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ABSTRACT discriminative features [3], incrementally updating alvse

) ) N ) ] tion models [6, 1], and 2) learning a comprehensive target
On-line discovery of some auxiliary objects to verify thedk- 54| by off-line training [8] which is tantamount to the ul-

ing results is a novel approach to achieving robust tracking  imate verification, i.e. object recognition. However, lare
balancing the need for strong verification and computationg,gapiation is risky if no other supervised mechanisms te pre
efficiency. However, the applicability and effectivene$& | ant model drifting, and training off-line tends to be very

approach highly depend on how to reliably validate the Mmoo mptational demanding and unable to cover all possible
tion correlation between the target and the auxiliary disiec | 4riations of the target appearances.

S0 as to eSt'mate the _m_ot|on m_<_)de|. I_n this Paper, We €X- A new approach called intelligent collaborative tracking
Fend the allgonthm-of mining al.JX|I|ary objects for tquk'hQ (ICT) [10] has been proposed to handle this dilemma by tak-
incorporating multibody grouping to detect the motion eerr ing advantage of the so calletiiliary objects which have
?emporary motion correlation with the targets and are disco

general motion correlation constraints. The proposed atkth ered on-the-fly to help verifying the tracking results in & co

discovers the auxiliary objects that exhibit strong atffine-m laborative way. The intuition is that the target is seldoot is

tion correlation and_esnmate_s the closed-form affine mdel_lated and it is likely that there exist some informative iraag
The proposed tracking algorithm shows good performance 'Pegions, i.e. auxiliary objects, that have short-term omoti
real-world test sequences. correlation with it. Such auxiliary objects cannot be sfiedi
Index Terms— Visual tracking, auxiliary objects, multi- in advance or be trained off-line because their appearances
body grouping, belief propagation. and motion change in video. Some sample auxiliary objects
are shown in Fig 1, as the yellow boxes indicate the target (i.
the head) and the dash red boxes show some sample auxiliary
1. INTRODUCTION objects discovered on-the-fly.

Visual tracking gains much research interests due to its di-
verse applications in video analysis. One fundamentabebst
cle against long-duration robust tracking is the lack of-effi
cient verification means. Thus, the tracker may either drift |
gradually and unconsciously, or a short term invalidatibn o
the target observation model for just several frames, &g. t
target moves out of the image boundary shortly or severe oc-|
clusion happens, may cause tracking failure.

The challenge originates from the contradictive require-
ments on the target observation model. It has to be powerfifiig- 1. Some sample auxiliary objects of the target head. They
and robust for tough situations, e.g. clutter backgrouitds, need to be discovered on-the-fly in the tracking process.
lumination and view changes, and partial occlusions, wdtile
the same time to be efficient for real-time processing. Simce The critical pointin the ICT is to reliably determine whethe
real-world applications, the appearances of the targefoand one candidate auxiliary object has a strong short-termanoti
the environment may be non-stationary, it is generally vengcorrelation with the target or not. In [10], thresholds oe th
difficult, if not impossible, to obtain simple visual invarits  variances of relative distances and relative scales ackase
of the target for tracking. Thus, there have been two primargriteria which are ad hoc and may overlook some general mo-
means to deal with this dilemma, 1) on-line adaptation, e.gtion correlations. In this paper we address this importesie
switching among multiple observation models [5], selagtin by employing multibody grouping [9] to discover the poten-




tial multibody structure from motion and estimate the affinedow [t — N, ¢] given the trajectories of; andx; within this
motion model through noise subspace analysis. By perforntime window.

ing eigenvalue decomposition on the trajectories of the can  Assume an affine motion model between auxiliary object
didate auxiliary objects and the target in a time window, weO and the targef’, which is specified by & x 2 matrix A

can check if there is a stable affine motion model. If so, byand a translation vectds = {uy, v, }7, as

identifying the noise subspace, the affine motion model can

be estimated in a closed-form. yt = Ax; +b. (1)
Subtract the meag of y andx of x in the time window
2. MINING AUXILIARY OBJECTS [t — N, t] and take the noise into consideration, the relation
betweenO andT can be expressed with, = y — y and
2.1. Auxiliary objects Xy =x—X,as

- . . yt:Ait_an (2)
Auxiliary objects (AOs) are those that can help tracking due

to their strong short-term motion correlation with the &trg Wheren is a zero mean white noise witiinn”] = o°I.
In fact, it is not necessary for an AO to be a semantic object. If we stacky, andx,, the covariance matrixC can be
In the tracking scenario, it refers to an informative image r expressed as

gion or image feature. Specifically, an auxiliary objectddo C— E[(yt) 3T, x7). 3)
satisfy three properties at least in a short time interva); ( Xy b

persist co-occurrence with the target, (2) consistent onoti Itis clear thatrank(C) < 2 if there is no noise (i.en =
correlation with the target, and (3) easy to track. 0). This rank deficiency property is important in detecting th

To discover such AOs during the tracking process, first weyhspace due to motion correlation. In reality, because0,
need to identify some candidate AOs. Since image regions, if; s likely to have a full rank. Since the noise is additive, it
selected properly, can be reliably and efficiently tracked, g easy to prove that the 4D space spanneoﬁgt@, 5{;) is a
example, by the Mean-shift algorithm [4], we employ color gjrect sum of a signal subspace and a noise subspace. The
regions as candidate auxiliary objects to satisfy prop@ty  signal subspace is up to rank 2 and corresponds to the large
For each frame, we perform efficient quad-tree color segmensigenvalues of?, and the noise subspace corresponds to the
tation to obtain some color regions and establish their corgmallest eigenvalues (i.er). Therefore, we can check and
respondences in consecutive frames by matching their col@hreshold the eigenvalues to identify those subspaces.

histograms. By thresholding their frequencies in a time-win  penote the estimated covariance matrix@ynd the co-
dow, a subset of such color regions are selected as candid{griance matrix ok by C*, and we have

auxiliary objects which satisfy property (2) (i.e. persist
occurrent with the target). Then, thg key que;tion is to t(.aIIA N Fioi\ or ACTAT 452 AC®
whether they bear strong and consistent motion correlatiof = Z ) o X)) = Gz AT G .

with the target or not, and how to integrate them in the track- im0 N

ing process. . . . )
Performing eigenvalue decomposition @n

2.2. Mining by multibody grouping C =QAQ, (5)

The motion correlation between two moving objects can bave obtain the sorted eigenvalugs,, - -- , \s}. If there are

very complicated and non-linear, but generally linear moti  more than 2 eigenvalues > o2, this candidate is not an
models are more feasible to process. In this paper, we exte@dixiliary object since its motion and the target's are not in
the simple translational model in [10] to a more general affin one subspace.

motion model. When the points on two objects have affine

motion relation, they must reside in a linear subspace [9]. #of A2 > 02}{
Thus, identifying this subspace will lead to the estimatién ’

the affine motion model.

At time ¢, one candidate auxiliary obje€tis represented
asx; = {u?,v7}7 and{s¥, s’} where(u?,v¥) are the co-
ordinates of the center ad and s}’ ands} are the scales,
respectively. Similarly the targef’ can be represented as

> 2 NOT AO
<=2 AO ' ©6)

If the candidate is an auxiliary object, we can estimate its
affine matrix A with the property that the noise subspace is
orthogonal to the signal subspace. The least two eigemgecto
correspond to the noise subspac&uére denoted as

ye = {ul,v7}T and {s¥,s'}. If O andT co-occur in a g qu
short period and have stable motion correlation, thecan g32 Qa2
be claimed as an auxiliary object. So the goal is to evaluate 433 Qa3

whetherO andT" have strong motion correlation in time win- 34 Qua



Substitute back t€, the2 x 2 matrix A can be solved by timates of the posteriors.

AT< g3 qu )+ ( 433 Ga3 > —o 7 p(y|Z) o poly|Z) [ ] mwo(y), 9)

g32 442 34 Qa4 k

Then, the translation vectdr is obtained withy, x, andA..
This method gives an effective detection of auxiliary okgec
and efficient estimation of their affine motion models.

mio(y) = / P (%K Z)ro (x5 y)dxx,  (10)

p(xk|Z) < pr(xk|Z)mor(xx) k=1,...,K, (11)
mo(x) = [ poly(2) T] muo(y)dy. (12)

x; \ Xk

3. COLLABORATIVE TRACKING

The above mining process automatically discovers a set atheremyo(y) represents the message passed fromkthe
auxiliary objects. How to fuse the motion information of auxiliary objectto the target andy (x;.) is the message from
these auxiliary objects to help tracking is also a criticalp  the target to thé&th auxiliary object.

lem. With the mining results, a random field can be learned If the collaborative tracking result of target is not consis
to model the relation among the target and the auxiliary obtent with its evidence and the auxiliary objects, we asbett t
jects. Not causing confusion, we omit the subscript of time the target is experiencing occlusion or drift, and stop thre-m
for short, we denote the motion of the targetyyand those ing process temporarily. If one auxiliary object is not con-
of the auxiliary object by, k = 1,..., K, whereK isthe  sistent with all the others, we simply exclude this auxjliar
number of auxiliary objects. They constitute a random fieldobject from fusion. Please refer to [10] for the details.

Each pair of the target and an auxiliary objegtbears a pair-

wise potentialyo (xx, ), 4. EXPERIMENTAL RESULTS
 y—Apx b))  (y—Apx, —by) . . . .
Uro(Xp,y) o e 292 ’ (8) We evaluate the improved ICT algorithm in a head tracking
system, where the head tracker is a contour-based elliptica

whereo? is derived from the small eigenvalues@fin Eq.2.  tracker similar to [2], and the auxiliary trackers are Mean-
In many cases, auxiliary objects share almost the same méhift trackers. In our experiments, we compare the proposed
tion as the target, e.g., the torso and the target head. ThedT algorithm with the single contour tracker and the popula
fore, we can use a Gaussian distribution to characterizetho Mean-shift tracker [4].
potentials. The mean of the Gaussian is givemayandby,, The motion parameteru, v, sy, s, } to be recovered in-
which is the affine motion model estimated for tite AO. clude the locatiorfu, v) and the scales, ands,. The quad-
Certainly, in the tracking scenario, such a random field idre€ color segmentation and the mean-shift tracker wortken t
hidden and need to be inferred from image evidence. We fofl0rmalized R-G color space with2 x 32 bins. Without code
mulate this problem under a Markov network with a speciaPPtimization, our C++ implementation of ICT comfortably
topology, as shown in Fig. 2, where we only assume pair-wisE/ns around 10 fps on average on Pentium 3G3frx 240
connections between the targeaind the auxiliary objecty, images depending on the number of the auxiliary objects.

and there are no connections among auxiliary objects. Each For & quantitative evaluation, we manually labeled the
of them is associated with its image evidemge We denote ground truth of the sequendesr t hday ki d for 1460 frames.
Z = {z,k = 0,..., K}, wherez, is the observation of. The evaluation criteria of tracking error are based on the re

The core of tracking is to estimate the posterja{is|Z) of the tive position errors between the tracking result and thaéhef
target andb(xx|Z), k = 1,. .., K, for the auxiliary objects. ground truth, and the relative scale normalized by the giloun
’ Y truth scale. Ideally, the position differences should lmiad

0, and the relative scalds Note, since the Mean-shift tracker
loses tracking after about 500 frames with too large errer, w
only show its results for 500 frames.

Some key frames are shown in Figt.4The first and sec-
ond rows show the results of the single Mean-shift trackdr an
the single contour tracker respectively, where the soditieyv
box indicates the location of the head. The tracking resilts
the improved ICT are shown in the 3rd row as highlighted
solid-yellow box, and the dash-red boxes are the auxiliary o
hect trackers.

Fig. 2. Star topology random field.

For such a singly connected network, a belief propagatio
algorithm [7] with 2-step message passing gives the exact es !All the faces in this paper were mosaicked for privacy pridsec




Fig. 4. Frame #0, 72, 93, 170, 578 and 145%0fr t hday ki d, 1460 franes. (1strow) the single Mean-shift tracker, (2nd row) the

single contour tracker, (3rd row) the improved ICT tracker.

~ — Intelligent Collaborative Tracker
{ -----Contour

Relative Distance
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Fig. 3. Quantitative comparison: (left) position errors, (rigetale
errors, pi rt hday ki d, 1460 frames].

Since the target head experiences large out-of-plane rota-
tion and the appearances change greatly, Mean-shift lrracke[ 4]
drifts after the kid turns around after frame 400. For the-con
tour tracker, when the rear head is in the dark background,
no good observation is available around the head so the con-

tour tracker drifts to the torso and other elliptical regipand

is unable to recover. For the improved ICT tracker, with the
help of the auxiliary objects, the tracker either keepskirac
ing in the tough situations or recovers from drifting in sete
frames. Note the auxiliary objects discovered can be some
objects with inherent relations with the target, such astite
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