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Abstract

Video-based multiple target tracking (MTT) is a chal-

lenging task when similar targets are present in close vicin-

ity. Because their visual observations are mixed and diffi-

cult to segment, their motions have to be estimated jointly.

Most existing approaches perform this joint motion estima-

tion in a centralized fashion and involve searching a rather

high dimensional space, and thus leading to quite compli-

cated joint trackers. This paper brings a new view to MTT

from a game-theoretic perspective, bridging the joint mo-

tion estimation and the Nash Equilibrium of a game. In-

stead of designing a centralized tracker, MTT is decentral-

ized and a set of individual trackers is used, each of which

tries to maximize its visual evidence for explaining its mo-

tion as well as generates interferences to others. Modelling

this competition behavior, a special game is designed so

that the difficult joint motion estimation is achieved at the

Nash Equilibrium of this game where no individual tracker

has incentives to change its motion estimate. This paper

substantializes this novel idea in a solid case study where

individual trackers are kernel-based trackers. An efficient

best response updating procedure is designed to find the

Nash Equilibrium. The powerfulness of this game-theoretic

MTT is shown by promising results on difficult real videos.

1. Introduction

Multiple target tracking (MTT) in video is a critical and

fundamental task in many real applications, e.g. video

surveillance, vision-based interfaces, and video analysis.

This task would not have been more difficult than tracking

a single target, if multiple targets had quite different visual

appearances or were not present in close vicinity. In prac-

tice, however, it is very common that those targets may look

similar and may occlude each other in video during their in-

teractions. As a result, it is understandable that losing tracks

and associating wrong tracks to some targets are common

experiences of the failures in vision-based MTT systems.

The challenge roots in the difficulty that estimating the

motions of multiple targets cannot be treated independently

if they are present in close vicinity, because their visual ob-

servations (or visual evidence) are mixed and it is generally

very difficult, if not impossible, to figure out the right asso-

ciations of these observations to the individuals targets (that

implies a general segmentation problem). To handle this

difficulty, the motions of multiple targets have to be jointly

estimated from the mixed visual observations, which makes

MTT much more difficult than tracking a single target as

the solution space of MTT is much larger.

This joint estimation problem can be performed in a cen-

tralized fashion by formulating a joint observation model, as

treated in many existing methods [13, 9, 12, 7, 6, 11, 14, 19,

8]. Because the joint observation model evaluates hypothe-

ses of joint motion states, these methods lead to complicated

centralized MTT trackers that generally need to search a

rather high dimensional solution space.

This paper brings a new view to MTT from a game-

theoretic perspective, bridging the joint motion estimation

and the Nash Equilibrium of a game. It advocates a decen-

tralized methodology that solves MTT through the competi-

tion among a set of simple individual target trackers. These

individual trackers compete against each other for visual ob-

servations, and each individual tracker tries to maximize its

visual evidence for explaining its motion and also generates

interferences to other individual trackers. This can natu-

rally be formulated as a game in which individual trackers

are players, each of which estimates its own motion (i.e.,

choosing its own strategy) by optimizing its own objective

(i.e., utility or payoff). The solution to MTT is tied to the

Nash Equilibrium (N.E.) [10] of the game, where no player

can achieve a better payoff by choosing a different strategy.

The objective functions for the individual trackers can-

not be arbitrarily chosen, for example based on intuitions or

heuristics, as they characterize the game and its Nash Equi-

librium and thus influencing the solution to MTT. To make

this clear, specifically, this paper presents a solid and novel

case study where individual trackers are kernel-based track-

ers [2, 3]. Based on the kernel representation, we introduce
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an interference model that describes the visual observations

of the individual tracker by considering the interferences

generated from other trackers, and then define a joint mo-

tion estimation problem. The Karush-Kuhn-Tucker (KKT)

conditions of this joint optimization produce a fixed-point

equation. Naive iteration is not likely to reach the fixed-

point, as it may not converge. Therefore, inspired by the su-

permodular game theory, we construct a game whose Nash

Equilibrium corresponds to the fixed-point of the KKT con-

ditions. More important, we design an efficient iterative

best-response updating procedure that guarantees the con-

vergence to the N.E. under certain conditions and this is

provable. This best-response updating is done in a closed

form thus it is quite computationally appealing.

The proposed game-theoretic MTT method has many

merits. First, it is decentralized as each individual tracker

only needs to optimize its own objective, and the compli-

cated joint motion estimation is avoided. This decentral-

ized scheme greatly reduces the computational complexity.

In addition, the individual motion estimation is computed in

a simple closed form and is computationally very efficient.

Moreover, the proposed method is theoretically plausible

because of its convergence properties.

2. Related work

Multiple target tracking has been studied extensively in

literature and can be back-traced to [13]. Most work assume

that one target hypothesis can only claim a single image ob-

servation and one observation can only support one hypoth-

esis. This assumption can be referred as a probabilistic ex-

clusion principle [9] and used as a prior in the well-known

joint probabilistic data association filter (JPDAF) [1, 12]

and multiple hypothesis tracking (MHT) [4]. Thus, the

key problem in multiple target tracking is to infer the opti-

mal joint motion configuration in a high dimensional space.

This can be done in a centralized fashion by sampling or

sequential Monte Carlo [9, 14, 7, 6, 19, 11, 8], or evolution-

ary optimization [5], or in a decentralized manner [18] by

inferring on a Markov Network. Object detectors may also

be included [11, 17].

Different from these existing methods, we bridge the

joint motion estimation and the Nash Equilibrium of a

game. We construct a non-cooperative game [10, 15] that

characterizes the competition among a set of individual

trackers. The Nash Equilibrium of this game corresponds

to a local optimum of the joint motion configuration and

can be solved by an efficient decentralized method.

3. Interference model

In this section, we introduce a new analytical interfer-

ence model for kernel-based trackers, which is a key com-

ponent in formulating the game-theoretic MTT. This inter-

ference model takes both target appearances and spatial re-

lations into consideration.

3.1. Joint likelihood maximization

Denote the motion parameters for the ith target by θi.

Its corresponding support is denoted by Ωi, i.e. the set of

pixels {xn} within the region of target i. Thus, the motions

of a number of N targets can be estimated by maximizing

the joint likelihood,

Θ∗ = argmax
{θ1,··· ,θN}

P (

N
⋃

i=1

Ωi|θ1, · · · , θN). (1)

If no occlusion is present, i.e. Ωi∩Ωj = ∅, ∀i, j ≤ N . This

joint optimization can be done independently:

θ∗i = argmax
θi

P (Ωi|θi), ∀i ≤ N. (2)

If occlusion is present, i.e. Ωi ∩ Ωj 6= ∅, ∃i, j ≤ N , we

can assign the pixels in the overlapped regions to different

targets probabilistically, thus

Θ∗ = argmax
{θ1,··· ,θN}

N
∏

i=1

P (Ω̂i|θ1, · · · , θN), (3)

where Ω̂i is the probabilistic support of target i. This is

equivalent to an energy minimization problem:

Θ∗ = argmin
{θ1,··· ,θN}

−
N

∑

i=1

lnP (Ω̂i|θ1, · · · , θN). (4)

3.2. Kernel-based likelihood

Specifically, for a kernel-based tracker, a target is rep-

resented by a kernel weighted feature histogram [2]. The

motion parameters are denoted by θ
△
= {y, h}, where y is

the location of the kernel center and h is its scale. Denote

by xn the 2D pixel location and zn
△
= ||xn−y

h
||. The kernel

function k(z2
n) in this paper is the Epanechnikov kernel:

k(z2
n) =

{

1
2c−1

d (d + 2)(1 − z2
n), z2

n < 1
0, otherwise

, (5)

where d = 2 and cd is the area of the unit circle. The nega-

tive derivative of the kernel is denoted by g(z2
n)
△
= −k′(z2

n).

Following the notations in [2], for a single tracker with-

out interference, the model of target i is described by an

M -bin histogram qi = {qim}m=1,··· ,M , and the target hy-

pothesis by pi(yi) = {pim(yi)}m=1,··· ,M ,

pim(yi) =
∑

xn∈Ωi

k(||
xn − yi

hi

||2)δ[b(xn) − m], (6)



where δ[·] is the Kronecker delta function and the function

b(·) maps the pixel location xn to a bin index m. The Bhat-

tacharyya coefficient ρ(yi) is employed to measure the sim-

ilarity between a target hypothesis and the model

ρ(yi) =

M
∑

m=1

√

pim(yi)qim. (7)

Since the distance from the hypothesis histogram pi(yi)
to the model histogram qi can be defined as d(yi) =
√

1 − ρ(yi), the likelihood model for tracker i (in Eq. 2)

without considering interference can be formulated as:

P (Ωi|θi) ∝ e1−ρ(yi). (8)

3.3. Kernel-based interference model

Due to partial occlusion, we need to consider the inter-

ference among the N targets, i.e. Ωi ∩ Ωj 6= ∅, ∃i, j ≤ N .

The observation model for tracker i is no longer solely de-

termined by yi but the joint motion configuration of all

trackers (which is denoted by {yi,y−i} = {yi, · · · ,yN} to

highlight other trackers’ interference to tracker i). In view

of this, we generalize the kernel-based histogram model by,

p̂im(yi,y−i) =
1

Ci

∑

xn∈Ωi

{

k(||
xn − yi

hi

||2)δ[b(xn) − m]·

qim(xn)k(||xn−yi

hi
||2)

∑N
j=1 qjm(xn)k(||xn−yj

hj
||2)

}

, (9)

where Ci ≤ 1 is a normalization term. The probability that

the pixel xn is within Ωi is approximated by

qim(xn)k(||xn−yi

hi
||2)

∑N
j=1 qjm(xn)k(||xn−yj

hj
||2)

, (10)

where qim(xn) =
∑M

m=1 qim[δ(b(xn) − m)] is the his-

togram bin value for pixel xn in the target model qi. Please

note when using Epanechnikov kernel with a finite sup-

port, if one tracker has no overlap with others, Eq. 9 de-

generates to Eq. 6. To avoid numerical problems, we set

qim = ǫ > 0, ∀m < M , where ǫ is a very small value, to

guarantee non-zero bins qim(xn) and qjm(xn).
The generalized Bhattacharyya coefficient is defined as

ρ̂(yi,y−i) =
∑M

m=1

√

p̂im(yi,y−i)qim. Then, the likeli-

hood model for target i with interference is formulated as:

P (Ω̂i|θ1, · · · , θN ) ∝ e1−ρ̂(yi,y−i). (11)

This interference model takes both the appearance sim-

ilarity and spatial relations into account. This interference

model down-weights those pixels that are in the overlapped

regions of different trackers and have ambiguous identities.

4. Game-theoretic multiple target tracking

Based on the interference model, we can formulate the

joint motion estimation (Sec. 4.1) and construct a game

(Sec. 4.2) whose N.E. corresponds to a local optimum of

the joint motion estimation and can be efficiently solved

(Sec. 4.3). The algorithm is summarized in Sec. 4.4.

4.1. Joint motion estimation

Assuming that the scales remain constant when multi-

ple targets approach to each other, based on the interference

likelihood model (Eq. 11), the minimization of the joint en-

ergy (in Eq. 4) is equivalent to:

max
{y1,··· ,yN}

J1(y1, · · · ,yN ) =

N
∑

i=1

ρ̂i(yi,y−i).(12)

Maximizing the joint likelihood is equivalent to optimizing

the joint kernel locations of all targets that maximize the

sum of the generalized Bhattacharyya coefficients.

Denote the initial locations of the trackers by {y0
i ,y

0
−i}.

Then, performing Taylor expansion w.r.t. p̂im(y0
i ,y

0
−i) and

plugging Eq. 9 into ρ̂i(yi,y−i), ρ̂i(yi,y−i) can be approx-

imated by

ρ̂i(yi,y−i) =

M
∑

m=1

√

p̂im(yi,y−i)qim

≈
1

2

M
∑

m=1

(

√

p̂im(y0
i ,y0
−i)qim + p̂im(yi,y−i)

√

qim

p̂im(y0
i ,y

0
−i)

)

=
1

2

M
∑

m=1

√

p̂im(y0
i ,y0
−i)qim +

1

2Ci

∑

Ωi

ωi(xn)k(||
xn − yi

hi

||2)
qim(xn)k(||xn−yi

hi
||2)

∑N
j=1 qjm(xn)k(||xn−yj

hj
||2)

, (13)

where ωi(xn) is determined by the initial status of tracker i
p̂im(y0

i ,y
0
−i) and the model histogram qi of target i,

ωi(xn) =

M
∑

m=1

δ[b(xn) − m]

√

qim

p̂im(y0
i ,y

0
−i)

. (14)

Since only the second term in Eq. 13 is related to the

variable {yi,y−i} given the initial locations, we can ignore

the terms in J1 that are not affected by {y1, · · · ,yN}. Then

we redefine the objective function and have:

max
{y1,··· ,yN}

J2(y1, · · · ,yN )
△
=

N
∑

i=1

ri(yi,y−i), (15)

where ri(yi,y−i) corresponds to the individual matching



of tracker i (as the second term in Eq. 13):

ri(yi,y−i)
△
= (16)

1

2Ci

∑

Ωi

ωi(xn)k(||xn−yi

hi
||2)

1 +
∑N

j=1,j 6=i

qjm(xn)k(||
xn−yj

hj
||2)

qim(xn)k(||
xn−yi

hi
||2)

.

Since ∇J2 w.r.t. to {y1, · · · ,yN} is intractable, we fur-

ther approximate it with a lower bound J3 ≤ J2:

max
{y1,··· ,yN}

J3(y1, · · · ,yN )
△
=

N
∑

i=1

r̃i(yi,y−i), (17)

where

r̃i(yi,y−i)
△
= (18)

1

2Ci

∑

Ωi

ω(xn)k(||xn−yi

hi
||2)

1 +
∑N

j=1,j 6=i

qjm(xn)
qim(xn) k(||

xn−yj

hj
||2)

.

This proximation means that the pixels in the occlusion re-

gions are further down-weighted as

1/



1 +
N

∑

j=1,j 6=i

qjm(xn)k(||xn−yj

hj
||2)

qim(xn)k(||xn−yi

hi
||2)



 →

1/



1 +
N

∑

j=1,j 6=i

qjm(xn)

qim(xn)
k(||

xn − yj

hj

||2)



 .(19)

This is reasonable, since we don’t explicitly recover the oc-

clusion relations among the targets and a natural choice is

to reduce their contributions to the weighted histograms.

4.2. Game construction and formulation

Although it is natural to design a game to model the com-

petition among multiple trackers, the construction of the

game cannot be arbitrary, e.g. based on intuitions or heuris-

tics, because the equilibrium of the game may not neces-

sarily be a solution to MTT. For example, if we formulate

a naive non-cooperative game
[

N, {R
2}, {ρ̂i(yi,y−i)}

]

,

where the players correspond to the individual trackers, the

strategy for each player is the motion yi ∈ R
2, and its util-

ity ρ̂i(yi,y−i) is the generalized Bhattacharyya coefficient.

This naive game is unable to assure a social optimal behav-

ior ( that corresponds to a good joint solution to MTT), be-

cause each tracker will try to solely increase its own utility.

Special care has to be taken in the game construction.

A local optimum {y∗1, · · · ,y∗N} of J3(y1, · · · ,yN )
△
=

rtot(y1, · · · ,yN ) is a good solution to MTT. The solution

must satisfy the Karush-Kuhn-Tucker (KKT) conditions,

∂rtot(y1, · · · ,yN )

∂yi

|{y∗

1
,··· ,y∗

N
} = 0, ∀i ≤ N. (20)

Thus, the N.E. of the game we construct must also satisfy

these conditions. In view of this, we design a game G =
[

N, {R
2}, {rtot(yi,y−i)}

]

. At the N.E. {y∗1, · · · ,y∗N} of

this game, ∀ player i and its optimal strategy y
∗
i , we have

rtot(y
∗
i ,y∗−i) ≥ rtot(yi,y

∗
−i), ∀yi, by definition of N.E..

Since rtot is continuous, ∇yi
rtot(yi,y

∗
−i)|y∗

i
= 0, ∀i, is

held at N.E.. Consequently, the N.E. also satisfies the KKT

conditions of J3. Therefore, this construction of the game

is plausible, and maximizing J3 is equivalent to finding the

N.E.. Fortunately, this can be solved efficiently by a decen-

tralized best response updating, as described below.

4.3. Finding a Nash Equilibrium

To find a N.E., we design a decentralized synchronous

scheme to update the best response for each tracker.

Namely, ∀i, assuming all the other trackers’ locations y−i

are given, we find the best ŷi that maximizes the utility

rtot(yi,y−i), i.e. to solve ∇yi
rtot(yi,y−i) = 0. The justi-

fication of this iterative process can be found in Sec. 5. We

have, ∀i,

∇yi
rtot(yi,y−i) = ∇yi

r̃i(yi,y−i)+

N
∑

j 6=i

∇yi
r̃j(yj ,y−j) = 0.

(21)

Eq. 21 can be solved in a closed-form. To make the

derivation clear, we denote

ηii(xn)
△
=

ωi(xn)

1 +
∑N

j=1,j 6=i
qjm(xn)
qim(xn)k(||xn−yj

hj
||2)

. (22)

ηji(xn)
△
=

ωj(xn)k(||xn−yj

hj
||2)

(1 +
∑N

l=1,l 6=j
qlm(xn)
qjm(xn)k(||xn−yl

hl
||2))2

, (23)

Then, we have

∇yi
r̃i(yi,y−i)

=
1

Cih2
i

∑

Ωi

ηii(xn)g(||
xn − yi

hi

||2)(xn − yi),(24)

and for i 6= j, we have,

∇yi
r̃j(yj ,y−j)

= −
1

Cjh2
i

∑

Ωj∩Ωi

ηji(xn)g(||
xn − yi

hi

||2)(xn − yi).(25)

Please note yi merely influences r̃j(yj ,y−j) through the

overlapped region {xn ∈ Ωj ∩ Ωi} and g(||xn−yi

hi
||2) is

uniform for Epanechnikov kernel. ∇yi
r̃j(yj ,y−j) acts as

a force of the jth tracker that pushes away the ith tracker.

Plugging Eq. 24 and Eq. 25 to Eq. 21, we can solve the

best ŷi given y−i in a closed form. To make things clear,



we define two more coefficients wii(xn) and wji(xn) for

pixel xn ∈ Ωi,

wii(xn)
△
=

1

Cih2
i

ηii(xn)g(||
xn − yi

hi

||2), ∀xn ∈ Ωi,

(26)

wji(xn)
△
=

{

− 1
Cjh2

i

ηji(xn)g(||xn−yi

hi
||2) xn ∈ Ωi ∩ Ωj

0 xn /∈ Ωi ∩ Ωj

.

(27)

We have,

∇yi
rtot(yi,y−i) =

N
∑

j=1

∇yi
r̃j(yj ,y−j)

=
∑

Ωi

xn

N
∑

j=1

wji(xn) − yi

∑

Ωi

N
∑

j=1

wji(xn) = 0.(28)

Therefore, considering the interference of the target i to all

the others targets and given the locations of other targets,

the best ŷi that maximizes the utility is

ŷi =

∑N
j=1

∑

Ωi
xnwji(xn)

∑N
j=1

∑

Ωi
wji(xn)

, ∀i. (29)

For each frame I(t), when N trackers approach to each

other, we can iteratively update yi, i = 1, · · · , N by Eq. 29.

This iterative process reaches an equilibrium that achieves

a local optimum of the joint motion estimation.

A geometrical explanation is the following. We can view

ŷi as a combination of forces ŷi←j which is the solution to

∇yi
r̃j(yj ,y−j) = 0 as

ŷi←j =

∑

Ωi
xnwji(xn)

∑

Ωi
wji(xn)

. (30)

ŷi←j acts as tracker j’s counter force to tracker i when con-

sidering yi’s interference in r̃j(yj ,y−j). This can be visu-

alized in Fig. 1.

Figure 1. Illustration of force combination for ŷi.

4.4. Algorithm summary

We summarize our game-theoretic MTT algorithm. If a

subset of targets approach to each other, and their hypothe-

ses are overlapped (the distances less than a threshold), we

generate a game and use the algorithm in Fig. 3 to search for

the N.E. If one target is isolated from others we use Mean-

shift tracker. The procedure is summarized in Fig. 2.

Input : Frame I(t), target models {qi}, and ini-

tial states of the set of individual trackers θ(t−1) =
{y

(t−1)
i , h

(t−1)
i } for i = 1, · · · , N

′

.

Output: Tracking results θ(t) = {y
(t)
i , h

(t)
i } for i =

1, · · · , N
′

.

1. Divide trackers into different groups if they are in

close vicinity.

2. For each group of trackers, if it has more than

one tracker in the group, generate a game and call

the algorithm in Fig. 3, otherwise call Mean-shift

tracker [2].

3. For each individual tracker, search h
(t)
i with dis-

crete scale factors {0.95, 1, 1.05} to maximize its

generalized Bhattacharyya coefficient ρ̂(ŷi, ŷ−i).

Figure 2. Procedure of game-theoretic MTT.

Input : Frame I , target models {qi}, and initial

states of the set of individual trackers {y0
i , hi} for

i = 1, · · · , N .

Output: Target locations {ŷi, i = 1, · · · , N} at the

equilibrium.

1. For each tracker i, determine Ωi and calculate

p̂i(yi,y−i) by Eq. 9.

2. In order to calculate ∇yi
r̃i(yi,y−i) in Eq. 24, for

each pixel xn ∈ Ωi, calculate

• ωi(xn) by Eq. 14,

• ηii(xn) by Eq. 22,

• wii(xn) by Eq. 26.

3. In order to calculate ∇yj
r̃i(yi,y−i) in Eq. 25

(note switch subscript i and j), for tracker j 6=
i, Ωi ∩ Ωj 6= ∅, for each pixel xn ∈ Ωi ∩ Ωj ,

calculate

• ηij(xn) according to Eq. 23,

• wij(xn) according to Eq. 27.

4. For tracker i, calculate ŷi given y−i by Eq. 29.

5. If all {ŷi ∀i = 1, · · · , N} are stationary, exit;

otherwise go to Step 1.

Figure 3. Algorithm for finding N.E. in game-theoretic MTT.



5. Game theoretic analysis

In the game G we have constructed, the utility func-

tion of each player is the joint matching rtot(yi,y−i) =
∑N

i r̃(yi,y−i), which forces an individual tracker to take

other trackers’ influences into consideration rather than only

focusing on its own interest. ∇yi
r̃j(yj ,y−j), i.e. the sen-

sitivity of tracker j’s matching w.r.t tracker i’s motion yi,

can be regarded as a price tracker j charges tracker i and

counter reacts to yi through ŷi←j .

To analyze whether the Nash Equilibrium can be

achieved by the best response updating for game G =
[

N, {R
2}, {rtot(y1, · · · ,yN )}

]

, we resort to the follow-

ing definition and theorem in the supermodular game the-

ory [15, 16].

Definition 1 A game G = {N, S, {fi}} is a supermodular

(submodular) game if the set S of feasible joint strategies

is a sublattice, and each utility function fi is supermodular

(submodular) function on S.

Theorem 1 In a supermodular (submodular) game G =
{N, S, {fi}}, (a) there exists at least one Nash Equilibrium;

(b) if each player starts from any feasible strategy and uses

best response updating, then the joint strategies will even-

tually converge to a Nash Equilibrium.

For details about supermodular games, we refer the readers

to Chapter 4 in [15] and Chapter 7 in [16].

Based on the supermodular game theory, to show the

best response updating can reach a N.E., a sufficient con-

dition includes 1) the solution of Eq. 21 is a best response

of ŷi given fixed y−i, and 2) the game G is a super-

modular/submodular game. Condition 1 is satisfied since

rtot(yi,y−i) is concave on yi in that the Epanechnikov ker-

nel function k is non-negative and strictly concave. The de-

tails are given in Appendix A. The condition 2 can be satis-

fied in certain Ωi, i = 1, · · · , N where each utility function

is submodular function, which is given in Appendix B.

6. Experiments

We demonstrate the proposed game-theoretic MTT by

using both synthesized and real video (downloaded from

Google Video). The basic individual tracker is a Mean-shift

trackers with 32 × 32 2D histogram in the Hue-Saturation

space. To purely evaluate the performance of the proposed

method, we do not incorporate motion dynamic prior, ob-

ject detectors, and background subtraction, although it is

easy to incorporate them. The method is implemented in

C++ and tested on Pentium IV 3Ghz PC. Empirically, the

best response updating converges very quickly within 3-10

iterations, so the computations are almost the same as that

in multiple independent Mean-shift trackers.

6.1. Example of best response updating

First, we show an example of the best response updating

for tracking the hands and the face in a sign language video.

The first 4 images in Fig. 4 show the positions of the hands

and the face at the first 3 iterations and at the last iteration

during the best response updating. We observe that the sum

of generalized Bhattacharyya coefficients
∑3

i=1 ρ̂(yi,y−i)
monotonically increases as shown in the last graph. But the

individual ρ̂(yi,y−i) may be up and down. This is a rather

difficult case because the hands and the face share the same

skin tones. In our method, the competition ends up at an

equilibrium that gives a good estimation of them.

6.2. Synthesized video

We synthesize two videos in which there are 3 differ-

ent targets and 5 identical targets, respectively. The back-

grounds include random noise and 10-20 small targets that

are wandering randomly. Frame samples are shown in

Fig. 5. The trackers are drawn in different colors and a red

dash ellipse indicates the group of trackers that are engaged

in the game. The final motion ŷi are drawn at the centers

of the targets. From the test results, the competition among

the targets leads to an equilibrium and largely avoids the

coalescence problem.

6.3. Real video

We further test the proposed approach in real sign lan-

guage and sports videos. These are very challenging tests

for MTT. The hand gesturing in sign language video (Fig. 6)

is fast and the hand shape is deformable. Since the color of

the hands and the face are quite similar, when the hands

moving in front of the head, it is very likely that indepen-

dent trackers will fail as shown in the 2nd row of Fig. 6. On

the contrary, in our method, the interference from the face

tracker to the hands tends to push the hands away from the

face, which greatly alleviates coalescence phenomenons.

Sports video is another large category where the ath-

letes generally wear similar sports suits and may have very

complicated interactions. Therefore tracking the people in

sports video is a very difficult task. We show the track-

ing results for kid soccer, free style soccer and

volleyball. The proposed method can follow the people

with complicated occlusions. The comparison to the results

of independent trackers are in the supplemental materials.

7. Conclusion

In this paper we introduce a new view of game theory to

the study of multiple target tracking. The competition of in-

dividual trackers is formulated as a game and we bridge the

solution to the joint motion estimation and the Nash Equi-

librium of the game. Consequently, the maximization of the



Figure 4. Illustration of best response updating procedure: iteration #0, 1, 2, and 8.

Figure 5. Tracking synthesized video: (1st row) 3 different targets for frame #1, 15, 42, 427, and 500; (2nd row) 5 identical targets for

frame #1, 13, 19, 20, 25.

joint likelihood can be decentralized. The N.E. of this game

can be solved by an efficient iterative procedure in a closed

form. The proposed method achieves promising results in

tracking quasi-identical targets in both synthesized and real

video sequences. The future work includes the incorpora-

tion of motion dynamic models in the trackers’ utilities and

faster algorithms for computing approximate N.E.
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Appendix

A. Proof of Eq. 29 is a best response

To show Eq. 29 is the best response of ŷi given fixed

y−i, we need to show the solution ŷi of Eq. 21 is a

global optimum of rtot(yi,y−i). We prove this by show-

ing rtot(yi,y−i) =
∑N

j=1 r̃j(y1, · · · ,yN ) is concave.

Denote yi = {ui, vi}, given y−i are fixed, r̃i(yi) =
r̃i(ui, vi) and r̃j(yi) = r̃j(ui, vi). Note g(||xn−yi

hi
||2) is

positive and uniform for Epanechnikov kernel. From Eq. 24

and Eq. 25, we have

∂r̃i(ui, vi)

∂ui∂vi

= 0,
∂r̃i(ui, vi)

∂ui∂ui

=
∂r̃i(ui, vi)

∂vi∂vi

= −
∑

Ωi

wii(xn).

∂r̃j(ui, vi)

∂ui∂vi

= 0,
∂r̃j(ui, vi)

∂ui∂ui

=
∂r̃j(ui, vi)

∂vi∂vi

= −
∑

Ωi

wji(xn).

So in the Hessian matrix of
∑N

j=1 r̃j(ui, vi), the elements

on the diagonal are −
∑N

j=1

∑

Ωi
wji(xn) and 0 for ele-

ments off the diagonal, it is negative definite which indi-

cates it is concave over yi = {ui, vi}.

B. Conditions for G being a submodular game

To show a game is supermodular (submodular) game we

need to show the joint strategy space is defined on a sublat-

tice and all utility functions are supermodular (submodular)

functions on the joint strategy space. Any non-empty com-

pact subset of R
n is a sublattice of R

n [16]. So the first

requirement is satisfied in our game G. For the second con-

dition, we have this theorem [16]:

Theorem 2 Let X ⊂ R
n and f : X → R. The function f

is supermodular iff it satisfies increasing (decreasing) dif-

ferences on X . If f is twice differentiable, f is supermodu-

lar iff ∂2f
∂xi∂xj

≥ 0, or submodular iff ∂2f
∂xi∂xj

≤ 0, ∀i, j.

Thus, denote yi = {ui, vi}, we need to examine
∂r̃i(yi,y−i)

∂ui∂uj
,

∂r̃i(yi,y−i)
∂vi∂vj

,
∂r̃i(yi,y−i)

∂ui∂vj
, and

∂r̃i(yi,y−i)
∂vi∂uj

for i 6=

j. In addition, we need to check
∂r̃i(yi,y−i)

∂uk∂ul
,

∂r̃i(yi,y−i)
∂vj∂vl

,

∂r̃i(yi,y−i)
∂uj∂vl

, and
∂r̃i(yi,y−i)

∂vj∂ul
for j, l 6= i. Whether these con-

ditions hold depends on the {Ωi, i = 1, · · · , N} and can be

checked analytically. We observe the constructed game G
is submodular when the occlusion regions are small and the

kernel centers are not occluded. Due to the page limit, we

are unable to list the derivation of each term, these condi-

tions can be checked as a by-product in best response up-

dating given {Ωi, i = 1, · · · , N}.
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