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Abstract
Long-duration tracking of general targets is quite chal-

lenging for computer vision, because in practice target may
undergo large uncertainties in its visual appearance and the
unconstrained environments may be cluttered and distrac-
tive, although tracking has never been a challenge to the
human visual system. Psychological and cognitive findings
indicate that the human perception is attentional and selec-
tive, and both early attentional selection that may be innate
and late attentional selection that may be learned are nec-
essary for human visual tracking. This paper proposes a
new visual tracking approach by reflecting some aspects of
spatial selective attention, and presents a novel attentional
visual tracking (AVT) algorithm. In AVT, the early selection
process extracts a pool ofattentional regions(ARs) that are
defined as the salient image regions which have good local-
ization properties, and the late selection process dynami-
cally identifies a subset of discriminative attentional regions
(D-ARs) through a discriminative learning on the historical
data on the fly. The computationally demanding process of
matching of the AR pool is done in an efficient and innova-
tive way by using the idea in the locality-sensitive hashing
(LSH) technique. The proposed AVT algorithm is general,
robust and computationally efficient, as shown in extensive
experiments on a large variety of real-world video.

1. Introduction
The rapid growth of computing power allows us to ex-

plore video for automatically analyzing, recognizing, in-
terpreting, and understanding the activities and events in
video. A fundamental step in this exploration is tracking
general targets in unconstrained environments for a long
duration in video,e.g., people may want to track an arbi-
trary designated image region for video analysis. This turns
out to be quite challenging, because the target may undergo
large uncertainties in its visual appearance due to many fac-
tors such as varying lighting conditions and unpredictable
occlusions, and because the environments may be cluttered
and distractive.

Over several decades, the research of target tracking in

computer vision has resulted in many outstanding visual
tracking algorithms. The research started as feature point
matching and optical flow estimation in consecutive image
frames. Since then, visual tracking has been largely formu-
lated in amatch-and-searchframework of motion estima-
tion, and has evolved from simple 2D translation to complex
motions. In this framework, great research efforts have been
devoted to two important issues,i.e., the matching criteria
and the searching methods. Matching criteria (or observa-
tion models, or likelihood models) are critical in tracking,
as they define the invariants on which the tracking process
is based and contribute to the objective functions that the
motion estimators need to optimize. An early treatment as-
sumed the constancy in the brightness patterns in images,
but it turned out this was too restricted and rarely held in
practice. Then, the matching criteria have been extended by
considering illuminations, by using more tolerant cues and
invariant features [6], by modelling clutter generating pro-
cesses [15], by integrating observation processes on multi-
ple kernels [13], by involving exemplars [20], by learning
the variations in the target’s appearance [3], by using gen-
erative models [16, 20], by on-line adaptation [16, 5, 2, 11],
etc.

When our expectation of visual tracking has rapidly
grown from tracking simple image tokens to complex im-
age regions, from simple points to nonrigid targets, from
controlled environments to unconstrained environments, the
matching criteria become sophisticated and more and more
object recognition components are involved because it can
be very difficult to find obvious invariants even if they may
exist. It seems that this leads to a paradox: efficient tracking
should be based on simple and low-level matching criteria
that do not involve higher level visual processing, but such
low-level criteria may not be able to handle the uncertainties
in visual appearances. Complex and high-level criteria may
cope with the uncertainties, but they tend to be computation-
ally demanding as they are late stages in visual perception.
Therefore, the traditional match-and-search framework for
visual tracking seems to be inadequate.

On the contrary to the tremendous challenges we have

1



encountered in developing tracking algorithms, being able
to persistently follow moving objects seems to be a very ba-
sic functionality in human visual perception. It is so natural
and intuitive that we may not be aware of how complex it is.
Although the details in human perception on visual dynam-
ics are still largely mysterious, the studies in psychology,
neuroscience and cognitive sciences have obtained substan-
tial evidence and interesting findings, based on which sev-
eral hypothetical theories have been proposed [17]. For
example, evidence shows that human visual perception is
inherently selective. Perceiving realistic scenes requires a
sequence of many different fixations through the saccadic
movements of the eye. Even when the eye is fixated on
a particular location, the act ofvisual attention(like the
movements of an internal eye or the so-called “mind’s eye”)
selects and determines what subset of the retinal image gets
full processing [18]. An interesting question is how we can
take advantage of these studies to develop more powerful
visual tracking algorithms.

This paper presents a new visual tracking approach that
reflects some findings of selective visual attention in hu-
man perception. Recent studies in 90s have indicated that
selective attentionmay act in both early and late stages of
visual processing but under different conditions of percep-
tual load [17]. Early selectionmay be based on innate prin-
ciples obtained through evolution, whilelate selectionis
learned through experiences. By integrating both mecha-
nisms, our new computational model may be able to resolve
the paradox of low-level and high-level matching criteria in
the traditional match-and-search paradigm: we connect the
low-level matching to the early attentional selection and the
high-level process to the late selection.

We develop a novel attentional visual tracking (AVT) al-
gorithm based on spatial selective attention. Specifically,
the early selection process extracts a pool ofattentional re-
gions (ARs) that are defined as the salient image regions
that have good localization properties, and the late selec-
tion process dynamically identifies a subset of discrimina-
tive attentional regions (D-ARs) through a discriminative
learning on the historical data on the fly. The computation-
ally demanding process of matching of the AR pool is done
in an efficient and innovative way by using the idea in the
locality-sensitive hashing (LSH) technique.

The proposed AVT algorithm is general, robust and com-
putationally efficient. Representing the target by a pool of
attentional regions makes AVT robust to appearance varia-
tions due to lighting changes, partial occlusions and small
deformation. Spatial attentional selection of ARs allows
AVT to focus its computational resources to more infor-
mative regions to handle distractive environments and tar-
gets with complex shapes. Pre-indexing the features of ARs
based on LSH enables fast matching in order to search a
large motion parameter space. In addition, AVT can be used

as a region tracking tool for tracking general objects with-
out any prior knowledge. These merits have been shown in
extensive results on a variety of real-world sequences.

This work is different from some recent work on on-line
selection of discriminative features [5] and other adaptive
methods [2, 11, 16], in that AVT does not select global fea-
tures but spatially-distributes local attentional regions so as
to enable a broader and a more robust selection. In addition,
AVT is also quite different from the fragment-tracking [1]
where the target is evenly divided into fragments in a pre-
defined way with no selection.

2. Overview of Attentional Visual Tracking
Selective attention is crucial to visual perception, be-

cause the amount of information contained in visual scenes
is far more than what we can process at one time and thus
the visual system has to sample visual information over time
by some inherently selective perceptual acts, including spa-
tial selection that directs the attention to a restricted region
of the visual field. Selective attention may be made possible
by two kinds of heuristics. One is based on innate principles
obtained through evolution, and could be performed in the
early stage of visual processing. The other one is learned
through experience and might happen later in visual pro-
cessing. Both are important in the human visual system.
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Figure 1. Attentional visual tracking.

As summarized in Fig.1, the proposed attentional visual
tracking reflects these perceptual findings of spatial selec-
tion in visual attention. AVT has 4 important processes:

• Early attentional selection. As the first step, it ex-
tracts informative and salient image regions calledat-
tentional regions(ARs) from images. This is a low-
level process, as it is only concerned on local visual
fields. In this paper, we treat those image regions that
have good localization properties as ARs, and the AR
is characterized by its color histogram;

• Attentional region matching. Once a pool of ARs
are extracted by the early selection process, they will
be used to process an incoming image to localize their
matches. An innovative method is proposed to conquer
the large computational demands, by pre-indexing the
features of ARs. For each frame, the matching set of
each AR is obtained and used to estimate a belief of
the target location;



• Attentional fusion and target estimation. The be-
liefs of all the ARs are fused to determine the target
location. A subset of ARs have larger weights in the
fusion process, because they are more discriminative.
This subset of ARs are obtained by the late selection
process in the previous time frame;

• Late attentional selection. This process reflects some
higher level processing to learn and adapt to the dy-
namic environments. Based on the collected history
tracks of ARs, a discriminative selection is performed
to identify a subset of most discriminative ARs (or D-
ARs) that exhibit the distinctive features of the target
from the environments. They will have larger weights
in the attentional fusion process at the next frame.

3. Components in Attentional Visual Tracking

3.1. Early attentional selection

Visual information is so rich that the human visual sys-
tem has a selective attention mechanism to sample the infor-
mation over time in processing. Early attentional selection
that is believed to act in the very early stage of visual per-
ception performs the initial pre-filtering task, which should
not involve much higher level processing such as object
recognition. Early selective attention is likely to be based
on innate principles of human perception,e.g., to attend cer-
tain information that is evolutionary advantageous. For ex-
ample, moving objects are generally important for survival
and appear to play an important role in early attention.

This section describes a spatial selection method for this
early attentional process. We call the selected image region
asattentional regions(ARs). As discussed before, motion
detection appears to play an important role in early atten-
tion. Therefore, the selection of attentional regions should
be sensitive to motion (i.e., informative) but insensitive to
noise (i.e., stable). Mathematically, any change in the ap-
pearance of such an AR should correspond to a unique mo-
tion estimation, and the small differences between two ap-
pearance changes should not lead to dramatic different mo-
tion estimates (i.e., well-behaved).

In view of this, we choose to use the criterion and the
region extraction method described in [9] that views the
stability of image region in motion estimation from system
theory perspective. The appearance change of an image re-
gion is treated as measurements of the motion that is viewed
as the system states. For some image regions,e.g., homoge-
neous regions, the system states (motions) areunobservable
from the measurements,i.e., the motions of these regions
are not fully recoverable from their appearance changes.
Thus, they should not be attentional regions. In addition,
image regions that lead to unstable systems,i.e., small ap-
pearance changes result in dramatically different motion es-
timates, should not be attentional regions neither. There-

fore, attentional regions can be selected by finding those
regions that generate observable and stable systems. It was
proved [9] that as an image region is characterized by its
feature histogram, the stability of the linear motion esti-
mation system can be evaluated by checking the condition
number of a matrix that is only related to the properties of
the corresponding image region. A more stable system has
a lower condition number. Thus, in the proposed AVT algo-
rithm, we select the pool of ARs by locating and extracting
those salient image regions.

Specifically, at the first frameI0, given the target ini-
tialization rectangleR0, we evenly initializeNmax = 100
tentative ARs inside the target. With an efficient gradient
descent search algorithm [9], the tentative ARs converge to
positions where the corresponding condition numbers are
local minima. By removing the duplicated tentative ARs
that have converged to the same location and those that have
large condition numbers, the selected AR pool is obtained
and denoted by{r1, · · · , rN}. Their relations to the tar-
get are recorded for future target estimation in subsequent
tracking. The numberN of ARs is automatically deter-
mined by the early selection process itself, depending on
targets,e.g., we have observedN = 60 ∼ 70 for large
and complex objects andN = 30 ∼ 40 for small and
simple objects in our experiments. Then, the color his-
tograms of{r1, · · · , rN} are obtained as the feature vectors
{x1, · · · ,xN} with D bins,i.e., xi = {xi1, · · · , xiD}.

As the color histograms on various image regions need
to be calculated, the integral histogram technique [19] can
be applied to save computation. In AVT, we implement a
modified version of integral histogram that is able to re-
trieve histograms at arbitrary locations in constant time,but
also consume moderate memory when using high resolution
color histograms. Although the sizes and shapes of differ-
ent ARs are not necessarily identical, to be able to process
ARs in a uniform way, we impose all ARs at the same size
and shape,i.e., 30× 30 squares initially. An example of the
early selection of attentional region pool is shown in Fig.2.

(a) initialization. (b) the pool of ARs.

Figure 2. Early selection of the attentional region pool.

3.2. Attentional region matching

For each frameIt at timet, to locate the correct target po-
sition, all hypotheses in motion parameter space have to be
evaluated to find the best matches to the ARs in the AR pool.
Because the prior knowledge of the dynamics of the ARs
is generally unavailable, exhaustively searching the motion



parameter space can provide the optimal performance. Al-
though this is computational demanding, we have an inno-
vative solution that significantly reduces the computationto
allow close to real-time performance. This solution is based
on the idea of the locality-sensitive hashing (LSH) [8], a
powerful database retrieval algorithm.

Each AR needs to examine a large number of motion
hypotheses. In this paper, the motion parameters include
location(u, v) and scales. Each motion hypothesis corre-
sponds to a candidate image region. For all target hypothe-
ses, all image patchesrc with the same size as ARs within
the searching range of one AR constitute thecandidate re-
gion setwhoseD dimensional color histograms are denoted
as{y1, · · · ,yM}, whereM is the size of the set. Generally
the candidate region set has thousands of entries. We em-
ploy Bhattacharya coefficient to measure the similarity of
two histogramsx andy, which is equivalent to Matusita
metric [13] in L2 distance form

d(x,y) =

D∑

j

‖√xj −
√

yj‖2. (1)

Matching a feature vector can be translated to query a
database for the nearest neighbor points in the feature space.
The worst case complexity is obviously linear, but this is
not good enough. A significant speed-up can be achieved
if the database can be pre-indexed. Locality-sensitive hash-
ing (LSH) proposed by Indyk and Motwani [14] in 1998
and further developed in [8] aims to solve the approximate
Nearest Neighbor (NN) problem in high dimensional Eu-
clidean space. LSH provides a probabilistic approximation
to this problem by randomly hashing the database withL
locality-sensitive hashing functions, and only the pointsin
the union of the hashing cells that the query point falling in
are checked for nearest neighbors. This will lead to compu-
tational saves comparing with checking all the entries in the
database. The idea is illustrated in Fig.3. We refer readers
to [14, 8] for details.

Query point q

Hashing cell, C
h1

, C
h2

, C
h3

Data point set P

Near neighbors

Figure 3. Illustration of query with LSH.

LSH has been applied in texture analysis [10] and fast
contour matching [12]. To the best of our knowledge, LSH

has not been used for on-line tracking before, although an-
other database technique (K-D Trees) has been used for off-
line (non-causal) tracking [4] by hashing the whole video
sequence. When incorporating LSH into on-line visual
tracking, there is a fundamental difference from database
applications. In database applications, the indexing is done
off-line and thus the computational overhead of indexing is
not a critical issue. In our on-line tracking scenario, on the
contrary, the indexing overhead cannot be ignored because
both indexing the database and retrieving the database are
performed during the tracking process. So computational
costs of both indexing and querying are critical. This turns
out to be very important in AVT implementation.

Now we have two data sets: one for the AR pool with
sizeN and the other for thecandidate region setwith size
M . Typically, N is within one hundred andM is several
thousands. The worst case of complexity in matching is
O(N × M). As discussed before, this complexity can be
further reduced by applying LSH. Because the overhead of
indexing needs to be considered, which data set should be
chosen to be the database for LSH? If choosing the can-
didate set as the database, we find that the indexing over-
head is not worth the gain for a limited number of queries
from the AR pool. When we treat the AR pool as the LSH
database, the computational gain is significant. The detailed
complexity analysis will be present in a later section.

After querying all candidate regionrc with feature vec-
torsyc using LSH, the near neighbors withindt in Matusita
distance of each ARri are obtained and denoted as match-
ing setSri

= {rc|d(xi,yc) ≤ dt}.

3.3. Attentional fusion and target estimation

As described in the previous subsection, for each ARri,
the attentional region matching process outputs a matching
set. Based on the recorded geometrical relation between this
AR and the target (relative translation and scale in our im-
plementation), the belief of this AR is the probability distri-
bution of target location(ut, vt) of Rt givenri’s matching
set, denoted byP (Rt|ri), which is approximated based on
the set of matched candidaterc ∈ Sri

.
To estimate the target location and scale, the beliefs of

all the ARs need to be fused. Because some ARs may have
a substantial spatial overlap in images, their beliefs may be
correlated. This dependency may complicate the exact fu-
sion process. But we can approximate it by clustering the
significantly overlapped ARs and treat them as one, so as to
reduce the dependency. By doing this, we approximate the
estimated distribution of target location̂P (Rt) by

P̂ (Rt) ≈
N̂∑

i

P (Rt|ri)P (ri), (2)

whereN̂ is the number of AR clusters, andP (ri) repre-
sents the prior distribution ofri in It which is regarded as



uniform. The mode of thêP (Rt) determines the tracking
result ofRt. This is a voting process, as shown in Fig.4.

Figure 4. Estimation of target location.

It can be proved that this approximation only holds when
N̂ is large, because in this case the matching likelihoods of
the ARs tend to dominate while the spatial correlations tend
to be less critical. But this approximation is questionable
whenN̂ is actually small. This is the limitation of our cur-
rent implementation, as it is not quite suitable for tracking
very small targets when only very few ARs are available
and are largely correlated. Study on partial correlated infor-
mation fusion is out of the scope of this paper.

3.4. Late attentional selection

As described in previous sections, attentional selection
is indispensable to the human perception of visual dynam-
ics. For long duration tracking, the human visual track-
ing system is able to adapt to changing environments and
to discriminate the small differences of the target from the
distractions. Tremendous psychological evidence [18] in-
dicates that visual tracking involves both early selection
and late selection. Late selection may be a serial of fo-
cused attention processes that are more proactive and in-
volve higher level processing. For instance, the camouflage
objects in background around the target may have similar
appearances,e.g., people in a crowd as shown in Fig.9.
When tracking objects with non-convex shapes, it is in-
evitable to include some background regions in target ini-
tialization as shown in Fig.11and12.

Some ARs may be more distinctive and have a large dis-
criminative power, so that they should play a more impor-
tant role in tracking. Thus, during the tracking, a subset of
discriminative attentional regions (or D-ARs) are selected
through ranking their abilities of discerning target motion
from the background motion. We select the subset of D-
ARs based on the Principle of Minimum Cross-Entropy
(MCE) [7], also called Maximum Discrimination Informa-
tion (MDI). This is tantamount to measuring discrimination
information between the case of usingP (Rt|ri) to approx-
imate P̂ (Rt), and the case of using it to approximate the
distribution of background motion:

KL(P (Rt|ri)||P̂ (Rt)) − KL(P (Rt|ri)||P (B)), (3)

whereP (B) is the distribution of nearby background mo-
tion. AssumeP (B) to be uniform, this reduces to cross-
entropy betweenP (Rt|ri) andP̂ (Rt):

H(ri,Rt) = H(P (Rt|ri), P̂ (Rt)) (4)

= H(P (Rt|ri)) + KL(P (Rt|ri)||P̂ (Rt))

= EP (Rt|ri)(− log(P̂ (Rt))),

whereH(·, ·) stands for the cross-entropy of two distribu-
tions andH(·) is the entropy.

For each AR, the cross-entropy in a sliding temporal
window of ∆t = 10 frames are averaged with forgetting
factorβ = 0.95. The average cross-entropỹH(ri,Rt) of
all ARs are sorted to rank their discriminative abilities:

H̃(ri,Rt) =

∆t∑

j=0

βjH(P (Rt−j |ri), P̂ (Rt−j)). (5)

The top-ranked ARs are identified as D-ARs and have
larger weights in fusion. In our implementation, we choose
the top75%. They will be used to estimatêP (Rt+1) in
the next frame. The D-ARs are not fixed but dynamically
changing with respect to the changes of the environment.
Fig. 5 shows the top 10 D-ARs (as red rectangles) for two
sequences at 3 different frames.

Figure 5. Examples of late selection of discriminative ARs.

3.5. Complexity analysis

In our AVT algorithm, the computation costs for inte-
gral histogram calculation, fusion ofP (Rt|ri), mode seek
of P̂ (Rt) are constant and relatively inexpensive. The most
computational intensive module is attentional region match-
ing. Exhaustive matching will involveO(MN) times of
D-dimensional vector comparison which is the basic com-
putational unit in our analysis.

When the data set is hashed by LSH withL hashing func-
tions, consider both indexing and query costs, the complex-
ity is O(ML + NL), where one hashing function is aD
dimensional inner product calculation [8]. Therefore, the
complexity ratio is approximately

τ ≈ O(ML + NL)

O(MN)
≈ ML + NL

MN
. (6)



In the tracking scenario, the number of entriesM in can-
didate set is much larger than the number of ARsN . Usu-
ally, M is several thousands andN is less than a hundred.
Then, if we choose to hash the candidate set,L could be
larger thanN which means no speedup since we need to do
indexing for every frame. So we hash AR pool withN el-
ements, the complexity ratioτ ≈ (L/N + L/M) ≈ L/N .
Suppose there areN = 100 ARs, empiricallyL = 20 hash-
ing functions are sufficient for querying the near neighbors
within dt = 0.1 at 0.9 probability. The computation re-
duces to approximatelyτ = 1/5, if N = 36 andL = 10,
τ = 0.28. With this efficient matching, we can search a
larger portion of the motion parameter space,e.g., in our
implementation,[−20,+20] for (u, v) respectively and 3
scales ranging from0.95, 1.0, and 1.05. For large tar-
gets, we down-sample the candidate region set to ensure
M ≤ 3000. The algorithm is implemented in C++ and
tested on a Pentium-IV 3GHz PC. With moderate code op-
timization, the program runs at10 − 15 fps on average.

4. Experimental results

4.1. Settings

We test the proposed AVT algorithm for a variety of chal-
lenging real-world sequences including 3 primary types:
quick motion with occlusion, camouflage environments,
and objects with complex shapes. Note that in these tests,
there are also scale and lighting changes. The targets in-
clude pedestrian, people in crowd, wild animals, bicycle and
boatet al. The AVT tracker is compared with the Mean-
shift tracker [6] in the same enhanced YCbCr space with
1040 bins (32 × 32 for Cb and Cr and 16 bins for Y when
the pixel is too dark or too bright). Most of the video clips
are downloaded fromGoogle Video.

4.2. Quantitative comparison

For the quantitative comparison, the evaluation criteria
of tracking error are based on the relative position error be-
tween the center of the tracking result and that of the ground
truth, and the relative scale normalized by the ground truth
scale. A perfect tracking expects the position differencesto
be around0 and the relative scales close to1.

We manually labeled the ground truth of the sequence
Walking for 650 frames. The walking person, as shown in
Fig. 7, is subjected to irregular severe occlusion when pass-
ing behind the bush. As indicated in quantitative compari-
son in Fig.6, AVT performs extremely well, but mean-shift
loses track at frame 164 and never recovers.

4.3. Quick motion with occlusion

As shown in Fig.8, sequenceHorse Ride involves
very quick motion with occasional severe occlusions. The
top row shows AVT tracking results where the first frame
displays the attentional region pool. The second row shows
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Figure 6. Quantitative comparison of relative position error and
relative scale for tracking results of sequence [Walking].

Mean-shift tracker’s results. For AVT tracker, the target is
displayed as red dash rectangle, and the pixels covered by
more than one D-AR are highlighted by increasing the lu-
minance and the D-AR regions are surrounded by solid red
lines. When there are too few matches for ARs, occlusion
is detected and displayed with a white dash bounding box.
Mean-shift tracker drifts after a serious occlusion is present
at frame 54, while AVT tracker is able to keep the track by
a few attentional regions.

4.4. Tracking in camouflage environments

Camouflage environments,i.e., similar or even identical
objects around the target, is very challenging for tracking.
We demonstrate AVT’s advantages by tracking one people
in crowd (Fig.9), and a zebra with similar texture nearby
(Fig.10). The scale of Mean-shift tracker becomes unstable
when nearby background presents similar color histograms,
while AVT is quite robust in camouflage environments due
to the selection of D-ARs.

4.5. Objects with complex shapes

Tracking objects with complex shapes is difficult in prac-
tice. Since it is not reasonable to require initialization to
give the accurate boundary of the target, some background
image regions will be inevitably included in the target. As
illustrated in Fig.11 and Fig.12, the ground and some wa-
ter are cropped in the targets. The ARs on the background
are not correlated to the target’s motion, thus they have high
cross-entropy and are excluded from the D-AR subset. On
the contrary, Mean-shift tracker tries to match the holistic
color histogram which is likely to be distracted by the back-
ground regions. More tracking results on a variety of gen-
eral objects are shown in Fig.13.

5. Conclusion

In this paper, we propose a novel and promising tracking
algorithm inspired by findings of human visual perception.
It is suitable for tracking general objects without any prior
knowledge. Target is represented by an attentional region
pool which brings robustness against appearance variations.
Dynamically spatial selection of discriminative attentional
regions on the fly enables the tracker to handle camouflage



Figure 7. Tracking [Walking] for frame #1, 130, 164, 254 and 650, (1st row) AVT tracker (N=55), and (2nd row) Mean-shift tracker.

Figure 8. Tracking [Horse Ride] for frame #1, 40, 54, 58 and 60, (1st row) AVT tracker (N=45), and (2nd row) Mean-shift tracker.

environments and objects with complex shapes. In addi-
tion, by introducing LSH to on-line tracking, the proposed
AVT is computationally feasible. Our future work includes
3 aspects: 1) extending our current AVT tracker to a gen-
eral region tracking tool by taking more motion parame-
ters into consideration, 2) instantiating AVT to particular
objects by building extensive attentional region pool for dif-
ferent views, and 3) exploring property selection,e.g., color,
shape, and size, of attentional regions.
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Figure 9. Tracking [Marathon] for frame #1, 33, 48, 75 and 84, (1st row) AVT tracker (N=40), and (2nd row) Mean-shift tracker.

Figure 10. Tracking [Zebra] for frame #1, 63, 118, 136 and 160, (1st) AVT tracker (N=57), and (2nd row) Mean-shift tracker.

Figure 11. Tracking [Cheetah] for frame #1, 50, 80, 130, and 185, (1st) AVT tracker (N=57), and (2nd row) Mean-shift tracker.

Figure 12. Tracking [Boat] for frame #1, 20, 60, 80 and 110 (1st), AVT tracker (N=56), and (2nd row) Mean-shift tracker.

Figure 13. More AVT results: [Bug] for frame #1, 50, 86, 112 and 140 (N=59); [Marathon2] for frame #1, 64, 90, 121 and 150 (N=21) .


