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ABSTRACT graph structure of the data derived from the affini
modeling. However these solutions are non-lineactions
Head pose appearances under the pan and tiltisgagapan dependent on the training data, and can not diréethdle
a high dimensional manifold that has complex stmesg and  unknown query data. For example, it is difficultdmbed a
local variations. For pose estimation purpose, wednto new query point into the learned non-linear madifol
discover the subspace structure of the manifold laadh  without recalculate the embedding with the wholesdet.
discriminative subspaces/metrics for head posegrétion. LEA [Fu05] and Laplacian faces [He05] palyiaolves
The performance of the head pose estimation isilgeav this problem by finding a compromise by linearizitite
dependent on the accuracy of structure learnt dred tsolution to the original graph embedding problemvert
discriminating power of the metric. In this work wevelop though the solutions have better performances thae
a query point driven, localized linear subspacenieg Euclidean metric based approaches like Eigenfaces a
method that approximates the non-linearity of teachpose Fisherfaces, the solution is still a global linesolution.
manifold structure with piece-wise linear discriaimg When the problem space is large, e.g, large papuoléace
subspaces/metrics. Simulation results demonstrdite trecognition, head pose estimation, the discrimigapower
effectiveness of the proposed solution in both exmpiand  of the subspace/metric learnt decreases.
computational efficiency. To overcome the non-linearity of the problekernel
method [Muller01] has been employed to model non-
linearity through a kernel mapping of training data a
higher dimension space with richer structure for
1. INTRODUCTION discriminating metric learning. This approach haserb
found to be effective in face detections/recognai¢LiOl],
Appearance based manifold modeling and subspangiiga however, the solution typically involves a quairat
approaches have been found to be very effectiveadge  optimization with ann x n Hessian matrix, whera is the
recognition and head pose estimation applicationssize of the training sample, which can be prohibitin
Unsupervised approaches like Eigenfaces [Turk9d3yn  complexity.
the subspace for recognition via the Principle Congmt To address these issues, we developed a pisedinear
Analysis (PCA) of the face manifold, supervisedrapghes subspace/metric learning method to map out theagjlobn-
like Fisherfaces [Belhumeur97] learn the metric forlinear structure for head pose estimation. This@ggh has
recognition from labeled data via the Linear Distriant been applied successfully with video indexing/estai
Analysis (LDA). The incorporation of the labelingatd problem [Li0O6] with good results, where the hieracal
improves the performance by finding subspaces whergiructure among each local neighborhood is chaiaeteby
discriminating features are preserved, while nona kd-tree.

discriminating features are dropped. Examples oédr In this work, each head pose appearance local
approaches in head pose estimation can be fouffelb6] neighborhood is identified by the query point, dhdre is
[Tu06] [Chen03]. no hierarchy in the global structure. By localginthe

The PCAJ/LDA approaches for head pose estimadi@n problem size has been reduced from the origina sif
fundamentally limited because of the non-lineadfythe somen’ << n. This allows for better modeling for a given
underlying manifold structure, and richness in locamodel and the reduction in problem size can als@&ema
variations. In recent years, non-linear methods Hath  kernel method computationally more tractable.
dimensional non-linear data modeling, LLE [Roweis00 The paper is organized into the following sectiolms:
Graph Laplacian [Belkin01], have achieved very goodsection 2 we lay out the formulation of the problend give
results in finding manifold structure through emitied a it our solutions. In section 3 the data set is ax@d and



simulation results presented. In section 4, we dther large size problems such as head pose estimagsanxan
conclusion and outlying future works. grows, the number of edges in an affinity graphwgro
exponentially.
Indeed, in [He05], the connections between L&
2. HEAD POSE ESTIMATION PROBLEM PCA/LDA are explained as different graph constarcti
strategy. In LPP, the objective is to,

minZ(ij ~ A%)S;
In a head pose estimation problem, typically antrgj data ATk
set ofm subjects withn poses characterized by the tilt and Where Sy is mapped from Euclidean distance betwggn
d andx, via a heat kernel [He05].
To reflect the discriminating model power tacdcterize
croppedw x h image luminance dat¥ = {X; [j'}, where inter and intra-class points relationships, it ecessary to
X [ R"™ is the vectorized image data. A set of non-Characterize the tradeoffs between the complexityhe

overlapping test data also withsubjects and poses is also €mPedded graphG(X), and the expressive power of the

: _ nxm ch model,A(X).
given, denoted a¥={Y; [j='}, where ; LIR™, The pose Let the graptG(X) be denoted by its vertices and edge
estimation consists of a subspace/discriminatingirime set, V(X) and E(X). Let us define the model discriminating
learning phase, where the objective is to findda power coefficient (DPC) ok with linear modelA(X): dxD,
dimensional subspace bagisdxD, whereD=wxh, such that as the ratio between the number of variables inntbeel
classifiers like SVM and nearest neighbor [HasfleO2and number of edges involved,
classification achieves the highest accuracy. wxhxd

In this work, we optimize on the metric leagipart and K(A) = W )

use a nearest neighbor classifier though out thelations.

The objective can therefore be stated as,

2.1. The Head Pose Estimation Problem

pan angles, R=[a, b |E:1 }, is given as aligned an

For a given model, as the number of embedded gedghs

. . . grow, the DPC decreases. To improve DPC of the imode
m/{n”AXj_AYi”' if POX) = P(Y) I, | graph embedding techniques like LPP[He05], and LEA
whereP() is the tilt and pan angle label function thatires ~ [FuO6] remove edges with no significance for
the pose idP, for data with labels. As discussed in theclustering/discriminating by k-NN searche/-thresholding,
introduction sectionA is to characterize a subspace wheredr from ground truth. TheE(X)| for n-point PCA, m-class
pose variations are captured, while inter-subjesfations LDA, and LPP/LEA withK neighbors per data are given

are minimized. below,
), PCA
2.2. Global Linear Solution m m
IE(X)E{D.G), sty on; =n, LDA
An obvious solution to this problem is to wseglobal i1 =1
LDA model, where inter-pose appearances are mafgred nK, LPP/LEA
apart while intra-pose appearances scatters atekaptant, _ i i
A= argmax|ATS:A], s.t. NS, AL 1) Notice that PCA/LDA edges grow exponentially, while
A LPP/LEA edges only grow linearly.
in which the between class scatgiis given as, Instead of improving DPC by reducing edges gfobal
n o graph G(X), in this work, we achieve higher DPC by also
S = 2 M(Xi = X)X, = X)T (2) reducing the number of vertices ®(X). As motivated by
k=1 [LiO6], we could partition the training data into a
In Eqg. (2),ne=n is the number of samples in cldssThe  hijerarchical structure via kd-tree, and for eactadsubset
within class scatte8y, is given as, Xq corresponding to sub trégwe can compute its model
n — = T via PCA, LDA, LPP or, LEA, a®\=A(Xy). We end up with
Sw = kZ;P(XZ;(If(j = X (X = X,) (3) a set of linear models with hierarchical structilmie way. In
J

this case we have a problem similar to solutioks LiLE
Notice thatS; andSy are functions of alK’s, and therefore  [Roweis00], and Graph Laplacian [BelkinO1], wheteisi
the global subspace is a function of training daeA(X).  difficult to select the right model / hierarchidavels that
In the graph embedding interpretation, LDA embedsaph  offer the best discriminating power for pose estiora

with edges connecting all intra-class points [He05] especially if query point lies on the boundarieskdftree
As discussed in the introduction, a single no8gX)  partitions.

contains onlywxhxd variables to characterize the subspace
where lies the manifold spanned by m data points. For 22 [ ocalized Linear Solution
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in which ng is the minimum number of sample per class

requirement. This is used to remove trivial poimith  To demonstrate the discriminating metric perforneanc

limited impact of graph structure. Similarly, théhin class changes with the model DPC, we set up some expetsme
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Figure 1. Point'04 head pose images

scatter is computed as, with localized LDA and LPP. For each query poigt,a
- . local neighborhood sizkK and dimensionality of subspade

SEEY DX = X)X =X )T (7) are selected to compute local metridgX, g): d x D. The
ki 2=ng P(X;)=k,X;0Xq) local LDA metric based pose estimation error-ratd #s

Notice that the model becomes a function of bo#ining  discriminating power coefficients (DPC) are plottedrig. 3
data seX and query poing in Eq. (5), and the DPC for this below ford=32.

solution is given by, BN
wxhxd
KAX Q)= —o—— ‘
|E(X(g)1 2.9 959 222222229

where, the number of local graph edgegxy,)|, for K-NN

localized PCA IEPCA) and localized LDA I{LDA) are S S S S S22

given by,
), | -PCA

i(gi )s.t.inj =K, |-LDA
j=1 j=1

Notice that linearized graph embedding techniqikesLUEA

[Fuo6] and LPP [He05] can also be applied in this rz
framework. The derivations are omitted.
The metric/subspacA(X, q) offers better discriminating Figure 2. Tilt/Pan angles examples

power thanA(X) in the sense that the model is well adapted
to the local data and the DPC can be tuned teaetetter
recognition performance.

Notice that in Fig. 3, the performance fall§ a§ DPC
decreases beyond certain points. When the local
neighborhood is too small the metric learnt does no
generalize well either, as also indicated by pentorces at
very high DPC levels. The overall trend of recoigmit
performance decreases with DPC increase is well
demonstrated in Fig. 3 for both localized LDA anBR
cases.

The proposed solution performs well comparedh \state
of art global graph embedding techniques like LFRe
error rates for pan and tilt angles recognitiores glvown in
Table 1. Notice that supervised methods, i.e, theply
pruning utilizes labeling information, perform kttthan
non-supervised methods. Among thdmDA performs the
best overall, and achieves the best results int ®fod cases,
followed by another supervised approach, £PPand also

3. DATA SET AND SIMULATION

For simulation we obtained head pose data from tigin
'04 data set [Letissier04], ands¢urier04. The data set
consists ofl5 sets of images fom=15 subjects, wearing
glasses or not and having various skin colors. Fighows
some example Pointing’04 head-pose images.

Each set containg series ofn=93 images of the same
person at different poses. The first seri¥s,is used for
training, and the second, for testing. The pose or head
orientation is determined by pan and tilt anglekictv vary
from -90° to +90°. Various poses with different pan and tilt
angles for the same person is shown in Fig. 2.
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Figure 3. Model DPCs and pose angles recognititasra

Non-supervised methods do not perform as well. ROA
LPP? all have high error rates in estimation perforneanc
Thel-PCA method mitigates the lack of labeling inforioat
by localization, and rather surprisingly, performsll and
close with supervised global methods like LDA arfeiP.
This is another indication of benefit brought bgdbzation.

Table 1. Pose estimation error rates

Pan Tilt Pan Tilt

(d=16) | (d=16) | (d=32) | (d=32)
PCA 335 44.3 26.9 35.1
LDA 30.1 33.3 25.8 26.9
LPPD 30.1 31.2 24.7 22.6
LPP? 67.7 76.3 63.4 61.3
I-PCA 25.2 37.8 24.5 37.6
I-LPP 33.9 445 29.2 40.2
I-LDA 20.4 30.7 19.1 30.7

Table 2. Computational complexity (sec) per rectigni

K=30 K=60 K=90
I-LDA, d=16 0.105 0.132 0.121
I-LDA, d=32 0.145 0.146 0.176
I-LPP,d=16 0.094 0.122 0.104
I-LPP,d=32 0.132 0.116 0.144

The computational complexity of the localized netfor
pose recognition is summarized in Table 2, withiows
dimensions and sizes of neighborhood. Notice thmat t
average speed of pan/tilt angles recognition isialdao 10
per sec, with un-optimized Matlab code running ar?edG
Hz PC.

4. CONCLUSION

In this work we developed a query point driven,cpigvise

by
limiting the model to an appropriate local neighimod.
Simulation results demonstrate the advantage oweres
existing state-of-art solutions.

In the future, we will apply diffusion distanoeetrics in
embedded graph vertices/edges pruning, and alsty app
kernel method to the subspace/metric modeling, ntpki
advantage of the reduced problem size throughiiatain.
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