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ABSTRACT

In this paper, a novel algorithm for single image super res-
olution is proposed. Back-projection [1] can minimize the
reconstruction error with an efficient iterative procedure. Al-
though it can produce visually appealing result, this method
suffers from the chessboard effect and ringing effect, espe-
cially along strong edges. The underlining reason is that there
is no edge guidance in the error correction process. Bilat-
eral filtering can achieve edge-preserving image smoothing
by adding the extra information from the feature domain. The
basic idea is to do the smoothing on the pixels which are
nearby both in space domain and in feature domain. The
proposed bilateral back-projection algorithm strives to inte-
grate the bilateral filtering into the back-project method. In
our approach, the back-projection process can be guided by
the edge information to avoid across-edge smoothing, thus
the chessboard effect and ringing effect along image edges
are removed. Promising results can be obtained by the pro-
posed bilateral back-projection method efficiently.

1. INTRODUCTION

The objective of image super resolution (SR) [2] is to obtain
high resolution (HR) images from low resolution (LR) inputs.
It is widely applicable in video communication, object recog-
nition, HDTV, image compression, et al. In this paper, we
mainly focus on the super resolution task given one single
low resolution input image.

The generation process of low resolution images can be
modeled as a combination of smoothing and down-sampling
operations of the natural scenes by low quality sensors. Super
resolution is an inverse problem of this generation process, so
it is under-determined due to the information loss. One cri-
teria of solving this inverse problem is minimizing the recon-
struction error. In other words, the result which can produce
the same low resolution image as the input one is preferred.

Various methods are proposed in the literature to regu-
larize the inverse problem. Two of the most extensively ex-
plored image modeling priors are the image smoothness prior
and the edge smoothness prior. Simple filtering/interpolation
algorithms (e.g., bilinear/bicubic interpolation) can produce
smooth high resolution images, which are usually blurry, thus
have limited image quality. To preserve edge sharpness, edge

directed interpolation [3, 4] is proposed to prevent cross-edge
interpolation. However, locating high precision edge posi-
tion itself is a non-trivial task. Level-set [5] and multiple-
scale tensor voting [6] methods are explored to get smooth
edges. Edge preserving smoothness prior on large neighbor-
hood is proposed in [7]. In [8], a soft edge smoothness term
which can measure the average length of discrete level lines
is incorporated into an objective function to produce smooth
soft edges. It is applied on alpha channel to achieve a uni-
form treatment of edges with different strength. Instead of
image prior modeling, many researchers use image exemplar
directly. An image can be modeled as a Markov Random
Fields as in [9], This idea is extended onto domain-specific
video SR in [10].

Generally speaking, exemplar-based algorithms can pro-
duce high contrast details in HR images, while powerful data-
base indexing/searching method and efficient MRF optimiza-
tion algorithm are usually necessary. On the other hand, meth-
ods based on image modeling priors are more efficient. One
critical issue is how to handle image edges in a satisfactory
way. Simple interpolation strategies tend to produce blurry
results, while edge preserving methods may remove image
details in regions without strong edges.

Back-projection [1] method can minimize the reconstruc-
tion error efficiently by an iterative algorithm. In each step,
the current reconstruction error is back-projected to adjust the
image intensity. Although this method can improve the im-
age quality greatly, it suffers from some unsatisfying artifacts,
such as the ringing effect and the chessboard effect. The un-
derlining reason is the usage of isotropic back-projection ker-
nel. In fact, due to the under-determined nature of the SR
task, there exist a lot of minimizers for the reconstruction er-
ror. It is very likely that the isotropic back-projection kernel
leads to unsatisfactory results, since the edge information is
totally ignored throughout the update procedure.

In this paper, the bilateral back-projection method is pro-
posed to solve the problems associated with the original one,
when it is applied to single image SR. We first show that, for
any given positive integer scaling factor, the original back-
projection algorithm can minimize the reconstruction error ef-
ficiently under certain conditions. Then, the idea of bilateral
filtering is employed to guide the back-projection process.
The image edge information is integrated to avoid across-



edge projection, thus the ringing effect and chessboard effect
can be removed. The proposed bilateral back-projection al-
gorithm is introduced in Sec. 2. The experiment results are
shown in Sec. 3 and Sec. 4 concludes the paper.

2. BILATERAL BACK-PROJECTION

2.1. Problem modeling
In theory, the generation process of LR image can be modeled
by a combination of the blur effect (due to the atmosphere, the
object/camera motion, and the sensor) and the down-sampling
operation. By simplifying the blur effect with a single filter g
for the entire image, the generation process can be formulated
as follows

Il = (Ih ∗ g) ↓s, (1)

where Ih and Il are the HR and LR images respectively, ∗ is
the convolution operator, and ↓s is the down-sampling opera-
tor with scaling factor s.

The reconstruction error of an HR image I is defined as
the difference between the LR input image and the synthe-
sized LR image by I as follows

er(I) = Il − (I ∗ g) ↓s (2)

2.2. Back-projection
Back-projection [1] is an efficient algorithm to get the HR
image by minimizing the norm of the reconstruction error de-
fined by Eqn. 2. It is originally designed for the case with
multiple LR inputs. Given only one LR input image, the up-
dating procedure can be summarized as doing the following
two steps iteratively:

• Compute the LR error er(Ih
t ) by Eqn. 2.

• Update the HR image by back-projecting the error as
follows

Ih
t+1 = Ih

t + er(Ih
t ) ↑s ∗p, (3)

where Ih
t is the HR image at the t-th iteration, ↑ is the up-

sampling operator, p is a constant back-projection kernel.
It is proved in [1] that for s = 1 (the problem of SR is

equivalent to the problem of deblurring in this case) and mul-
tiple LR input images, the back-projection algorithm can con-
verge to the desired deblurred image (the one which satisfies
Eqn. 1 for all LR inputs under their corresponding geometry
transform) with an exponential rate under certain conditions.

We first extend the above assertion to the case with arbi-
trary positive integer scaling factor and single LR input im-
age, and show that the back-projection iteration converges to
the desired image (the one which satisfies Eqn. 1) for arbitrary
positive integer s under certain conditions.

Theorem 1 By updating the HR image with back-projection
iteration, Ih

t will converge to a desired image Ic (which sat-
isfies Eqn. 1) with an exponential rate for all s ≥ 1, given
||δ − g ∗ p ↓s ||1 < 1.

The proof of Theorem. 1 is presented in Appendix. A.
It means that by applying the back-projection method itera-
tively, the reconstruction error can be minimized efficiently
for any positive integer scaling factor s, with one LR input
image, when ||δ − g ∗ p ↓s ||1 < 1. Similar to the discussion
in [1], back-projection filter corresponds to smaller value of
||δ− g ∗p ↓s ||1 will have faster converge speed, while it may
produce numerically instable result.

2.3. Bilateral filtering
Bilateral filtering [11] is a non-linear filtering technique which
can combine image information from both of the space do-
main and the feature domain in the filtering process. It can be
represented by the following equation

h(x) =
1

k(x)

∑
y

I(y)c(x, y)s(I(x), I(y)), (4)

where I and h are the input and output images respectively,
x and y are pixel positions over the image grid, c(x, y) and
s(I(x), I(y)) measure the spatial and photometric affinity be-
tween pixel x and pixel y respectively, and

k(x) =
∑

y

c(x, y)s(I(x), I(y)) (5)

is the normalization factor at pixel x. The functions c(·) and
s(·) are usually chosen as follows

c(x, y) = exp(
−||x− y||22

2σ2
c

), (6)

s(u, v) = exp(
−||u− v||22

2σ2
s

). (7)

The underlining idea of the bilateral filtering is to do the smooth-
ing according to pixels not only close in the space domain, but
close in the feature domain as well, thus the edge sharpness
is preserved by avoiding the cross edge smoothing. Bilateral
filtering is closely related to other edge preserving techniques
such as nonlinear diffusion and adaptive smoothing [12].

2.4. Bilateral back-projection
The back-projection procedure in Sec. 2.2 can be explained
as a process to correct the reconstruction error iteratively. In
each step, the LR error er(Ih) is back-projected to HR im-
age by a kernel p. However, as we mentioned above, since a
lot of information is lost in the generation process, the prob-
lem of super resolution is severely under-determined. There
might be multiple solutions to minimize the reconstruction
error, even for multiple LR input images [13, 14]. Many min-
imizers are not satisfying although with zero reconstruction
error. Since minimizing the reconstruction error is the only
objective for back-projection algorithm, the iteration step may
converge to some unsatisfactory result. The most commonly
observed artifacts are the ringing effect and the chessboard
effect [6]. The underlining reason for these artifacts is the
isotropic nature of the back-projection kernel p. The error
correction step propagates the error without considering the



Fig. 1. (a) LR input image (b) bicubic interpolation (c) sharpened bicubic (d) back-projection (e) bilateral BP (f) ground truth

local edge direction and strength. The cross-edge error prop-
agation may produce ringing effect, and the isotropic kernel
results in chessboard effect. To remove such artifacts, more
sophisticated updating procedure is necessary.

We propose to use bilateral filtering method to propagate
the error according to the edge information. Two important
issues need to be addressed here.

First, the information of salient image edges need to be
extracted. The method proposed in [8] is applied. It basi-
cally has two steps. 1. Each edge segment is decomposed
by alpha matting technique, which describes the neighboring
region as a linear combination of two sides of this segment
through an alpha channel. A soft edge smoothness prior is
applied to super resolve the alpha channel, which is further
used to synthesis a HR smooth and sharp edge. 2. To im-
prove the image quality for the regions without salient edge
segments, a back-projection based post-processing step is em-
ployed. Since we only need salient edge information to guide
the back-projection, so the resulting image of step 1 is ex-
tracted as the edge guidance image, assume it is Ih

g .
Secondly, we recover the image details by the proposed

bilateral back-projection algorithm. It can enhance the entire
image quality without introducing other artifacts. The initial
image Ih

0 is set equal to Ih
g . The original bilateral filtering in

Eqn. 4 is modified as follows

h(x) =
∑

y

I(y)c(x, y)s(Ih
g (x), Ih

g (y)). (8)

Here, s(Ih
g (x), Ih

g (y)) is used to replace s(I(x), I(y)) in Eqn. 4,
and this filter is applied on the HR error image er(Ih

t ) ↑s in
each step. It is different from Eqn. 4 since the feature is not

extracted from the input image itself, instead, a fixed edge
guidance image Ih

g is used to convey the desired edge dis-
tribution information into the iteration procedure. There are
generally two cases. For a homogeneous region in Ih

g , the bi-
lateral back-projection algorithm is the same as the original
one, thus the error is back-projected almost isotropically. On
the other hand, for a region near a step edge, the error will
be only propagated in the part on the same side of the edge
with the position corresponding to the LR error on the HR
image. We use the same guidance image throughout the en-
tire process instead of updating it dynamically according to Ih

t

for two reasons: (1) The resulting local intensity fluctuation
will not influence the updating procedure, thus stable edges
can be produced. (2) It also improves the efficiency, since the
filter need to be computed only once without updating. For
color images, three color channels are processed separately.

3. EXPERIMENTAL RESULTS
Figure 1 shows the result comparison between different algo-
rithms. Fig. 1(a) is the LR input image. Fig. 1(b) is the result
of bicubic interpolation, which is very blurry. Fig. 1(c) shows
the result of sharpened bicubic, which is obtained by using
Photoshop. It has higher contrast than (b), but the chessboard
effect is clearly observable. Fig. 1(d) is the result of original
back-projection algorithm. The image quality is improved,
however, chessboard effect is still observable, and some ring-
ing effect is also introduced, especially in the center of the
white regions. Fig. 1(e) shows the result of the proposed bi-
lateral back-projection, clear and sharp edges are obtained
without those unsatisfying artifacts. Fig. 1(f) is the ground
truth image, which is used to generate the LR input image.



Fig. 2. More experiment results, the first row shows the LR input images, and the second row shows our results.

One patch is zoomed to better illustrate the difference. Al-
though our method can improve the visual effect greatly, the
ability of reducing the reconstruction error is similar to the
back-projection method. After 15 iteration steps, the RMS er-
ror is 12.01 for bilateral back-projection, and 12.99 for back-
projection method. More results are shown in Fig. 2.

4. CONCLUSION

In this paper, we propose the bilateral back-projection method
for single image SR. The edge information is incorporated
with bilateral filtering, to remove the artifact caused by the
original back-projection algorithm. The error correction on
HR image is back-projected according to the image edges.
Impressive results illustrate the effectiveness of our algorithm.
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A. PROOF OF THEOREM 1

We first prove that ||er(Ih
t )||1 decreases after each iteration.

er(Ih
t+1) = Il − (Ih

t+1 ∗ g) ↓s

= Il − ((Ih
t + (Il − Ih

t ∗ g ↓s) ↑s ∗p) ∗ g) ↓s

= Il − Ih
t ∗ g ↓s −(Il − Ih

t ∗ g ↓s) ↑s ∗p ∗ g ↓s

= (Il − Ih
t ∗G ↓s) ∗ (δ − p ∗ g ↓s)

= er(Ih
t ) ∗ (δ − p ∗ g ↓s)

From Young’s inequality [15], we have

||er(Ih
t+1)||1 = ||er(Ih

t ) ∗ (δ − p ∗ g ↓s)||1
≤ ||er(Ih

t )||1 × ||(δ − p ∗ g ↓s)||1
Thus Ih

t ∗ g ↓s→ Il as t → ∞ with exponential rate, when
||(δ − p ∗ g ↓s)||1 < 1.

Based on this, it is easy to see that Ih
t will converge to an

image Ic, which satisfies Ic ∗ g ↓s= Il.


