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ABSTRACT training data, which largely determines the detectionquerf

Lung nodule detection, especially ground glass opacity@FG mance. Unfortunately,_for lung nodules, we could only rely
on very rough assumptions: the nodules often appear as small

detection, in helical computed tomography (CT) images ISround shadows with spherical or ellipsoidal shapes in CT im-

a challenging Computer-Aided Detection (CAD) task due to es. However, in practice, the detection system faces much

the enormous variances in nodules’ volumes, shapes, appe . i
. more complicated cases: no nodules are perfect spherital bu

ances, and the structures nearby. Most of the detection algo ;.. o S o .
exhibit very large variations in intensities, sizes, stsaap-

rithms employ some efficient candidate generation (CG) al earances, and the surrounding structures, as shown ifh.Fi
gorithms to spot the suspicious volumes with high sensjtivi P ' 9 k 9.

at the cost of low specificity, e.g. tens even hundreds oéfals
positives per volume. This paper proposes a learning based
method to reduce the number of false positives given by CG
based on a new general 3D volume shape descriptor. The
3D volume shape descriptor is constructed by concatenating
spatial histograms of gradient orientations, which is sibo
large variabilities in intensity levels, shapes, and apgeees.

The proposed method achieves promising performance on a
difficult mixture lung nodule dataset with average 81% detec
tion rate and 4.3 false positives per volume.

Index Terms— Medical imaging, computer aided analy-
sis, computer vision, lung nodule detection, shape descrip

1. INTRODUCTION
Rapid growth in volume of lung nodule, i.e. small mass of tis-

if -
sues in lung, often reveals an early stage of lung cancetwhic T
is one of the leading fatal cancers in western countriesh Wit (©) (d)
early detection, the mean 5 year survival rate of lung cancer. ) _
can dramatically increases from 14% to 49% [1], however!:'g- 1. lllustration of different types of nodules: (a) a sm_all
the vast amount of chest radiography to be interpreted maftiodule attached to lung wall or pleural; (b) a vascularized
ually are too burdensome for radiologists, which calls for a "0dule; (c) a solid large nodule with irregular non-spheric
automation way to assist the diagnosis with CAD approach. Shape; (d) a non-solid nodule.

Although computer-aided lung nodule detection has been The lung nodules can be mainly categorized into 3 types:
studied since early of 90s, it has not been taken into commasolid, part-solid and non-solid ones. Most of the previas r
clinical practice. The fundamental challenge is the lack okearch have focused on detection of solid nodules [2, 3, 4,
a clear definition and an in-depth understanding of noduleS, 6, 7, 8], while fewer attention is paid to part- and non-
from the image perspective. Generally speaking, for objecsolid ones [9]. However, recent medical study indicated tha
detection in vision, we need to know the model of the tarhon-solid or ground glass opacity (GGO) nodules, which have
get or in simple words what we are looking for, i.e. whatmore irregular shapes and vague boundaries, are more likely
image attributes or features can reveal the presence of the develop to malignant cancer than solid ones [10].
targets and distinguish them from similar objects. Usuyally  Besides the aforementioned difficulties, challenges foglu
the model comes from either the empirical knowledge or theodule detection also include vast data to be processed and




lack of positive samples. Typical thin slice CT screening ha  The features have been applied to lung nodule detection
512 x 512 x 400 12-byte data in one volume, therefore, in are extensive, ranging from simple image statistics, elges,
terms of efficiency, nodule detection task is usually sglit t gradient magnitudes, hough transform, circularity of oegi

two steps: 1) lung nodule candidate generation (CG) whicleontrastness and area, to sophisticated ones e.g. wavalets
aims to achieve high sensitivity, and 2) false positive r,edu dial volume distribution [6], and surface normal overlapdd

tion which aims to achieve high specificity. The CG algorithmal. [2] presented a comprehensive survey about lung nodule
is fast but may generate several hundred candidates per valetection methods prior to 2001.

ume. The purpose of this paper is to study the false positive The classification methods can be mainly categorized to
reduction problem in lung GGO nodule detection. Two ex-two types: template-based [3, 4, 12] and learning-based [6,
amples of false positives are shown in Fig. 2. 7, 8]. Template-based methods have to be able to tolerate the
deviation from the template using robust matching critdna
addition, there may be some unusual nodules or non-nodules
which do not satisfy the template. For learning-based nzdel
the training data have to cover the possible variances #or th
nodules and non-nodules as much as possible, which is also
very hard to be satisfied. The state of the art of lung nod-
ule detection for solid nodules was achieved by asymmetric
cascade of sparse hyperplane classifiers [8] ®ith% sen-
sitivity vs. 1 false positive per volume in a particular dataset.
Fig. 2. lllustration of sample false positives. GGO nodules are more difficult than the solid ones for

Inspired by 11 i | | ina-b (ﬁ)oth template-based and learning-based methods mainly due
nspired by [11], we propose to employ a leaming-base o the large variations. It is not only difficult to obtain arte

method_ to d|fferent|ate_QGO with general 3D shap_e descrllo[f)late to tolerate the variations but also hard to gatherceift
tors which do not explicitly assume the ellipsoidality oéth

GGO nodules. As the GGO nodules have much irregulatrralnlng data. The intensities and appearances of GGO nod-

) ules vary greatly, therefore most of the conventional sampl
shapes and vague boundaries, the features should be ro ﬂﬁa y9g Y P

- X : . .IMage statistics cannot capture the essentials of GGO &nd it
and not rigid. The new descriptor is based on weighted dpati ard to design templates. [9] tried Gaussian reference mod-
histograms of gradient orientations, which is robust téedif 9 b :

ent intensity levels, shapes and appearances. For eaa‘ne/oluels to detect the GGO candidates and applied artificial heura
of interest (VOI) given by CG, the orientations of 3D gradi- networks to reduce the false positives. 25 GGO were detected

ts withi h tati K ted by t with approximately 543 false positivesin 715 CT slices vhhic
ents withina rough segmentation mask are represented by \g ounts to more than 30 false positives per volume. In this

angles, i.e. the angle when the gradu_ant IS prOJected_ to X- aper, we employ SVM classifier trained on a new general
plane and the angle between the Z-axis and the gradient. T . L .
shape descriptors based on limited assumptions that the

Wi;]g?ridsiDn?;tt?sgraengfng];rtgzlsﬁgmgraggItehsefg:' S.gif;‘grfgts?napes of the GGO nodules, i.e. the spatial distributions of
w 9 9 ! 9! radient orientations, are similar.

catenated to a vector as the 3D shape descriptor of this VOT.
The _vve|ghts of gradients are dgtermlned by the produc_t_of 3 3D VOLUME SHAPE DESCRIPTOR
gradient magnitudes and a spatial kernel. An SVM classifier

trained on these descriptors is used to classify the catetida Since clear prior knowledge about GGO nodules is not avail-
to nodules and non-nodules so as to reduce the false pssitivéble, strong assumptions such as ellipsoidal shapes et cl
The proposed method achieves promising results on a mixtufg!ffaces are not proper. From our observation, Hounsfield

dataset including 324 nodules (81 GGOs) for 216 patints  values of GGO nodules and even the magnitudes of the gradi-
ents vary a lot. Therefore, with the assumption that theshap

2. RELATED WORK patterns of the GGO nodules are similar, we propose to con-

Quite a lot of different approaches have been proposed tstruct the shape descriptor based on the gradient oriengati
wards lung nodule detection since early of 90s. There are tw@s features for false positive reduction. With a rough estim
primary factors in most of algorithms: features and classifi tion of the nodule segment, the histograms of gradient taien
cation models. Features extracted from raw radiography dations for 8 quadrants are concatenated to represent the.shap
summarize the 3D data in concise form and provide the eviThe contribution of each gradient is weighted by the gradien
dences for classification models. Classification modelspra magnitude and a spatial kernel to emphasize the voxels on the
the essential discriminative power inside the featuresgemd ~ edges and those close to the segment boundaries. This shape
eralize to unseen data. descriptor has the advantages of generality, sparsenass, a

1we would like to acknowledge Dr. M.Ujita (Jikei Medical Uensity, rO_UtheSS' .It. can descrlbe the rough shapes _Of the nodules
Japan), Dr. J.Ko and Dr. D.Naidich (NYU Med Ctr, USA) for thefinical ~ Without explicit assumptions. Even the nodule is attacloed t
contributions to this work. lung wall or other structures, majority of the histograms of




gradient orientations will agree with that of other GGOs. schemes and find empirically the scheme that selects the one
Given the marker points of nodule candidates generatedhich gives larger difference of Gaussian (DOG) [11] re-

by CG, we first need to estimate the segments of these candiponse o works well, which is the approximation of Lapla-

dates. In our approach we perform the nodule segmentatiarian operator. If the segmentis small, i.e. the volume is les

with an efficient divergent gradient field response (DGFR][1 than 512 voxels, to facilitate calculation of the histogsame

method. For each marker of nodule candidate, a 43-voxel cwp-sample the segment and the mask@s 16 x 16.

bic VOI is extracted. 43 is selected empirically since it is

sufficiently large for most GGO nodules. DGFR segmentaz 7 pescriptor Generation

tion followed by a watershed algorithm labels all voxels in

the VOI. With the marker as the seed we employ breadth-firdtor the segmer¥Vi(z, y, z) = 1, we align to its 3 primary di-

search to obtain the segmentation by region growing. In,caséections with PCA by rotating around the geometrical center

the segmentation cannot provide a valid segments, we regagd= {9z 9y, 9-}. The rotated VOI and mask are denoted as

this candidate as non-nodule. V., andM,.. The 3D gradients of voxels inside the segment
With the binary mask of nodule candidate given by roughare calculated with 3D Sobel operators. Each gradient can

segmentation, we align the candidate before calculating thPe represented as a 3D vecfalr, dy, d=} with the magni-

descriptor. By performing PCA on the 3D coordinates of thedudeDuw, (z,y, z). The orientation can be represented by two

points inside the binary mask, we rotate the VOI and the masknglesfxy andéz:

according to their primary orientations. The flow chart af th d

algorithmis summarized in Fig. 3. The details about theenti Oxy(z,y,2) = arctan(ﬁ)

procedure are presented in next section as well as thef@assi

training and cross-validation scheme. Vdz? + dy?

dz

); )

0z(z,y,z) = arctan(

4373
cube

wherefxy is the angle of the 3D gradient when projected

DGFR Region to X-Y plane andd; is the angle between the gradient and

. Watershed | N
Segmentatio Growing

Z-axis.
m r{}} @ No Using the geometrical centgras the origin, the 3D vol-
= e Ng‘gjle ume is divided to 8 quadrants, as illustrated in Fig. 3. A
8Weighted 20 | [0~ _ weighted 2D histogranf;,i = 1,--- ,8 on {fxy,02} is
ronistograms 08 1< Calculation [17CA*RORtON calculated for each quadrant. The weight is the producteof th

| . - :
— gradient magnitud®,,, (z, y, z) and a spatial kernel

Segments Km(xa Y, Z) =1- G(gz, UI)G(gy, Uy)G(QZa 02)7 3

64-D & 256-D
Descriptors

Fig. 3. Flowchart of the algorithm procedure. which gives more weights to the gradients near the segment
boundaries. The bin of the 2D histogram is calculated as

4. FALSE POSITIVE REDUCTION PROCEDURE

. Hi(u) = ZDm(x,y,z)Km(x,y,z)
4.1. Segmentation

0(0xy (z,y,2) —uxy,0z(x,y,2) —uz){4)
Given the43 x 43 x 43 3D VOI V and the marker point

s = {84, 8y,5.}, we need to know the scope of the candi-whered is the Kronecker delta function ad.y andf, are
date which will be used to generate the shape descriptor. TH#Iantized to binuxy,uz). In the spatial Gaussian kernel
watershed algorithm is applied to estimate the segmentatid~ (9= 0=), the variance, is set to the radius of the segment
based on DGFR [13] and followed by a region growing pro-in X direction, so on so forth.

cedure with breadth first search. The segmentation module The weights are mainly determined by the gradient mag-

gives a binary masMI of the nodule candidate, where nitudes. So to avoid orientations of gradients with extrigme
large magnitudes dominate the histograms, we set a thresh-
M(z,y, 2) = 1 voxel(z,y, z) is on the segment old to allgviate their. influ_ences. If one .bin excgéﬁ% we
T 0 voxel(z,y, 2) is not on the segment. truncate it ta0.2 and iteratively re-normalize the histogram.
(1) The 8 2D histograms are concatenated to construct the

Note, if the DGFR cannot provide a reasonable mask, i.e thfinal shape descriptor. Two kinds of descriptors with differ
volume is less than 10 voxels, this candidate will be regérdeent lengths are implemented. In the long descriptdgs; is
as non-nodule and excluded from training and testing. guantized to 8 bins where each bin standstfgt and 4 bins
The segmentation is carried out for both full and half resfor 6z, so the lengtl® x 32 = 256. In the short descriptors, 4
olutions. In terms of scale selection, we have tried severdlins forfxy and 2 bins fo#z, that is8 x 8 = 64 dimensional.



4.3. Classification —=—ROC of 64D descriptors for 70 GGOs —=—ROC of 256D descriptors for 70 GGOs
- 10

SVM classifier, specifically LibSVM [14], is employed to et
classify the candidates based on the proposed 3D shape de- , opd 1"

scriptor. The GGO nodules are rare compared with the false ¢.. i
positives. To deal with the unbalanced training data, lessid o o
setting higher costs for positive data in training, we also r o o
tate the GGO samples to generate more positive training data ’
In testing, the shape descriptors are calculated for thairem

ing GGO nodules and false positives and classified with th&ig. 4. ROC curves of 64D and 256D descriptors for testing 70
trained SVM classifiers. GGO nodules, respectively.
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5. EXPERIMENTAL RESULTS
5.1. Settings

are their generality and the strong generalization cajpalsl
remove false positives. The descriptors can be combindd wit

We test the performance of 64- and 256-dimensional descri other features to further improve the performance and have
: e ) . he potential to be applied in other medical image analysis
tors on a mixture dataset including 216 volumes with 322 P PP 9 y

nodules (81 GGOs) and 9590 false positives given by the C&p
Each volume has 400 slices on average and the sizes of nod-
ules range from 2mm to 18mm. The dataset is divided to[y]
training and validation sets as shown in Table. 1. P(T) and
N(T) indicate the numbers of positive and negative sampled?]
used in training, while P(V) and N(V) represent the numbers
of positive and negative samples in validation set. Noté tha 3
each positive training sample is rotated 5 times to generaté ]
more positive samples for training. For each setting, wé eva
uate the performance with the average sensitivity (Semnsl) a
false positives per volume (FPs.) for 100 tests as well as thd4]
standard deviation of sensitivity (Std.) as in Table. 1.

5
Table 1. Cross validation performance. Bl

P(M N(T) P(V) N(V) Sens. Std. FPs.
64D | 224 567 100 9590 79.9% 4.86% 5.33

254 567 70 9590 80.8% 4.78% 5.63 [6]
256D | 224 567 100 9590 80.2% 3.97% 5.18

254 567 70 9590 81.0% 4.94% 431 [7]

5.2. Performance [8]
For the 9590 false positives, 4905 are excluded by the DGFR
segmentation since the volumes of segments are not valid. W
test the performance on 2 validation sets with randomly se-
lected 70 and 100 nodules respectively. The ROC curves are
obtained by adjusting the variance of the kernelin SVM train [10]
ing. The costs for positive samples are set to 100 versus 1
for negative samples and the regularization term is 1000. A
shown in Fig. 4, the lines link the mean sensitivities and th
error bars show their standard deviations, which demotlenfstra[12
that the performance of 64-dimensional and 256-dimensiona
descriptors are comparable.

6. CONCLUSION

In this paper, we propose to use new 3D volume shape de-
scriptors based on spatial histograms of gradient oriemst  [14]
as features to reduce the false positives in lung GGO nodule
detection. The advantages of the proposed shape dessriptor

11]

(13]

] A. Farag and et al.,

plications, e.g. colon polyp and tumor detection.
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