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ABSTRACT

Automatically discovering common visual patterns in images
is very challenging due to the uncertainties in the visual ap-
pearances of such spatial patterns and the enormous compu-
tational cost involved in exploring the huge solution space.
Instead of performing exhaustive search on all possible candi-
dates of such spatial patterns at various locations and scales,
this paper presents a novel and very efficient algorithm for
discovering common visual patterns by designing a provably
correct and computationally efficient pruning procedure that
has a quadratic complexity. This new approach is able to ef-
ficiently search a set of images for unknown visual patterns
that exhibit large appearance variations because of rotation,
scale changes, slight view changes, color variations and par-
tial occlusions.

Index Terms— spatial pattern discovery, image data min-
ing, approximate similarity matching, candidate pruning

1. INTRODUCTION

Recent research of common visual pattern discovery showed
many potential applications in image processing and com-
puter vision, such as near-duplicate image detection [1], im-
age categorization [2], object discovery [3] and segmentation
[4], and image similarity measure [5]. Given a collection of
unlabeled images, the objective is to discover (if there is any)
similar spatial patterns that appear repetitively among the im-
ages. Such common spatial patterns can be textons, a seman-
tically meaningful part of a category of objects such as wheels
of cars, or repetitive objects appearing in the image dataset.

To automatically discover common patterns from images,
we need to address two critical issues: (i) measuring the “repet-
itiveness” of a pattern. This is not a trivial issue because
the matching is subject to many possible variations including
scale, rotation, viewpoint changes or partial occlusion; and
(ii) efficiently discovering the “most repetitive” ones from a
huge pool of pattern candidates generated by the set of im-
ages.

First of all, it is in general very difficult to define robust
similarity measure between two image patches/regions, such

that it is invariant to rotation, scale changes or partial occlu-
sion. Global visual feature like color histogram is not robust
enough to handle all these variations, and it is also not de-
scriptive enough due to lack of spatial information. Many re-
cent methods thus have aimed at extracting invariant local vi-
sual primitives (e.g., corners, interest points, or coarse image
regions) and represented an image as a collection of such vi-
sual primitives. When further considering the spatial relations
among these visual primitives, graph based models (e.g., At-
tribute Relational Graph) can be applied to measure the sim-
ilarity. Unfortunately, finding sub-graph matchings is com-
putationally expensive. The widely applied EM-algorithm in
solving the matching problem is sensitive to the initialization
[6] and has difficulty in handling the case of multiple common
patterns [7]. Besides local visual invariants, image segments
can also be used as visual primitives. However, they are sen-
sitive to color and scale variations, thus special care needs to
be taken.

In addition, even if invariant features can be obtained to
match two sub-images, common pattern discovery is still very
difficult due to the lack of prior knowledge of the common
pattern. For example, it is generally unknown in advance (i)
what the appropriate spatial shape of the common patterns is
and (ii) where (location) and how large (scale) they are; or
even (iii) whether such repetitive patterns exist. Exhaustive
search through all possible pattern sizes and locations is com-
putationally demanding, if not impossible.

We present a robust and efficient method for discovering
common spatial patterns from images. Each imageIi is de-
scribed by a set of visual primitives,Ii = {p1, ..., pm} where
p = {x, y,d} represents a visual primitive;(x, y) denotes the
spatial location; andd is the descriptor vector of the visual
primitive. A common spatial patternP ⊆ Ii is a set of spa-
tially co-located visual primitives that has good matches in
other images. Instead of searching all possible pattern can-
didatesP in the image dataset, we discoverP by gradually
pruning those visual primitives that do not belong to anyP.
Such pruning process is provably correct since it does not dis-
cards qualified solutions. And our method is robust to differ-
ent pattern variations by using local invariant visual features,
and is only of a quadratic complexity of the total number of
visual primitives in the database.



2. FEATURE EXTRACTION AND PRE-PROCESSING

In order to handle possible factors that incur variations inthe
visual pattern, such as rotation, scale and viewpoint changes,
the visual primitivesp need to be robust under such varia-
tions. In our implementation, we apply Scale Invariant Fea-
tures (SIFT) [8] as our visual primitives although other local
invariant features are certainly possible. Each SIFT descriptor
dp is a 128-d vector which characterizes the local invariance
of a visual primitivep. After extracting SIFT points for each
image, we build visual primitive databaseD, whose size is
denoted byN = |D| =

∑k

i=1
|Ii|, wherek is the total im-

age number and|Ii| denotes the visual primitive number of
an image. Each visual primitive is labeled by a unique index
numberj (1 ≤ j ≤ N ) in retrieving it fromD.

Initially, each visual primitivep ∈ D is a candidate that is
a compositional element of a common spatial pattern. For ex-
ample, it is possible that a common spatial pattern is located
around a specific visual primitive. Our idea is to decide which
visual primitives really belong to the common spatial pattern
by gradually pruning those that do not make any spatial pat-
terns.

To do so, we perform a preprocessing step of the visual
primitive database for initial pruning. For each visual primi-
tive q ∈ Ii, we find all of its matches except those inIi, i.e.,
finding p ∈ D\Ii such that‖dp − dq‖ ≤ ε, whereε ≥ 0 is a
matching threshold and‖ · ‖ denotes the Euclidean distance.
This is a typicalε- Nearest Neighbors (ε-NN) query problem,
whereε-NN refers to the retrieved points within the distance
rangeε of the query pointp in feature spaceRd. Performing
the NN-query for eachq ∈ D has two benefits. First, it can
quickly identify those uncommon visual primitives that do not
match with others in the database. Such visual primitives are
mostly non-repetitive,e.g., generated from the unique back-
ground of a single image, and thus can be pruned. Second,
for the remaining visual primitives, their matches are found,
and they will be further used in the next step of discovering
spatial patterns (in Sec. 3). We define the retrievedε-NN set
(excluding the matches in the same image) ofq as itsco-set
Cq = {p : ‖dq − dp‖ ≤ ε,∀i, q, p /∈ Ii}. A visual primitive
q is pruned if its co-setCq = ∅.

The NN-query in large database is computationally ex-
pensive as exhaustive search is of complexityO(|D|) for each
query, and we need to query in total|D| times. Although
each query complexity can be reduced toO(log |D|) by tak-
ing advantage of the data distribution structure in the feature
space, most index-based methods such as kd-tree are only fea-
sible in low dimensional feature spaces but cannot extend to
high dimensions. Considering our high-dimensional features
(d = 128), we choose to apply the Locality Sensitive Hash
(LSH) method [9] for the approximate NN-query. Generally,
LSH provides a randomized solution to the high-dimensional
NN search. The query process is accelerated by compromis-
ing the results: instead of performing the exactε-NN query,
LSH performs approximateε-NN query.

In LSH, each hash functionh(·) is a random mapping
from vectord to an integer,h : Rd → N

ha,b(d) =

⌊

a · d + b

r

⌋

,

wherea is a random vector ofd-dimension andb is a random
variable chosen uniformly from[0, r]. Under a specific hash
function, two vectorsp andq are matched if their hash values
are identical. The closer the two vectorsdp anddq in Rd, the
more possible that they will have the same hash value, which
is guaranteed by the property of(r1, r2, p1, p2)-sensitive hash
function (see [9] for details). By pre-building a set of hashing
functions for the database, each new query vectorq can effi-
ciently retrieve most of its neighbors in the features spaceby
only comparing the hash values (i.e., whether they are located
in the same interval) instead of calculating the distance inRd.

3. PATTERN DISCOVERY THROUGH FAST
SPATIAL NEIGHBORHOOD MATCHING

After the pre-processing of the visual primitive databaseD, a
graphG = {D, E} can be applied to represent the matching
relations among the visual primitives. For eachp ∈ D, we
denote it as a node and the edge is defined on each pair of
nodese = {q, p} ∈ E ,∀q, p ∈ D. The weight of a edge
e(q, p) is defined as the similarity measure:

e(q, p) =

{

exp−
‖dq−dp‖2

α if p ∈ Cq

0 otherwise
, (1)

whereα > 0 is one parameter andCq depends on the other
parameterε (matching threshold). This graph is a sparsely
connected graph when selectingε appropriately (e.g. if ε is
not too large). We denote the non-isolated node set asD1 =
{p : |Cp| 6= ∅} ⊆ D, while all the isolated nodes are non-
repetitive visual primitives that have been pruned. Eachp ∈
D1 has the potential to act as a compositional element of a
common pattern, but how to further evaluate them is a critical
problem. In the current stage, the evidence ofp ∈ D1 being
a part of a common pattern is too local, because the pattern
is only supported by a single visual primitive. Thus a larger
spatial neighborhood needs to be considered. For eachq ∈
D1, we find itsK-nearest spatial neighbors in the image to
form a spatial group Vq. As we need to check ifVq can
further find matches in other images, it is important to define
the similarity measure (or matching) between two groups of
visual primitives rather than two individual visual primitives.
The larger the size ofVq and the more matches it can find,
the more likely it implies a common pattern.

3.1. Optimal similarity matching
For each spatial groupVq associated withq, we need to see
if it can match with other spatial groupsVp associated with
p. Matching two setsVq andVp can be formulated as an
assignment problem:



Sim(Vq,Vp) = max
f

K
∑

i=1

e(qi, f(qi)), (2)

wheref(·) is the assignment function that specifies which
pointqi ∈ Vq is matched to a unique pointpj = f(qi) ∈ Vp.
We define two spatial groups to be matched if their similarity
Sim(Vq,Vp) ≥ λ, whereλ > 0 is the matching threshold.
In our implementation, we setλ = 0.4|Vp|. The exhaus-
tive search to solve such an assignment problem is of com-
plexity O(K!) if one-to-one unique matching is required. In
our pattern discovery setting, we need to evaluate the simi-
larity Sim(Vq,Vp) for every valid pair of visual primitives,
i.e., ∀p, q ∈ D1. Thus the total complexity of the exhaustive
search is ofO(M2K!), whereK = |Vq| is the size of the
spatial neighborhood, andM = |D1| < |D| is the number of
valid visual primitives.

3.2. Fast approximation of similarity score
As it is computationally demanding to obtain the optimal match-
ing score based on formulation in Eq. 2, we present an ap-
proximate solution with linear complexityO(K ×H) by tak-
ing advantage of the previously built graphG. HereH is the
average size ofCp for p ∈ D1. In generalH is a small con-
stant depending onε, where in the worst case whenε = ∞,
H = N = |D|. The approximate similarity score is a positive
integer calculated in Eq. 3, by evaluating the intersectionsize
of two sets. Since each edge weighte(q, p) ≤ 1 according to
Eq. 1, it can be proved that the approximate similarity mea-
sure is an upper bounded estimation of the optimal matching
score:

˜Sim(Vq,Vp) = |Vq ∩ CVp
| (3)

= |{e : e(qi, f(qi)) 6= 0}| (4)

≥ max
f

K
∑

i=1

e(qi, f(qi)) (5)

= Sim(Vq,Vp), (6)

whereCVp
= Cp1

∪ Cp2
... ∪ CpK

. And pi ∈ Vp, i =
1...K are the K-nearest spatial neighbors ofp. Fig. 1 illus-
trates the matching in the caseK = 6. A visual primitive
q ∈ D1 is further pruned if its spatial groupVq can not
find matcheseven with the exaggerated approximate simi-
larity score, namely∀p ∈ D1, ˜Sim(Vq,Vp) < λ. Since
we always have ˜Sim(Vq,Vp) ≥ Sim(Vq,Vp), the approx-
imate similarity is a safe estimation for pruning because it
does not discard qualified solutions. After pruning inD1, the
remaining visual primitives form a new visual primitive data-
baseDK , with DK ⊆ D1 ⊆ D. Compared withD1, each
elementp ∈ DK is more possible to belong to a common
pattern due to supports from itsK spatial neighbors. We can
continue this process until large enough common patterns are
discovered.

To calculate the intersection of two setsVq andCVp
, of

sizeK andK × H (on average) respectively, the complexity

can be ofO(K +K×H) by using a binary vectoru of length
M to index the elements inVq andVp. Therefore by using
the approximate similarity matching, we largely reduce the
complexity of matching two sets fromO(K!) to O(K × H),
and our total complexity is now ofO(M2K × H).

Fig. 1. Illustration of approximate similarity matching between two
spatial groupsVq andVp. Specifically, herep = p1 ∈ D andq =
p389 ∈ D. Each spatial neighborpi ∈ Vp of p has a matching set
(i.e. co-setCpi

) which is represented as a string of blocks associated
with pi in the figure. For example nodep1 has a co-setCp1

=
{p203, p391, p576}. And p3 is a non-repetitive visual primitive as
Cp3

= ∅. To approximately matchVq andVp is to perform the set
intersection betweenVq andCVp , ˜Sim(Vq,Vp) = |Vq∩CVp | =
3 ≥ Sim(Vq,Vp).

4. EXPERIMENT

4.1. Experimental setting
The image dataset contains10 different objects. For each
object, we collect5-10 images that contain it as the fore-
ground object, but with different clutter backgrounds. The
foreground objects are under different variations like rotation,
partial occlusion, scale and viewpoint changes. For each ob-
ject, we perform the pattern discovery algorithm on the image
set containing that object. It is possible that an image contains
multiple objects. The performance is evaluated by using two
criteria: precision and recall, where precision refers to the
percentage of the correctly discovered visual primitives ver-
sus the total discovered ones, and recall refers to the percent-
age of the corrected discovered area versus the total correct
area. The discovered area is the union of the discovered vi-
sual primitives, which can be further estimated by the area
of a bounding box. All the experiments are performed on a
standard P4 @3.19G Hz PC (1 G memory). The algorithm is
implemented with C++.

4.2. Common spatial pattern discovery
To verify the effectiveness of our approximate similarity mea-
sure, Fig. 2 presents one example of our results. The common
pattern in the images are under variations like rotation and
partial occlusions. Although color images are presented in
Fig. 2, our method is not color-sensitive as the SIFT features
are extracted from transfered gray-level images. For the10



Fig. 2. Pattern discovery result. (1) 1st row: SIFT extraction results,
each green point represents a visual primitivep ∈ D (|D| = 3, 084).
(2) 2nd row: visual primitive pruning results based on individual
SIFT matching. Red points are valid visual primitivesp ∈ D1

(|D1| = 1, 078) and green points are those pruned. (3) 3rd row:
pattern discovery based on fast spatial neighborhood matching with
neighborhood sizeK = 25 and matching thresholdλ = 10. Red
points are discovered visual primitivesp ∈ DK (|DK | = 316) that
belong to the common spatial pattern. (4) 4th row: discovered spatial
common pattern by fusing the discovered visual primitives.

objects in the dataset, very good precision can be obtained
(from 0.82 to 0.98) while moderate recall can be obtained
(from 0.31 to 0.78, depending on the shape and texture of the
pattern). It is worth noting that although [3] also speeds up
the similarity matching between two sets by quantizing vi-
sual primitives into clusters (i.e. visual words), our method is
more robust as it does not suffer from the quantization errors.

4.3. Computational cost
After SIFT feature extraction (2-5 seconds per image), the
computational cost of our mining method is composed of two
parts: (1) individual visual primitive similarity query using
the LSH algorithm, and (2) pattern discovery through approx-
imate spatial neighborhood matching. Table 1 presents the
computational cost comparison between using the proposed
algorithm and using the exhaustive search method. The test
set contains three images in Fig. 2, with resolution568×426.
The total visual primitive number isN = 3, 084 (M = 1, 078
after the initial pruning of visual primitives) and the dimen-
sionality of the feature isd = 128. We setε = 200 for ε-NN
query inD. The query speed of LSH is very fast. Once the
hash function index is built for the database (costs a few sec-
onds), the average query time for eachp ∈ D is only 1 mil-
lisecond. For each valid visual primitivep ∈ D1, the average
number of the matches it can find isH = 11.2.

Method Complexity CPU cost

LSH query < O(N2) 5.5 sec
Appr. matching O(M2KH) 4.7 sec
Total Cost < O(N2KH) 10.2 sec
Exhaustive search O(N2K!) > 10h

Table 1. CPU computational cost.

5. CONCLUSION
We present an efficient common spatial pattern mining algo-
rithm for image database. With the visual primitive database
size ofN , its complexity is aroundO(N2). Compared with
global image features like color histograms, our method is
more robust to the pattern variations and is color-insensitive
by using the SIFT points as visual primitives. Moreover, the
proposed method does not have the local optimal limitation
as the EM-algorithm, and can discover multiple common pat-
terns simultaneously. Discovering such common spatial pat-
tern among images is useful for measuring the similarity be-
tween images and for indexing image database through an un-
supervised manner.
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