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ABSTRACT

On-line discovery of some auxiliary objects to verify the track-
ing results is a novel approach to achieving robust trackingby
balancing the need for strong verification and computational
efficiency. However, the applicability and effectiveness of this
approach highly depend on how to reliably validate the mo-
tion correlation between the target and the auxiliary objects
so as to estimate the motion model. In this paper, we ex-
tend the algorithm of mining auxiliary objects for trackingby
incorporating multibody grouping to detect the motion corre-
lation and estimate the motion model, which imposes more
general motion correlation constraints. The proposed method
discovers the auxiliary objects that exhibit strong affine mo-
tion correlation and estimates the closed-form affine models.
The proposed tracking algorithm shows good performance in
real-world test sequences.

Index Terms— Visual tracking, auxiliary objects, multi-
body grouping, belief propagation.

1. INTRODUCTION

Visual tracking gains much research interests due to its di-
verse applications in video analysis. One fundamental obsta-
cle against long-duration robust tracking is the lack of effi-
cient verification means. Thus, the tracker may either drift
gradually and unconsciously, or a short term invalidation of
the target observation model for just several frames, e.g. the
target moves out of the image boundary shortly or severe oc-
clusion happens, may cause tracking failure.

The challenge originates from the contradictive require-
ments on the target observation model. It has to be powerful
and robust for tough situations, e.g. clutter backgrounds,il-
lumination and view changes, and partial occlusions, whileat
the same time to be efficient for real-time processing. Sincein
real-world applications, the appearances of the target and/or
the environment may be non-stationary, it is generally very
difficult, if not impossible, to obtain simple visual invariants
of the target for tracking. Thus, there have been two primary
means to deal with this dilemma, 1) on-line adaptation, e.g.
switching among multiple observation models [5], selecting

discriminative features [3], incrementally updating observa-
tion models [6, 1], and 2) learning a comprehensive target
model by off-line training [8] which is tantamount to the ul-
timate verification, i.e. object recognition. However, on-line
adaptation is risky if no other supervised mechanisms to pre-
vent model drifting, and training off-line tends to be very
computational demanding and unable to cover all possible
variations of the target appearances.

A new approach called intelligent collaborative tracking
(ICT) [10] has been proposed to handle this dilemma by tak-
ing advantage of the so calledauxiliary objects which have
temporary motion correlation with the targets and are discov-
ered on-the-fly to help verifying the tracking results in a col-
laborative way. The intuition is that the target is seldom iso-
lated and it is likely that there exist some informative image
regions, i.e. auxiliary objects, that have short-term motion
correlation with it. Such auxiliary objects cannot be specified
in advance or be trained off-line because their appearances
and motion change in video. Some sample auxiliary objects
are shown in Fig 1, as the yellow boxes indicate the target (i.e.
the head) and the dash red boxes show some sample auxiliary
objects discovered on-the-fly.

Fig. 1. Some sample auxiliary objects of the target head. They
need to be discovered on-the-fly in the tracking process.

The critical point in the ICT is to reliably determine whether
one candidate auxiliary object has a strong short-term motion
correlation with the target or not. In [10], thresholds on the
variances of relative distances and relative scales are used as
criteria which are ad hoc and may overlook some general mo-
tion correlations. In this paper we address this important issue
by employing multibody grouping [9] to discover the poten-



tial multibody structure from motion and estimate the affine
motion model through noise subspace analysis. By perform-
ing eigenvalue decomposition on the trajectories of the can-
didate auxiliary objects and the target in a time window, we
can check if there is a stable affine motion model. If so, by
identifying the noise subspace, the affine motion model can
be estimated in a closed-form.

2. MINING AUXILIARY OBJECTS

2.1. Auxiliary objects

Auxiliary objects (AOs) are those that can help tracking due
to their strong short-term motion correlation with the target.
In fact, it is not necessary for an AO to be a semantic object.
In the tracking scenario, it refers to an informative image re-
gion or image feature. Specifically, an auxiliary object should
satisfy three properties at least in a short time interval: (1)
persist co-occurrence with the target, (2) consistent motion
correlation with the target, and (3) easy to track.

To discover such AOs during the tracking process, first we
need to identify some candidate AOs. Since image regions, if
selected properly, can be reliably and efficiently tracked,for
example, by the Mean-shift algorithm [4], we employ color
regions as candidate auxiliary objects to satisfy property(1).
For each frame, we perform efficient quad-tree color segmen-
tation to obtain some color regions and establish their cor-
respondences in consecutive frames by matching their color
histograms. By thresholding their frequencies in a time win-
dow, a subset of such color regions are selected as candidate
auxiliary objects which satisfy property (2) (i.e. persistco-
occurrent with the target). Then, the key question is to tell
whether they bear strong and consistent motion correlation
with the target or not, and how to integrate them in the track-
ing process.

2.2. Mining by multibody grouping

The motion correlation between two moving objects can be
very complicated and non-linear, but generally linear motion
models are more feasible to process. In this paper, we extend
the simple translational model in [10] to a more general affine
motion model. When the points on two objects have affine
motion relation, they must reside in a linear subspace [9].
Thus, identifying this subspace will lead to the estimationof
the affine motion model.

At time t, one candidate auxiliary objectO is represented
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short period and have stable motion correlation, thenO can
be claimed as an auxiliary object. So the goal is to evaluate
whetherO andT have strong motion correlation in time win-

dow [t − N, t] given the trajectories ofyt andxt within this
time window.

Assume an affine motion model between auxiliary object
O and the targetT , which is specified by a2 × 2 matrix A

and a translation vectorb = {ub, vb}
T , as

yt = Axt + b. (1)

Subtract the mean̄y of y and x̄ of x in the time window
[t − N, t] and take the noise into consideration, the relation
betweenO andT can be expressed with̃yt = y − ȳ and
x̃t = x − x̄, as

ỹt = Ax̃t + n, (2)

wheren is a zero mean white noise withE[nnT ] = σ2I.
If we stack ỹt and x̃t, the covariance matrixC can be

expressed as
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)
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It is clear thatrank(C) ≤ 2 if there is no noise (i.e.n =
0). This rank deficiency property is important in detecting the
subspace due to motion correlation. In reality, becausen 6= 0,
C is likely to have a full rank. Since the noise is additive, it
is easy to prove that the 4D space spanned by

(

ỹT
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T
t

)

is a
direct sum of a signal subspace and a noise subspace. The
signal subspace is up to rank 2 and corresponds to the large
eigenvalues ofC, and the noise subspace corresponds to the
smallest eigenvalues (i.e.σ). Therefore, we can check and
threshold the eigenvalues to identify those subspaces.

Denote the estimated covariance matrix byĈ and the co-
variance matrix of̃x by Ĉx, and we have
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(4)
Performing eigenvalue decomposition onĈ,

Ĉ = QΛQ, (5)

we obtain the sorted eigenvalues{λ1, · · · , λ4}. If there are
more than 2 eigenvaluesλ2

j ≫ σ2, this candidate is not an
auxiliary object since its motion and the target’s are not in
one subspace.

# of {λ2

j ≫ σ2}

{

> 2 NOT AO
<= 2 AO

. (6)

If the candidate is an auxiliary object, we can estimate its
affine matrixA with the property that the noise subspace is
orthogonal to the signal subspace. The least two eigenvectors
correspond to the noise subspace ofĈ are denoted as


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Substitute back tôC, the2 × 2 matrixA can be solved by

AT

(

q31 q41
q32 q42

)

+

(

q33 q43
q34 q44

)

= 0. (7)

Then, the translation vectorb is obtained withȳ, x̄, andA.
This method gives an effective detection of auxiliary objects
and efficient estimation of their affine motion models.

3. COLLABORATIVE TRACKING

The above mining process automatically discovers a set of
auxiliary objects. How to fuse the motion information of
these auxiliary objects to help tracking is also a critical prob-
lem. With the mining results, a random field can be learned
to model the relation among the target and the auxiliary ob-
jects. Not causing confusion, we omit the subscript of timet

for short, we denote the motion of the target byy and those
of the auxiliary object byxk, k = 1, . . . ,K, whereK is the
number of auxiliary objects. They constitute a random field.
Each pair of the target and an auxiliary objectxk bears a pair-
wise potentialψk0(xk,y),

ψk0(xk,y) ∝ e
−

(y−A
k
x

k
−b

k
)T (y−A

k
x

k
−b

k
)

2σ2 , (8)

whereσ2 is derived from the small eigenvalues ofC in Eq.2.
In many cases, auxiliary objects share almost the same mo-
tion as the target, e.g., the torso and the target head. There-
fore, we can use a Gaussian distribution to characterize those
potentials. The mean of the Gaussian is given byAk andbk,
which is the affine motion model estimated for thekth AO.

Certainly, in the tracking scenario, such a random field is
hidden and need to be inferred from image evidence. We for-
mulate this problem under a Markov network with a special
topology, as shown in Fig. 2, where we only assume pair-wise
connections between the targety and the auxiliary objectxk

and there are no connections among auxiliary objects. Each
of them is associated with its image evidencezk. We denote
Z = {zk, k = 0, . . . ,K}, wherez0 is the observation ofy.
The core of tracking is to estimate the posteriorsp(y|Z) of the
target andp(xk|Z), k = 1, . . . ,K, for the auxiliary objects.
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Fig. 2. Star topology random field.

For such a singly connected network, a belief propagation
algorithm [7] with 2-step message passing gives the exact es-

timates of the posteriors.

p(y|Z) ∝ p̂0(y|Z)
∏

k

mk0(y), (9)

mk0(y) =

∫

xk

p̂k(xk|Z)ψk0(xk,y)dxk , (10)

p(xk|Z) ∝ p̂k(xk|Z)m0k(xk) k = 1, . . . ,K, (11)

m0k(xk) =

∫

y

p̂0(y|Z)
∏

xi\xk

mi0(y)dy, (12)

wheremk0(y) represents the message passed from thekth
auxiliary object to the target andm0k(xk) is the message from
the target to thekth auxiliary object.

If the collaborative tracking result of target is not consis-
tent with its evidence and the auxiliary objects, we assert that
the target is experiencing occlusion or drift, and stop the min-
ing process temporarily. If one auxiliary object is not con-
sistent with all the others, we simply exclude this auxiliary
object from fusion. Please refer to [10] for the details.

4. EXPERIMENTAL RESULTS

We evaluate the improved ICT algorithm in a head tracking
system, where the head tracker is a contour-based elliptical
tracker similar to [2], and the auxiliary trackers are Mean-
shift trackers. In our experiments, we compare the proposed
ICT algorithm with the single contour tracker and the popular
Mean-shift tracker [4].

The motion parameters{u, v, su, sv} to be recovered in-
clude the location(u, v) and the scalessu andsv. The quad-
tree color segmentation and the mean-shift tracker work in the
normalized R-G color space with32×32 bins. Without code
optimization, our C++ implementation of ICT comfortably
runs around 10 fps on average on Pentium 3G for320×240
images depending on the number of the auxiliary objects.

For a quantitative evaluation, we manually labeled the
ground truth of the sequencesbirthday kid for 1460 frames.
The evaluation criteria of tracking error are based on the rela-
tive position errors between the tracking result and that ofthe
ground truth, and the relative scale normalized by the ground
truth scale. Ideally, the position differences should be around
0, and the relative scales1. Note, since the Mean-shift tracker
loses tracking after about 500 frames with too large error, we
only show its results for 500 frames.

Some key frames are shown in Fig. 41. The first and sec-
ond rows show the results of the single Mean-shift tracker and
the single contour tracker respectively, where the solid-yellow
box indicates the location of the head. The tracking resultsof
the improved ICT are shown in the 3rd row as highlighted
solid-yellow box, and the dash-red boxes are the auxiliary ob-
ject trackers.

1All the faces in this paper were mosaicked for privacy protection.



Fig. 4. Frame # 0, 72, 93, 170, 578 and 1455 ofbirthday kid,1460 frames. (1st row) the single Mean-shift tracker, (2nd row) the
single contour tracker, (3rd row) the improved ICT tracker.
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Fig. 3. Quantitative comparison: (left) position errors, (right)scale
errors, [birthday kid,1460 frames].

Since the target head experiences large out-of-plane rota-
tion and the appearances change greatly, Mean-shift tracker
drifts after the kid turns around after frame 400. For the con-
tour tracker, when the rear head is in the dark background,
no good observation is available around the head so the con-
tour tracker drifts to the torso and other elliptical regions, and
is unable to recover. For the improved ICT tracker, with the
help of the auxiliary objects, the tracker either keeps track-
ing in the tough situations or recovers from drifting in several
frames. Note the auxiliary objects discovered can be some
objects with inherent relations with the target, such as thehat
and short pant, or just happening to have temporary relations,
such as the refrigerator or the gift box. This real-world se-
quence demonstrates the advantage of the auxiliary objects
for long-duration tracking.

5. CONCLUSION

In this paper, we improve the intelligent collaborative track-
ing by incorporating multibody grouping to detect the motion
correlation between the target and the auxiliary objects. By
incorporating more general affine motion models, the auxil-
iary objects can be identified reliably and contribute more to
long-duration tracking in practical applications.
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