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ABSTRACT 

 
Head pose appearances under the pan and tilt variations span 
a high dimensional manifold that has complex structures and 
local variations. For pose estimation purpose, we need to 
discover the subspace structure of the manifold and learn 
discriminative subspaces/metrics for head pose recognition. 
The performance of the head pose estimation is heavily 
dependent on the accuracy of structure learnt and the 
discriminating power of the metric. In this work we develop 
a query point driven, localized linear subspace learning 
method that approximates the non-linearity of the head pose 
manifold structure with piece-wise linear discriminating 
subspaces/metrics. Simulation results demonstrate the 
effectiveness of the proposed solution in both accuracy and 
computational efficiency.  

 

1. INTRODUCTION 
 
Appearance based manifold modeling and subspace learning 
approaches have been found to be very effective in face 
recognition and head pose estimation applications. 
Unsupervised approaches like Eigenfaces [Turk91], learn 
the subspace for recognition via the Principle Component 
Analysis (PCA) of the face manifold, supervised approaches 
like Fisherfaces [Belhumeur97] learn the metric for 
recognition from labeled data via the Linear Discriminant 
Analysis (LDA). The incorporation of the labeling data 
improves the performance by finding subspaces where 
discriminating features are preserved, while non-
discriminating features are dropped. Examples of linear 
approaches in head pose estimation can be found in [Fu06] 
[Tu06] [Chen03].  
    The PCA/LDA approaches for head pose estimation are 
fundamentally limited because of the non-linearity of the 
underlying manifold structure, and richness in local 
variations. In recent years, non-linear methods for high 
dimensional non-linear data modeling, LLE [Roweis00], 
Graph Laplacian [Belkin01], have achieved very good 
results in finding manifold structure through embedding a 

graph structure of the data derived from the affinity 
modeling. However these solutions are non-linear functions 
dependent on the training data, and can not directly handle 
unknown query data. For example, it is difficult to embed a 
new query point into the learned non-linear manifold, 
without recalculate the embedding with the whole dataset.  
      LEA [Fu05] and Laplacian faces [He05] partially solves 
this problem by finding a compromise by linearizing the 
solution to the original graph embedding problem. Even 
though the solutions have better performances than pure 
Euclidean metric based approaches like Eigenfaces and 
Fisherfaces, the solution is still a global linear solution. 
When the problem space is large, e.g, large population face 
recognition, head pose estimation, the discriminating power 
of the subspace/metric learnt decreases. 
     To overcome the non-linearity of the problem, kernel 
method [Muller01] has been employed to model non-
linearity through a kernel mapping of training data to a 
higher dimension space with richer structure for 
discriminating metric learning. This approach has been 
found to be effective in face detections/recognitions [Li01], 
however, the solution  typically involves a quadratic 
optimization with an n x n Hessian matrix, where n is the 
size of the training sample, which can be prohibitive in 
complexity.  
     To address these issues, we developed a piece-wise linear 
subspace/metric learning method to map out the global non-
linear structure for head pose estimation. This approach has 
been applied successfully with video indexing/retrieval 
problem [Li06] with good results, where the hierarchical 
structure among each local neighborhood is characterized by 
a kd-tree.  
     In this work, each head pose appearance local 
neighborhood is identified by the query point, and there is 
no hierarchy in the global structure.  By localizing, the 
problem size has been reduced from the original size n to 
some n’ << n. This allows for better modeling for a given 
model and the reduction in problem size can also makes 
kernel method computationally more tractable.   

The paper is organized into the following sections: In 
section 2 we lay out the formulation of the problem and give 
it our solutions. In section 3 the data set is explained and 



 

simulation results presented. In section 4, we draw the 
conclusion and outlying future works.  
  
 

2. HEAD POSE ESTIMATION PROBLEM 
 
2.1. The Head Pose Estimation Problem  
 
In a head pose estimation problem, typically a training data 
set of m subjects with n poses characterized by the tilt and 

pan angles, {Pk=[ak, bk] 
n
k 1| = }, is given as aligned and 

cropped w x h image luminance data, X = {Xj 
mn

j
×
=1| }, where 

Xj ∈ Rwxh, is the vectorized image data. A set of non-
overlapping test data also with m subjects and n poses is also 

given, denoted as Y = {Y j 
mn

j
×
=1| }, where Yj ∈Rwxh,  The pose 

estimation consists of a subspace/discriminating metric 
learning phase, where the objective is to find a d-
dimensional subspace basis A: dxD, where D=wxh, such that 
classifiers like SVM and nearest neighbor [Hastie02] 
classification achieves the highest accuracy.   
    In this work, we optimize on the metric learning part and 
use a nearest neighbor classifier though out the simulations. 
The objective can therefore be stated as,  

||,||min ij
A

AYAX −    if P(Xj) = P(Yi) ji,∀  

where P() is the tilt and pan angle label function that returns 
the pose id Pk for data with labels. As discussed in the 
introduction section, A is to characterize a subspace where 
pose variations are captured, while inter-subject variations 
are minimized.  
 
2.2. Global Linear Solution  
 
     An obvious solution to this problem is to use a global 
LDA model, where inter-pose appearances are mapped far-
apart while intra-pose appearances scatters are kept constant, 
A=

A
maxarg |ATSBA|, s.t. |ATSWA|=1   (1) 

in which the between class scatter SB is given as,  
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In Eq. (2), nk=n is the number of samples in class k. The 
within class scatter SW, is given as,  

∑ ∑
= =

−−=
n

k kXP

T
kjkjW

j

XXXXs
1 )(

))((   (3) 

Notice that SB and SW are functions of all Xj’s, and therefore 
the global subspace is a function of training data, i.e, A(X). 
In the graph embedding interpretation, LDA embeds a graph 
with edges connecting all intra-class points [He05].  
    As discussed in the introduction, a single model A(X) 
contains only wxhxd variables to characterize the subspace 
where lies the manifold spanned by n x m data points. For 

large size problems such as head pose estimation, as n x m 
grows, the number of edges in an affinity graph grows 
exponentially.  
    Indeed, in [He05], the connections between LPP and 
PCA/LDA are explained as different graph construction 
strategy. In LPP, the objective is to, 
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Where Sj,k is mapped from Euclidean distance between xj 
and xk  via a heat kernel [He05].      
    To reflect the discriminating model power to characterize 
inter and intra-class points relationships, it is necessary to 
characterize the tradeoffs between the complexity of the 
embedded graph, G(X), and the expressive power of the 
model, A(X).   
     Let the graph G(X) be denoted by its vertices and edge 
set, V(X) and E(X). Let us define the model discriminating 
power  coefficient (DPC) of X with linear model A(X): dxD, 
as the ratio between the number of variables in the model 
and number of edges involved,  

K(A) = 
|)(| XE

dhw ××
                (4) 

For a given model, as the number of embedded graph edges 
grow, the DPC decreases. To improve DPC of the model, 
graph embedding techniques like LPP[He05], and LEA 
[Fu06] remove edges with no significance for 
clustering/discriminating by k-NN search / ε -thresholding, 
or from ground truth. The |E(X)| for n-point PCA, m-class 
LDA, and LPP/LEA with K neighbors per data are given 
below, 
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Notice that PCA/LDA edges grow exponentially, while 
LPP/LEA edges only grow linearly.  
     Instead of improving DPC by reducing edges of a global 
graph G(X), in this work, we achieve higher DPC by also 
reducing the number of vertices in G(X). As motivated by 
[Li06], we could partition the training data into a 
hierarchical structure via kd-tree, and for each data subset 
X(t) corresponding to sub tree t, we can compute its model 
via PCA, LDA, LPP or, LEA, as At=A(X(t)).  We end up with 
a set of linear models with hierarchical structure this way. In 
this case we have a problem similar to solutions like LLE 
[Roweis00], and Graph Laplacian [Belkin01], where it is 
difficult to select the right model / hierarchical levels that 
offer the best discriminating power for pose estimation, 
especially if query point lies on the boundaries of kd-tree 
partitions.  
 
2.2. Localized Linear Solution  



 

 
    To solve this, instead of building models A(X(t)) for each 
data partition node in kd-tree, a query point driven local 
neighborhood based model is computed. Let q ∈Rwxh be an 
unknown head pose image, kNN neigbourhood of q is 
computed as X(q). The local linear discriminant model for 
this query point is computed as,   
A(X, q) = 

A
maxarg |ATSBA|, s.t. |ATSWA|=1,   (5) 

where, 
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in which n0 is the minimum number of sample per class 
requirement. This is used to remove trivial points with 
limited impact of graph structure. Similarly, the within class 
scatter is computed as,  
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Notice that the model becomes a function of both training 
data set X and query point q in Eq. (5), and the DPC for this 
solution is given by, 

K(A(X, q)) = 
|)(| )(qXE

dhw ××
 

where, the number of local graph edges, |E(X(q))|, for K-NN 
localized PCA (l-PCA) and localized LDA (l-LDA) are 
given by,  
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Notice that linearized graph embedding techniques like LEA 
[Fu06] and LPP [He05] can also be applied in this 
framework. The derivations are omitted.   
  The metric/subspace A(X, q) offers better discriminating 
power than A(X) in the sense that the model is well adapted 
to the local data and the DPC  can be tuned to achieve better 
recognition performance.  

 
3. DATA SET AND SIMULATION 

 
For simulation we obtained head pose data from Pointing 
’04 data set [Letissier04], and [Gourier04]. The data set 
consists of 15 sets of images for m=15 subjects, wearing 
glasses or not and having various skin colors. Fig. 1 shows 
some example Pointing’04 head-pose images.  
   Each set contains 2 series of n=93 images of the same 
person at different poses. The first series, X, is used for 
training, and the second, Y, for testing. The pose or head 
orientation is determined by pan and tilt angles, which vary 
from -90o to +90 o. Various poses with different pan and tilt 
angles for the same person is shown in Fig. 2. 

 

Figure 1. Point'04 head pose images 

To demonstrate the discriminating metric performance 
changes with the model DPC, we set up some experiments 
with localized LDA and LPP. For each query point, q, a 
local neighborhood size K and dimensionality of subspace d 
are selected to compute local metrics, A(X, q): d x D. The 
local LDA metric based pose estimation error-rate and its 
discriminating power coefficients (DPC) are plotted in Fig. 3 
below for d=32.   

 

Figure 2. Tilt/Pan angles examples 

    Notice that in Fig. 3, the performance falls off as DPC 
decreases beyond certain points. When the local 
neighborhood is too small the metric learnt does not 
generalize well either, as also indicated by performances at 
very high DPC levels. The overall trend of recognition 
performance decreases with DPC increase is well 
demonstrated in Fig. 3 for both localized LDA and LPP 
cases.  
   The proposed solution performs well compared with state 
of art global graph embedding techniques like LPP. The 
error rates for pan and tilt angles recognitions are shown in 
Table 1. Notice that supervised methods, i.e, the graph 
pruning utilizes labeling information, perform better than 
non-supervised methods. Among them, l-LDA performs the 
best overall, and achieves the best results in 3 out of 4 cases, 
followed by another supervised approach, LPP(1) , and also 



 

close with LDA performance. The localized LPP method 
does not perform as well as l-LDA. 
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Figure 3. Model DPCs and pose angles recognition rates  

Non-supervised methods do not perform as well. PCA and 
LPP(2) all have high error rates in estimation performance. 
The l-PCA method mitigates the lack of labeling information 
by localization, and rather surprisingly, performs well and 
close with supervised global methods like LDA and LPP(1). 
This is another indication of benefit brought by localization.  

    Table 1. Pose estimation error rates 

 Pan 
(d=16) 

Tilt 
(d=16) 

Pan 
(d=32) 

Tilt 
(d=32) 

PCA 33.5 44.3 26.9 35.1 

LDA 30.1 33.3 25.8 26.9 

LPP(1) 30.1 31.2 24.7 22.6 

LPP(2) 67.7 76.3 63.4 61.3 

l-PCA 25.2 37.8 24.5 37.6 

l-LPP 33.9 44.5 29.2 40.2 

l-LDA  20.4 30.7 19.1 30.7 

  
      Table 2. Computational complexity (sec) per recognition 

 K=30 K=60 K=90 
l-LDA, d=16 0.105 0.132 0.121 
l-LDA, d=32 0.145 0.146 0.176 
l-LPP, d=16 0.094 0.122 0.104 
l-LPP, d=32 0.132 0.116 0.144 

 
The computational complexity of the localized metric for 
pose recognition is summarized in Table 2, with various 
dimensions and sizes of neighborhood. Notice that the 
average speed of pan/tilt angles recognition is about 7 to 10 
per sec, with un-optimized Matlab code running on an 2.0G 
Hz PC.  

4. CONCLUSION 
 
In this work we developed a query point driven, piece-wise 
linear local subspace learning method for head pose 
estimation. The discriminating power of the local metric is 

enhanced through pruning embedded graph edges by 
limiting the model to an appropriate local neighborhood. 
Simulation results demonstrate the advantage over some 
existing state-of-art solutions.  
    In the future, we will apply diffusion distance metrics in 
embedded graph vertices/edges pruning, and also apply 
kernel method to the subspace/metric modeling, taking 
advantage of the reduced problem size through localization.  
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