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ABSTRACT that it is invariant to rotation, scale changes or partialwc
sion. Global visual feature like color histogram is not rstou

Automatically discovering common visual patterns in imge enoygh to handle all these variations, and it is also not de-
is very challenging due to the uncertainties in the visual apscriptive enough due to lack of spatial information. Many re
pearances of such spatial patterns and the enormous Compint methods thus have aimed at extracting invariant Igeal v
tational cost involved in exploring the huge solution spaceg | primitives €.g., corners, interest points, or coarse image
Instead of performing exhaustive search on all possibldiean regions) and represented an image as a collection of such vi-
dates of such spatial patterns at various locations anésscal gg| primitives. When further considering the spatial ietet
this paper presents a novel and very efficient algorithm fopmong these visual primitives, graph based modets, (At-
discovering common visual patterns by designing a provablysipte Relational Graph) can be applied to measure the sim-
correct and computationally efficient pruning procedur th jiarity, Unfortunately, finding sub-graph matchings is com
has a quadratic complexity. This new approach is able to ebutationally expensive. The widely applied EM-algorithm i
ficiently search a set of images for unknown visual patterngg|ying the matching problem is sensitive to the initidiaa
that exhibit large appearance variations because of otati 6] and has difficulty in handling the case of multiple common

scale changes, slight view changes, color variations and pgyatterns [7]. Besides local visual invariants, image segme
tial occlusions. can also be used as visual primitives. However, they are sen-

Index Terms— spatial pattern discovery, image data min-Sitive to color and scale variations, thus special care sieed
ing, approximate similarity matching, candidate pruning ~ be taken.
In addition, even if invariant features can be obtained to
match two sub-images, common pattern discovery is stij ver
1. INTRODUCTION difficult due to the lack of prior knowledge of the common
pattern. For example, it is generally unknown in advance (i)
Recent research of common visual pattern discovery showeghat the appropriate spatial shape of the common patterns is
many potential applications in image processing and comand (ii) where [ocation) and how large scale) they are; or
puter vision, such as near-duplicate image detectionifd], i even (iii) whether such repetitive patterns exist. Exhaast
age categorization [2], object discovery [3] and segmeattat search through all possible pattern sizes and locatioris ¢
[4], and image similarity measure [5]. Given a collection of putationally demanding, if not impossible.
unlabeled images, the objective is to discover (if therenig a We present a robust and efficient method for discovering
similar spatial patterns that appear repetitively amoegitt  common spatial patterns from images. Each imBgs de-
ages. Such common spatial patterns can be textons, a semagribed by a set of visual primitiveE, = {p1, ..., p,, } where
tically meaningful part of a category of objects such as Whee j, — {1, 4, d} represents a visual primitivéz, y) denotes the
of cars, or repetitive objects appearing in the image datase spatial location; andl is the descriptor vector of the visual
To automatically discover common patterns from imagesprimitive. A common spatial patter® C I, is a set of spa-
we need to address two critical issues: (i) measuring thgetre tially co-located visual primitives that has good matches i
itiveness” of a pattern. This is not a trivial issue becausether images. Instead of searching all possible pattern can
the matching is subject to many possible variations inclgdi didatesP in the image dataset, we discovBrby gradually
scale, rotation, viewpoint changes or partial occlusiamd a pruning those visual primitives that do not belong to ghy
(ii) efficiently discovering the “most repetitive” ones froa  Such pruning process is provably correct since it does 1set di
huge pool of pattern candidates generated by the set of ingards qualified solutions. And our method is robust to differ
ages. ent pattern variations by using local invariant visual tees,
First of all, it is in general very difficult to define robust and is only of a quadratic complexity of the total number of
similarity measure between two image patches/region$y suwisual primitives in the database.



2. FEATURE EXTRACTION AND PRE-PROCESSING In LSH, each hash functioh(-) is a random mapping

i . Rd
In order to handle possible factors that incur variationgha 70 vectord to an integerf, : R — N

visual pattern, such as rotation, scale and viewpoint cbsing han(d) = {a -d+ bJ
the visual primitivesp need to be robust under such varia- ’

tions. In our implementation, we apply Scale Invariant Fea
tures (SIFT) [8] as our visual primitives although otherdbc
invariant features are certainly possible. Each SIFT detacr
d, is a 128-d vector which characterizes the local invarianc
of a visual primitivep. After extracting SIFT points for each

image, we build visual pn}:nltlve databaﬁb. whose S|z§ is g guaranteed by the property @f,, 7>, p1, p»)-sensitive hash
denoted byN' = |D| = 3_;_, |Ii|, wherek is the total im- ¢,nction (see [9] for details). By pre-building a set of hiash
age number and;| denotes the visual primitive number of ¢nctions for the database, each new query vegizan effi-
an image. Each visual primitive is labeled by a unique index;jeny retrieve most of its neighbors in the features spce
number;j (1 < j < N)inretrieving it fromD. only comparing the hash valudsg(, whether they are located

Initially, each visual primitivep € D is a candidate thatis i, the same interval) instead of calculating the distandedn
a compositional element of a common spatial pattern. For ex-

ample, it is possible that a common spatial pattern is lacate
around a specific visual primitive. Our idea is to decide Wwhic
visual primitives really belong to the common spatial patte

i)eyrr?sradually pruning those that do not make any spatial IoatAfter the pre-processing of the visual primitive datab@se

To do so, we perform a preprocessing step of the visueﬁraphg = {D, £} can be applied to represent the matching

rimitive database for initial pruning. For each visuahpii elations among the visual primitives. For egefe D, we
P . valp 9- . denote it as a node and the edge is defined on each pair of
tive ¢ € I;, we find all of its matches except thoselini.e.,

findingp € D\L; such that|d, — d,|| < e, wheree > Oisa nodese = {¢,p} € & Va,p € D. The weight of a edge

matching threshold anil- || denotes the Euclidean distance. ¢(q,p) is defined as the S|m|Iar|ty2 measure.

This is a typicak- Nearest Neighbors{NN) query problem, e(0.p) = { exp_w ifpec, 7 "
wheree-NN refers to the retrieved points within the distance 0 otherwise

rangee of the query poinp in feature spac®?. Performing .

the NN-query for eacly € D has two benefits. First, it can Wherea > 0 is one parameter and, depends on the other
quickly identify those uncommon visual primitives thatditn  Parametere (matching threshold). This graph is a sparsely
match with others in the database. Such visual primitives arconnected graph when selectingppropriately €g. if ¢ is
mostly non-repetitiveg.g., generated from the unique back- "0t t00 large). We denote the non-isolated node s@t'as-
ground of a single image, and thus can be pruned. Secont® : |Cp| # 0} S D, while all the isolated nodes are non-
for the remaining visual primitives, their matches are fun epetitive visual primitives that have been pruned. Each
and they will be further used in the next step of discovering?' has the potential to act as a compositional element of a
spatial patterns (in Sec. 3). We define the retriestN set ~common pattern, but how to further evaluate them is a clitica

(excluding the matches in the same image) afs itsco-set problem. In the current stage, the evidence & D' being
C,={p:|d, —d,|| < €Viqp¢I}. Avisual primitive @ part of a common pattern is too local, because the pattern

qis pruned if its co-se€,, = . is only supported by a single visual primitive. Thus a larger
The NN-query in large database is computationally exSPatial neighborhood needs to be considered. For gaeh
pensive as exhaustive search is of complegifyD)) for each D!, we f|nq its K -nearest spatial neighbors in the image to
query, and we need to query in totdP| times. Although form aspatial group V,. As we need to check iV, can
each query complexity can be reducedtfiog |D|) by tak- furthgr fmd_ matches in other images, it is important to define
ing advantage of the data distribution structure in theuieat the similarity measure (or matching) between two groups of
space, most index-based methods such as kd-tree are only fédgual primitives .rather than two individual visuallpririmis_.
sible in low dimensional feature spaces but cannot extend tbhe larger the size oV, and the more matches it can find,
high dimensions. Considering our high-dimensional fezgtur the more likely itimplies a common pattern.
(d = 128), we choose to apply the Locality Sensitive Hash
(LSH) method [9] for the approximate NN-query. Generally,3.1. Optimal similarity matching
LSH provides a randomized solution to the high-dimensionaFor each spatial groupV, associated witly, we need to see
NN search. The query process is accelerated by compromis-it can match with other spatial groupg, associated with
ing the results: instead of performing the exaddN query, p. Matching two setsV, andV,, can be formulated as an
LSH performs approximate NN query. assignment problem:

)

wherea is a random vector of-dimension and is a random
variable chosen uniformly frorfd, r]. Under a specific hash
function, two vectorg andq are matched if their hash values
@re identical. The closer the two vectetsandd, in R?, the
more possible that they will have the same hash value, which

3. PATTERN DISCOVERY THROUGH FAST
SPATIAL NEIGHBORHOOD MATCHING



. K can be ofO(K + K x H) by using a binary vectai of length
Sim(V,, V;) = mﬁxze(% Fla)), (2) M to index the elements iV, andV,,. Therefore by using
=1 the approximate similarity matching, we largely reduce the
where f(-) is the assignment function that specifies whichcomplexity of matching two sets fro@(K!) to O(K x H),
pointg; € V, is matched to a unique poipj = f(¢;) € V,.  and our total complexity is now @d(M>K x H).
We define two spatial groups to be matched if their similarity
Sim(V,,V,) > X, where) > 0 is the matching threshold.
In our implementation, we set = 0.4|V,|. The exhaus-
tive search to solve such an assignment problem is of com-
plexity O(K!) if one-to-one unique matching is required. In
our pattern discovery setting, we need to evaluate the simi-
larity Sim(V,, V,,) for every valid pair of visual primitives,
i.e, Vp,q € D'. Thus the total complexity of the exhaustive
search is ofO(M?K!), whereK = |V,| is the size of the
spatial neighborhood, and = |D!| < |D| is the number of
valid visual primitives.
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3.2. Fast approximation of similarity score Fig. 1. lllustration of approximate similarity matching between two
As itis computationally demanding to obtain the optimalchat Spatial groupsV, andV,,. Specifically, here = p1 € D andg =

ing score based on formulation in Eq. 2, we present an agzse € D- Each spatial neighbgr; € V, of p has a matching set
proximate solution with linear complexit9( K x H) by tak- @i €. co-s_eth,i) yvhlch is represented as a string of blocks associated
ing advantage of the previously built gragh Here H is the with p; in the figure. For example node. has a co-seC,, =

- 1 . ) {p203, 391,576 }. And p3 is a non-repetitive visual primitive as
average size o€, for p € D". In general{ is a small con C,, = 0. To approximately matcW, andV,, is to perform the set

stant depending on where in the worst case when= oo,  jytersection betweeW, andCy,, Sim(V,, V,) = [V,NCy, | =
H = N = |D|. The approximate similarity score is a positive 3 > §im(Vv,, V,)
integer calculated in Eq. 3, by evaluating the intersecsian

of two sets. Since each edge weigl, p) < 1 according to

Eqg. 1, it can be proved that the approximate similarity mea- 4. EXPERIMENT
sure is an upper bounded estimation of the optimal matching.1. Experimental setting

score: The image dataset contaii$ different objects. For each
Sim(Vy, V) = |[VyNCy,| (3)  object, we collects-10 images that contain it as the fore-
= He:e(q, f(g)) # 0} (4) ground object, but with different clutter backgrounds. The
foreground objects are under different variations likationh,

K
> maxz e(qi, f(q:)) (5) Partial occlusion, scale and viewpoint changes. For eaeh ob
B U ject, we perform the pattern discovery algorithm on the ienag
= Sim(V,V,), (6)  Setcontaining that object. Itis possible that an imageaiost
multiple objects. The performance is evaluated by using two
whereCy, = C,, UC,,...UC,,.. Andp; € V,,i =  criteria: precision and recall, where precision refershe t

1...K are the K-nearest spatial neighborspofFig. 1 illus-  percentage of the correctly discovered visual primitives v
trates the matching in the cagé = 6. A visual primitive  sus the total discovered ones, and recall refers to the perce
q € D' is further pruned if its spatial groul, can not age of the corrected discovered area versus the total torrec
find matcheseven with the exaggerated approximate simi- area. The discovered area is the union of the discovered vi-
larity score, namely/p € D', Sim(V,, V,) < A\. Since sual primitives, which can be further estimated by the area
we always havesim(V,, V,) > Sim(V,, V,), the approx-  of a bounding box. All the experiments are performed on a
imate similarity is a safe estimation for pruning because istandard P4 @.19G Hz PC (| G memory). The algorithm is
does not discard qualified solutions. After pruningih, the  implemented with C++.
remaining visual primitives form a new visual primitive dat
baseDX, with DX C D! C D. Compared withD!, each 4.2. Common spatial pattern discovery
elementp € DX is more possible to belong to a common To verify the effectiveness of our approximate similaritgan
pattern due to supports from if§ spatial neighbors. We can sure, Fig. 2 presents one example of our results. The common
continue this process until large enough common pattems apattern in the images are under variations like rotation and
discovered. partial occlusions. Although color images are presented in
To calculate the intersection of two s&¥§ andCy,, of  Fig. 2, our method is not color-sensitive as the SIFT feature
size K andK x H (on average) respectively, the complexity are extracted from transfered gray-level images. Forlthe



| Method | Complexity | CPU cost|

LSH query < O(N?) 5.5 sec
Appr. matching O(M?KH) 4.7 sec
Total Cost < O(N?KH) | 10.2sec
Exhaustive search O(N?K!) > 10h

Table 1. CPU computational cost.

5. CONCLUSION

We present an efficient common spatial pattern mining algo-
rithm for image database. With the visual primitive databas
size of N, its complexity is around)(N?). Compared with
global image features like color histograms, our method is
more robust to the pattern variations and is color-inseesit
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by using the SIFT points as visual primitives. Moreover, the
proposed method does not have the local optimal limitation
as the EM-algorithm, and can discover multiple common pat-
terns simultaneously. Discovering such common spatial pat
tern among images is useful for measuring the similarity be-
tween images and for indexing image database through an un-

Fig. 2. Pattern discovery result. (1) 1strow: SIFT extraction results supervised manner.

each green point represents a visual primitive D (|D| = 3, 084).

(2) 2nd row: visual primitive pruning results based on individual
SIFT matching. Red points are valid visual primitivesc D*
(/D = 1,078) and green points are those pruned. (3) 3rd row:
pattern discovery based on fast spatial neighborhood matching wi
neighborhood sizé = 25 and matching threshold = 10. Red
points are discovered visual primitivese DX (|D¥| = 316) that
belong to the common spatial pattern. (4) 4th row: discovered spatigi |
common pattern by fusing the discovered visual primitives.

objects in the dataset, very good precision can be obtaineig]
(from 0.82 to 0.98) while moderate recall can be obtained
(from 0.31 t0 0.78, depending on the shape and texture of the
pattern). It is worth noting that although [3] also speeds up
the similarity matching between two sets by quantizing vi—[3]
sual primitives into clusters.é. visual words), our method is
more robust as it does not suffer from the quantization error

4.3. Computational cost Y
After SIFT feature extraction (2-5 seconds per image), the
computational cost of our mining method is composed of twQs;
parts: (1) individual visual primitive similarity query ing

the LSH algorithm, and (2) pattern discovery through approxg)
imate spatial neighborhood matching. Table 1 presents the
computational cost comparison between using the proposed
algorithm and using the exhaustive search method. The teg
set contains three images in Fig. 2, with resolufiéR x 426.

The total visual primitive number & = 3,084 (M = 1,078

after the initial pruning of visual primitives) and the dime
sionality of the feature ig = 128. We sete = 200 for NN [g]
query inD. The query speed of LSH is very fast. Once the
hash function index is built for the database (costs a few se
onds), the average query time for eaclke D is only 1 mil-
lisecond. For each valid visual primitiygec D*, the average
number of the matches it can findis = 11.2.
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