
with different contrast and scale. Besides, the edges are de-
termined simultaneously by information from all three color
channels. How to explore the 3D color information and treat
those edges uniformly is important for color image SR.

This paper mainly addresses the two issues mentioned
above. The main contributions are as follows:

1. For an ideal curve, or a hard edge, Geocuts [5] method
can approximate its Euclidean length with a cut metric on
image grid. We are not only simply introducing this to su-
per resolution, but more importantly, we extend this idea to
intensity images by defining a soft edge cut metric to mea-
sure the smoothness of soft edges. We prove that this metric
can approximate the average length of all level lines in the
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Figure 1. Examples of (a) hard edge, (b) soft edge, and (c) level
lines (boundary between different intensities) for (b) with quanti-
zation step 64 on image intensity.

intensity image, where level line means boundary between
pixels with intensity smaller and larger than a given value
(an example is shown in Fig. 1(c)). This extension is signif-
icant because it leads to a new analytical form for the soft
edge smoothness prior. The new smoothness measure can
be used to regularize the objective function of the SR task,
and results in impressive results.

2. To apply the soft edge smoothness prior on natural
color images, a novel approach is proposed based on alpha
matting technique. We show that the problem of color im-
age super resolution can be transformed to a combination of
alpha matting and alpha channel super resolution. A closed
form alpha matting solution [20] can help to describe each
edge segment in a unified way by alpha channel.

The benefits of our SR algorithm are three-fold: (1) By
integrating the soft edge smoothness measure into an ob-
jective function, the length of all image level lines can be
minimized simultaneously. Thus result with smooth edges
can be obtained. The resulting edges are also sharp due to
the edge-preserving property of the proposed prior term. (2)
Both image likelihood and image prior terms are integrated
together in a single objective function, which can be opti-
mized efficiently. (3) Alpha channel SR utilizes color infor-
mation from all three channels simultaneously, and the edge
description by an alpha channel provides a unified treatment
of edges with different contrast and scale.

The related work is briefly summarized in Sec. 2. The
main theoretical results are presented in Sec. 3, and its ap-
plication on alpha channel color image SR is described in
Sec. 4. Experiments are shown in Sec. 5 and Sec. 6 con-
cludes this paper.

2. Related work
Various image priors have been considered in the lit-

erature of super resolution. Two of the most extensively
studied image modeling priors are image smoothness prior
and edge smoothness prior. Neighboring pixels are likely
to have the same color. Various filtering/interpolation al-
gorithms (e.g., bilinear and bicubic interpolation) tend to
produce smooth HR images. Another way is trying to
minimize the image derivatives [11, 13]. For one dimen-
sional case, a linear closed form solution is derived in [8].
However, the image smoothness prior is not valid at re-
gion boundaries. To preserve edge sharpness, edge directed
interpolation [1, 21] is proposed to fit smooth sub-pixel
edges to the image and use these edges to prevent cross-

edge interpolation. Locating high precision edge position is
also necessary for removing the chessboard effect, which is
another common problem for interpolation-based method.
The edge smoothness prior is usually used to handle this
problem. Smooth curves are preferred, which is consistent
with human perception. Level-set method [24] can recon-
struct smooth approximation of all of the image level-set
contours simultaneously to refine the edges. To avoid over-
smoothness, hard constraints are introduced to model the
image likelihood. The HR curves can also be inferred by
multi-scale tensor voting method [28], and the HR image
is recovered accordingly by a modified back-projection it-
eration. All three color channels are considered together.
Snake-based vectorization is used in [25] to achieve smooth
boundaries for icon image SR. There are also some other
image modeling priors for the SR taks, such as the two color
image prior [3] and the sparse derivative prior [29].

Instead of image prior modeling, many researchers use
image exemplars directly. Candidates for each position
are selected based on the middle frequency information.
Spatial consistency is enforced by pairwise interaction
between neighboring positions under a Markov Random
Fields framework [14, 15, 23]. The final discrete opti-
mization problem is usually solved by belief propagation.
This method is extended to video SR in [4]. The domain-
specific case is discussed in [19]. Two key issues usually
need to be addressed for exemplar-based method: one is
how to find HR candidate patches efficiently, Locality Sen-
sitive Hashing [30] and KD-tree [19] are applied to speed
up the searching; the other is how to solve the optimization
problem efficiently, image primal sketch [27] method can
simplify the problem to a chain structure. Learning algo-
rithms, such as locally linear embedding [10], can also be
used to infer the high frequency information.

3. Soft edge smoothness prior
3.1. Geocuts

Our work is motivated by [5]. To make this paper self-
contained, we briefly summary the basic idea of [5].

Given a weighted grid-graph G = 〈V, E〉, and a curve C
in R2, assume EC is the set of edges intersecting with this
curve. The cut metric of C is defined as

|C|G =
∑

e∈EC

we, (1)

where we is the edge weight. |C|G is the weight summation
of the edges intersecting with C.

Define the neighborhood system of a regular grid G as
a set of vectors NG = {ek | 1 ≤ k ≤ nG}, where ek are
ordered by their corresponding angle φk w.r.t. the +x axis,
such that 0 ≤ φ1 < φ2 < ... < φnG < π. Besides, ek

is chosen as the k-th nearest neighbor group in G . Some
examples are shown in Fig. 2.



Figure 2. Neighborhood system for nG = 2, 4 (left) and nG = 12
(right, only the neighbors on the upper plane are shown).

Assume |C|E is the Euclidean length of curve C, ∆φk =
φk+1 − φk (set φnG+1 = π), then by setting

wk =
δ2∆φk

2|ek| , (2)

The follow theorem is derived in [5]:

Theorem 1 [5] If C is a continuously differentiable regu-
lar curve in R2 intersecting each straight line a finite num-
ber of times then

|C|G → |C|E
as δ, supk |∆φk|, and supk |ek| get to zero.

In other words, the length of a curve can be approxi-
mated by its cut metric. This method can be generalized to
3D, and arbitrary Riemannian metric. The global minimum
can be found in a close linear time by the Graph Cuts [6, 7]
method. As its name suggested, Geocuts reveals the under-
lining relationship between two well-known segmentation
algorithms, i.e., Geodesic active contours and Graph Cuts.
Geocuts also provides a principled solution to choose the
edge weights for using higher order neighborhood.

By integrating the cut metric into an objective func-
tion, the edge smoothness prior can be added. Curves with
smaller Euclidean length are preferred by minimizing the
objective function, thus smooth curves can be obtained.

3.2. Smoothness measure for soft edges
Now, we present our generalization of Geocuts method.
In fact, cut matric can be defined on any set of disjoint

closed curves C, or equivalently, a binary valued character-
istic function FC(p) on R2 which equals to 1 inside C, and
0 otherwise. Geocuts is only applicable for a binary valued
function FC(p) on image plane. To handle the soft edge,
which is a gradual transition on an intensity image, we first
rewrite the definition of cut metric in Eqn. 1 w.r.t. curve C
(or equivalently, function FC) as follows

|C|G = |FC |G =
∑

1≤k≤nG

(
wk

∑

epq∈Nk

|FC(p)− FC(q)|),

(3)
where Nk contains all node pairs in the k-th group of neigh-
borhood. Although Eqn. 3 is equivalent to Eqn. 1, it is easier

to be generalized to a real valued function S on R2. We de-
fine the soft cut metric for S w.r.t. grid-graph G as follows

|S|G =
∑

1≤k≤nG

(
wk

∑

epq∈Nk

|S(p)− S(q)|). (4)

By uniformly quantizing the function values with step
1
n , S can be approximately by Sd, which takes values from
{0, 1

n , 2
n , ..., 1}. The soft cut metric of Sd can be simi-

larly defined by Eqn. 4, by replacing S with Sd. More-
over, Sd can be equivalently described by a set of level lines
l1, l2, ..., ln, where li is the boundary between points with
Sd values < and ≥ i

n , in R2. From Theorem. 1, we know
that the length of li can be approximated by its cut metric
|li|G . Based on this, the following theorem can be proved.

Theorem 2 Assume S is a continuous differentiable regu-
lar function on R2, which ranges in [0, 1], and Sd discretize
S with step 1

n , then the average length of all level lines of
Sd w.r.t. 1

n can be approximated by the soft cut metric of
Sd, or

|Sd|G → 1
n

∑

1≤i≤n

|li|E (5)

under the same conditions of Theorem. 1

The proof is presented in Appendix. A. Theorem. 2 gen-
eralizes Theorem. 1 to be applicable to soft edges instead
of hard boundaries. It implies that by minimizing the soft
cut metric in Eqn. 4, the length summation of discrete level
lines can be minimized. So adding this metric as a regularity
term can help to obtain result with smaller length of image
level lines, thus the soft smoothness prior can be integrated.

3.3. Application on super resolution
In theory, the generation process of LR image can be

modeled by a combination of atmosphere blur, motion blur,
camera blur, and down-sampling. By simplify the first 3
factors with a single filter G for the entire image, the gener-
ation process can be formulated as follows

I l = (Ih ∗G) ↓, (6)

where Ih and I l are the HR and LR images respectively, G
is a spatial filter, ∗ is the convolution operator, and ↓ is the
down-sampling operator.

The soft cut metric is directly applicable to the problem
of SR, by defining the objective function as

Ih = arg min
I

(
d(I l, I) + λ|I|G

)
, (7)

where d(I l, I) = ||I l − (I ∗G) ↓ ||22 is the likelihood term.
It is the square of L2 distance between the given LR image
I l and synthesized LR image by I . |I|G is the smoothness
prior term for soft edge defined by Eqn. 4. λ is a parameter
to balance these two terms.

The reasons that different norms are used for likelihood
and prior terms are as follows: (1) The L2 norm is used for
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Figure 3. (a) LR input image, (b), (c), (d) are the SR results (×3)
with soft edge smoothness prior when nG = 2, 4, 12 respectively
(λ = 0.01).

likelihood term since it punishes more on large reconstruc-
tion error than L1. (2) Minimizing the L1 norm of gradi-
ent is edge-preserving, it does not severely penalize steep
local gradients, while minimizing the L2 norm of gradient
usually leads to a graduate transition across edges, and the
geometrical explanation in Theorem 2 does not hold for it.

The objective function is optimized by steepest descent
algorithm. By putting the same group of neighborhood to-
gether, it can be implemented efficiently as follows:

It+1 = It − β(pre + ps), (8)

where
pre =

(
(It ∗G) ↓ −I l

) ↑ ∗G, (9)

ps = λ
∑

k

wksgn
(
It − ItDek

)
(1−Dek

), (10)

β is the descent step, pre is similar to the update function
of back-projection [17], except the back-projection kernel
is chosen the same as the blur filter. ↑ is the up-sampling
operator. Dek

is the displacement operator, which trans-
lates the entire image by ek, and sgn is the sign indication
function. ps is the derivative of the soft edge smoothness
measure defined by Eqn. 4. In fact, each term in Eqn. 4 will
produce a +wk or −wk change for the two corresponding
pixels. In Eqn. 10, the sgn function determines the +/−,
and 1−Dek

can apply the changes to the two corresponding
pixels. This updating strategy is the same as in [13]. I0 is
set to the bicubic interpolation result in our experiments.

For color images, in this section, we simply apply our
method on three color channels separately. Our novel treat-
ment of color images will be presented in Sec. 4.

3.4. Results and discussions
Fig. 3 illustrates the necessity of using higher order

neighborhood. Metrication effect can be observed for small
nG . There are some 45o artifacts in Fig. 3(c), since 8-
neighborhood system is used for it.

Fig. 4 shows the result comparison of different parame-
ter settings with a LR icon image (icon image SR is also
studied in [25]). Larger nG is applied in (b) than in (e),thus
more smooth edges are produced. In (c), smaller λ is used
than in (b), thus less weight is put on the smoothness prior,
this makes the result look over-sharpened on high contrast
edges, while better result is archived at low contrast part
(such as the foot). In (f), larger λ is used than in (b), the
edge smoothness prior is over stressed, all boundaries are

(a) (b) (c)

(d) (e) (f)

Figure 4. Result comparison of SR by soft edge smoothness prior
with different parameters (×3), (a) LR input image (20 × 20),
(b) λ = 0.01, nG = 12, (c) λ = 0.001, nG = 12, (d) bicubic
interpolation, (e) λ = 0.01, nG = 2, (f) λ = 0.1, nG = 12.

Figure 5. More SR results (×3) with soft edge smoothness prior,
1st column: LR inputs, 2nd column: SR results (λ = 0.01, nG =
12), 3rd column: bicubic interpolation.

very smooth, but the result is blurry. Generally speaking,
the effect of the parameters can be summarized as follows:
(1) larger nG will produce smoother boundary, but more
computational demanding. In all of the later experiments,
nG is set to 12, the corresponding neighborhood system is
shown in the right part of Fig. 2. (2) The value of λ is criti-
cal, small λ is suitable for low contrast edges, while large λ
is suitable for high contrast edges. In fact, the filter G in the
generation model (Eqn. 6) also influences the result. How-
ever, estimating G is out of the scope of this paper. We fix it
as a Gaussian filter with σ = 2 throughout this paper. More
results are shown in Fig. 5, it is clear that the proposed algo-
rithm can produce impressive results even when the quality
of LR images is very low.

There is some related work in the literature. Level-set
method is used in [24] to incorporate edge smoothness prior.
To avoid over-smoothness, hard constraints are enforced as



image likelihood terms . In [28], the smoothness prior is
integrated by multiple-scale tensor voting, where the edge
tokens can interact with each other to get smooth curves.
Image gradient on a large neighborhood is also used in [13]
as a regularity term. Comparing with these existing works,
the benefit of our algorithm is that we have an explicit ob-
jective function which integrates both the prior and the like-
lihood terms, and there is an exact geometric explanation
for it. When nG = 2, Eqn. 4 becomes an approximation
of the total variation (TV) regularity term [9, 26], which is
very powerful in edge-preserving image reconstruction.

4. Color image super resolution
For natural color image SR, three reasons limit the per-

formance of applying soft edge smoothness prior directly
by simply processing each color channels separately on the
entire image.

1. Exact edge position is determined by the color infor-
mation from all three channels. Decisions made on each
channel separately might be wrong and inconsistent.

2. SR by soft edge smoothness prior is sensitive to the
value of λ, which is related to the local contrast. Take the
3rd image in Fig. 5 as an example, some subtle edges are
smoothed out with this set of parameters, while in fact, they
can be perfectly extracted by smaller λ in our experiments.
Some edge strength normalization mechanism is needed to
make possible a unified treatment for all edges.

3. Enforcing soft edge smoothness prior on regions
near corner points will produce undesired smoothed curves,
which is also observable in Fig. 5.

All these problems motivate our natural color image SR
approach as follows.

4.1. The proposed approach
The entire system is illustrated in Fig. 6. The standard

canny edge detection algorithm is used to extract continues
edges. A robust corner detection algorithm based on cur-
vature scale space [16] is applied. These corner points can
break the edges into segments. Each edge segment ci is a
continuous curve (may be closed), and a nearby patch Pi is
assigned to it by morphological operations.

We process each edge segment at Pi separately. For each
segment, if we consider the two sides of this edge as fore-
ground and background, the problem can be reduced to the
alpha matting problem. Thus the true colors for two sides
of the edge can be recovered by a recently proposed closed
form solution [20]. The LR input is a blending of these two
patches through an alpha channel, which ranges in [0, 1].
All the alpha matting parts are processed on low resolu-
tion. After that, SR based on soft edge smoothness prior
(Sec. 3.3) is used to generate the HR alpha channel given
the LR alpha channel extracted by alpha matting. The HR
alpha channel is combined with the LR patches of two sides
of the edge to generate the HR edge. At the end, Eqn. 8 is

Input LR image Il and scale factor s.
Output HR image Ih

1. Edge segment extraction and region assignment to get
{ci} and {Pi}.

2. For each segment ci, process Pi as follows
(a) Compute Il

L,i, Il
R,i, and αl

i from Il by a closed
form alpha matting solution.

(b) Alpha channel SR to get αh
i from αl

i by single
channel SR with soft edge smoothness prior.

(c) Synthesis the HR patch by Il
L,i, Il

R,i and αh
i .

3. Reinforce the reconstruction constraint for the entire
image by Eqn. 8 with small λ.

Figure 6. The overview of alpha channel color image SR approach.

applied on the entire image to reinforce the reconstruction
constraint for region without salient edge segment. A small
λ (= 0.002 in our experiments) is used with a fixed num-
ber of iterations (15 in our experiments). Back-projection is
also used in [27] as a post-processing step.

The proposed approach has the following benefits: (1)
Alpha matting technique can extract the edge by combin-
ing color information from all three channels, thus more
precise result can be obtained. (2) In the meanwhile, de-
scribing each edge segment by the alpha channel can nor-
malizes it into a unified scale, the problem of parameter se-
lection for soft edge smoothness prior can be avoided. (3)
The corner point detection algorithm can help to avoid over-
smoothness at corner points. So all of the three problems
presented in the beginning of this section can be addressed.

4.2. Edge decomposition by alpha matting
Alpha matting is a technique to decompose an image into

a linear combination of foreground image and background
image through an alpha channel. It is an important prob-
lem in computer graphics to extract the foreground object
for image editing. Ideally, the influence of the neighbor-
ing background color should be removed. Assume the fore-
ground and background images are F and B, then the fol-
lowing equation should hold for each pixel p,

Ip = αpFp + (1− αp)Bp, (11)

where αp ∈ [0, 1] is the foreground opacity of pixel p.
Given the blended image I , solving for F , B, and α is also
an under-determined inverse problem. In [20], by assuming
that both F and B satisfy a locally linear model approxi-
mately, a closed form solution is derived. Hard constraint
can be easily enforced into the cost function.

Similar to the idea of alpha matting, an HR step edge can
also be considered as a combination of two smooth patches
through a weight channel α as follows

Ih = αhIh
L + (1− αh)Ih

R, (12)

where Ih
L and Ih

R represent the actual image colors for two
sides of the edge at HR. Then by Eqn. 6, the corresponding



Figure 7. An example of the process of alpha channel super resolution and result comparison(×3), (a) LR input & extracted edge segments,
(b) result after alpha channel SR (Fig. 6, step 2), (c) final result (Fig. 6, step 3), (d) back-projection [17], (e) bicubic, and (f) ground truth.

LR image can be expressed as follows

I l =
(
αhIh

L + (1− αh)Ih
R

) ∗G ↓ (13)

' (αh ∗G) ↓ Ih
L ↓ +(1− (αh ∗G) ↓)Ih

R ↓ .(14)

The approximate equality can be taken if we assume that
both Ih

L and Ih
R are locally smooth, which is reasonable for

the SR task. By assuming α = (αh ∗ G) ↓, F = Ih
L ↓,

and B = Ih
R ↓, Eqn. 14 is exactly the same as Eqn. 11.

It means that we can do alpha matting for I l, to get (αh ∗
G) ↓, Ih

L ↓, and Ih
R ↓, then αh, Ih

L, and Ih
R can be recovered

accordingly from them. Recovering αh from αl = (αh ∗
G) ↓ is exactly the problem discussed in Sec. 3.3, while Ih

L

and Ih
R can be interpolated with bicubic method given their

down-sampled version due to the smoothness assumption
for them. λ = 0.03 is used for recovering the HR alpha
channel in our experiments.

When applying the close form solution of alpha mat-
ting [20] on an image region Ri, the hard constraints for
both sides are chosen according to the local topology and
image gradient. Low contrast pixels are selected, since they
correspond to pure color of one side. The matting algorithm
in [20] is very robust in our experiments, even for very lim-
ited quantity of hard constraints.

Alpha matting is also used in [28], where the α value is
extracted to get the sub-pixel location of the curve. A two
color image prior is used in [3] for demosaicing, which as-
sumes that each pixel within a local neighborhood is either
one of two representative colors or a linear combination of
them. This assumption is in essential quite similar to the
idea of using alpha matting for SR. In [12], various aspects
of color information is combined by a linear summation.

5. Experiments
Fig. 7 shows an example of the entire process. After do-

ing alpha channel SR, sharp and smooth edges can be ob-
tained for salient edge segments. Fig. 7(c) shows the final
result after global updating procedure. It can recover some
subtle structures, thus enhance the image quality for the en-
tire image. Compare to the results of bicubic interpolation

and back-projection, the chessboard artifact is greatly re-
duced without introducing blur or ringing effect. It is also
more natural compared with the result obtained by simply
applying the proposed soft edge smoothness prior on three
color channel separately (shown in Fig. 5).

Fig. 8 illustrates the idea of alpha channel SR by one
edge segment in Fig. 7(a). The LR patch is decomposed
into two image patches and a LR alpha channel. Fig. 8(e) is
the recovered HR alpha channel by the proposed soft edge
smoothness prior in Sec. 3.3. Combining Fig. 8 (b) (c) (e)
together by Eqn. 11 will produce a sharp and smooth edge,
which is shown in Fig. 7 (b).

Fig. 9 compares our method with some exemplar-based
algorithms. The existing exemplar-based methods can pro-
duce very sharp edges. Compare to them, more smooth
boundaries can be archived by our method, this makes the
result looks natural. Fig. 10 shows another example for
comparison with other reconstruction-based algorithms. Vi-
sually appealing result is obtained by our algorithm, even
for very fine image structure, the chessboard artifact is
largely suppressed. More results are shown in Fig. 11.
Please refer the electronic version for better visualization
of our experimental results.

Some quantitative results are shown in Table. 1. The
RMS and edge RMS (ERMS) error per pixel for some ex-
ample images are listed. Compare to bicubic interpola-
tion and back-projection [17], although the visual effect is
greatly improved, the error is just reduced a little bit. We
run our experiments on a PIV3.4G PC with 2G RAM by
Matlab implementation. The computation time for some ex-
ample images are also shown in Table. 1. It greatly depends
on the density of salient edge segments.

Table 1. Error reduction and computation time (for each box with
two numbers, the 1st is the RMS error, the 2nd is the ERMS error).

Lena Head Zebra Temple
LR size 80× 107 70× 70 100× 170 161× 107
Bicubic 8.5 14.5 9.7 13.7 9.6 29.3 11.4 22.6
BP [17] 7.5 11.3 9.4 12.8 8.5 20.4 10.9 20.5

Ours 7.5 10.7 9.3 12.6 8.3 19.3 10.7 20.3
Time (s) 40 25 135 106



(a) (b) (c) (d) (e)
Figure 8. An example of edge decomposition and alpha channel
SR, (a) LR input, (b) (c) true color on two sides of this edge seg-
ment, (d) LR alpha channel, (e) HR alpha channel by soft edge
smoothness prior (please refer Fig. 7 for the edge position, and
result comparison with other reconstruction-based methods).

6. Conclusion
In this paper, a novel single image super resolution al-

gorithm is proposed. A soft edge smoothness measure is
defined on a large neighbored system, which is an approxi-
mation of the average length of all level lines in the image.
To extend this method to natural color image SR, a novel ap-
proach is proposed. A closed form alpha matting algorithm
is applied to decompose each edge segment. It makes pos-
sible a unified treatment of them. Visually appealing results
for a large variety of images are obtained by this algorithm.
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A. Proof of Theorem. 2
From Eqn. 3, we have

|li|G =
∑

k

(
wk

∑

Nk

|Fli(p)− Fli(q)|
)
, (15)

so ∑

i

|li|G =
∑

i

∑

k

(
wk

∑

Nk

|Fli(p)− Fli(q)|
)

(16)

=
∑

k

(
wk

∑

Nk

∑

i

|Fli(p)− Fli(q)|
)
,(17)

and
∑

i

|Fli(p)− Fli(q)| = #{i | Fli(p) 6= Fli(q)}(18)

= n · |Sd(p)− Sd(q)|, (19)

so
∑

i

|li|G =
∑

k

(
wk

∑

Nk

n · |Sd(p)− Sd(q)|
)

(20)

= n ·
∑

k

(
wk

∑

Nk

|Sd(p)− Sd(q)|
)

(21)

= n · |Sd|G (from Eqn. 4). (22)

Thus from Theorem. 1, we have

|Sd|G =
1
n

∑

i

|li|G → 1
n

∑

i

|li|E . (23)



(a) LR input (b) bicubic (c) method in [15] (d) method in [10] (e) our method
Figure 9. Comparison results with exemplar-based methods (×4).

(a) LR input (b) bicubic (c) sharpened bicubic (d) back-projection [17] (e) our method
Figure 10. Comparison results with reconstruction-based methods (×3).

Figure 11. More results. For each pair of images, the upper one is the LR input, and the lower one is our result (×3).


