
Motion from Blur

Shengyang Dai and Ying Wu
EECS Department, Northwestern University, Evanston, IL 60208, USA

{sda690,yingwu}@ece.northwestern.edu

Abstract

Motion blur retains some information about motion,
based on which motion may be recovered from blurred im-
ages. This is a difficult problem, as the situations of motion
blur can be quite complicated, such as they may be space-
variant, nonlinear, and local. This paper addresses a very
challenging problem: can we recover motion blindly from
a single motion-blurred image? A major contribution of
this paper is a new finding of an elegant motion blur con-
straint. Exhibiting a very similar mathematical form as the
optical flow constraint, this linear constraint applies locally
to pixels in the image. Therefore, a number of challenging
problems can be unified, including estimating global affine
motion blur, estimating global rotational motion blur, esti-
mating and segmenting multiple motion blur, and estimat-
ing nonparametric motion blur field. Extensive experiments
on blur estimation and image deblurring on both synthe-
sized and real data demonstrate the accuracy and general
applicability of the proposed approach.

1. Introduction
Within an exposure period, the movements of the camera

or the objects produce motion blurred images, as the illumi-
nance changes are integrated over time and the sharpness is
smeared. On the other hand, a motion blurred image retains
information about motion that parameterizes the blur. Thus
it gives us clues to recover motion from this single image.

A motion blur is characterized by its point spread func-
tion (PSF) whose parameters are closely related to the mo-
tion. The simplest motion blur is the space-invariant linear
motion blur, which has been studied extensively. In prac-
tice, however, as motion can be quite complex, motion blurs
can be much more complicated than this simple case. For
example, the blur can be space-variant, nonlinear, local and
multiple. Some examples are shown in Fig. 1. Recently,
people began to study some of these cases, such as multiple
linear invariant blur and rotational blur. However, even for
these special cases, current solutions usually rely on multi-
ple input images, user interactions, or extra assumptions.

In order to infer or recover the motion blur (i.e., the hid-

Figure 1. Examples of space-variant motion blur.

den unknowns) from the blurred image (i.e., the observ-
able), a critical issue is to establish an observation model. A
simple and elegant model will surely lead to effective solu-
tions. A straightforward observation model is the blur gen-
eration model where the blurred image is the convolution
of the PSF and a sharp image (i.e., the unblurred image).
This is not a good observation model, as the sharp image is
also not known but free parameters. So, the estimation of
the motion blur is always coupled with image deblurring to
estimate the sharp image which is a difficult and demand-
ing task. This is the main reason why it is hard to make
progress based on this model. It is clear that this convolu-
tion model is not a good one, as it has too many degrees of
freedom. So, is there a better observation model that has the
minimum number of free parameters?

A major contribution of this paper is the new finding of
a much more elegant and powerful observation model than
this convolutional model. We call it the α-motion blur con-
straint model. Instead of working on the blurred image it-
self, we look at its α-channel. Based on a very mild assump-
tion, we find a linear constraint between the image deriva-
tives of the α-channel, the motion blur parameters, and a
simple binary free parameter (i.e., +1 or −1). In addition,
this constraint applies locally to pixels. The beauty of this
model is that we can estimate blur without deblurring. This
leads to many other benefits.

Another interesting finding is that this α-motion blur
constraint shares a very similar mathematical form as the
optical flow constraint. Thus many successful flow-based
motion estimation techniques can be adapted to blur estima-
tion. Based on this, many difficult blur estimation problems
can be easily unified, including (1) global affine motion blur
estimation, (2) global rotational motion blur estimation, (3)
multiple blur estimation and segmentation, (4) nonparamet-
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ric motion blur field estimation.
This unification enables motion recovery from a single

blurred image. In addition, no user interaction is needed,
and this is fully automatic. No prior knowledge such as blur
direction is assumed, and this achieves blind estimation.

The related work is summarized in Sec. 2. The motion
blur constraint is derived in Sec. 3, its analogy with opti-
cal flow is presented. The new estimation algorithm for the
space-invariant linear case is shown in Sec. 4. Sec. 5 ad-
dresses various space-variant blur estimation problems. Ex-
periments are shown in Sec. 6. Sec. 7 concludes the paper.

2. Related work
Motion blur estimation method has been greatly ad-

vanced recently. Besides extensive study on estimation of
the space-invariant linear motion blur, current works are
mainly focused on two directions, i.e., space-variant motion
blur estimation and nonparametric blur kernel estimation.

The space-variant motion blur estimation task is moti-
vated by the wide existence of fast object motion within a
very short exposure period. The challenge is mainly on the
space-variant property of the blur kernel. While the good
news is that linear motion blur model can be reasonable as-
sumed in this case, as a first order approximation of the
object motion path within an exposure period. The rota-
tional motion deblurring problem is discussed in [25] by
using the Fourier transform, which is space-variant but with
a global parametric form. For the multiple piecewise in-
variant blur estimation and segmentation problem, several
works [3, 10] utilize multiple input images or an image se-
quence, which enable image matching. Accurate segmenta-
tion results are obtained in [10]. They greatly extend previ-
ous works on deblurring with two globally motion blurred
images [9, 16, 23]. The idea is that the PSF function could
be identified by exploring the commutation property of two
motion blurring process. Elongated Gaussian motion blur
kernel is assumed in [10, 16] to enable analytical solution.
In [3], an variational approach is proposed, integrated with
the background extraction technique. The problem of mul-
tiple motion blur estimation from a single input image is
approached by [17] based on natural image statistics of im-
age gradient. In stead of estimating the blur in a global
way (such as in methods on frequency domain or matching
multiple inputs), a local blur estimation method is proposed
based on image patches. A single motion direction is as-
sumed to be known in this work.

Recent advance on kernel estimation is mainly focused
on nonparametric blur kernels, which are usually produced
by handshaking during the image capturing process with
relatively long exposure period under poor lighting condi-
tions. Thus it is reasonable to assume that those kernels are
space-invariant over the entire image. In [12], a variational
approach is proposed based on natural image statistics. In
[15], transparency information is used with user-specified

processing regions. A fully automatic algorithm is proposed
in [26] by combining information from a blurred/noisy im-
age pair. The Bayesian framework is also used in [1] to
estimate the distribution of hyperparameters for kernel esti-
mation. A hardware solution is proposed in [6].

It is easy to see the physical relationship between mo-
tion estimation and blur estimation [9]. In [5], space-variant
motion model is estimated from the tracking result. Besides
estimating the blur kernel, people also try to make use of it
by manipulating the aperture [13, 18, 22].

3. Motion blur constraint
In this section, we first derive a motion blur constraint.

Based on alpha channel image modeling and sharp edge as-
sumption, an α-motion blur constraint is obtained, and its
relationship with the optical flow constraint is revealed.

3.1. General motion blur constraint
We denote the original 2D unblurred continuous signal,

the motion blur kernel (point spread function, or PSF), and
the blurred signal by I , h, and Ib respectively. In case of
space-invariant h, the generation function of the blurred sig-
nal is Ib = I ∗ h, where ∗ is the convolution operator. In-
stead of using its direction θ and length l, we parameter-
ize h by its projection length on x and y axes as a vector
b = (u, v)T, where u = l cos θ, v = l sin θ. We have

Theorem 1 A 2D continuous signal I is motion blurred by
kernel h to get Ib. The following motion blur constraint

∇Ib |p · b = I(p +
b
2

)− I(p− b
2

) (1)

holds for any position p, where ∇Ib |p = (∂Ib
∂x ,

∂Ib
∂y )T|p.

Please see Appendix for proof. The motion blur con-
straint is only related to the local gradient and two unblurred
pixels, instead of an integral over a large number of pixels
as in the generation process of motion blur. It is a local con-
straint of the blur parameter, and this property is important
since it enables blur parameter estimation in a local fashion.

3.2. α-motion blur constraint
Eqn.1 is much simpler than the blur generation equation.

However, given only a blurred image, I(p− b
2 ), I(p + b

2 ),
and b are all unknowns. The idea of alpha decomposition
can further reduce this degree of freedom.

Alpha channel modeling has been successfully applied
on image deblurring [15, 25] and super resolution [11].
With this technique, the image processing task can be much
simplified since the edge contrast on alpha channel is nor-
malized to a 0 to 1 transition, instead of arbitrary values in
the color space. Recently, automatic alpha component ex-
traction is enabled by the spectral matting [20] method.

Image matting techniques are designed to decompose the
input image I as a linear combination of foreground image
F and background image B through an alpha channel by



I = αF + (1− α)B. (2)
We call α the alpha channel model of image I (see
Fig. 2(a)(b) for an example). If we assume both F and B
are locally smooth1, then
I ∗h = αF ∗h+ (1−α)B ∗h = αbF + (1−αb)B, (3)

where αb = α ∗ h is α blurred by kernel h. From Eqn. 3,
we know that αb is the alpha channel model of Ib (see
Fig. 2(c)(d) for an example). So the LHS of Eqn. 1 is

∇(αbF + (1− αb)B) · b = (F −B)∇αb · b. (4)
From Eqn. 2, RHS of Eqn. 1 is(

α(p +
b
2

)− α(p− b
2

)
)
(F −B). (5)

Combine Eqn. 4, 5, divide both sides by F −B, we have

∇αb · b = α(p +
b
2

)− α(p− b
2

). (6)

The above equation is equivalent to replacing I in Eqn. 1
by its alpha channel model α. If we further assume that
the alpha values for most pixels in a non-blurred image are
either 0 or 1, then from Eqn. 6, we have ∇αb ·b ∈ {0,±1}.
Experiments show that 0 is taken mostly when ∇αb = 0.
It rarely happens that ∇αb is non-zero and perpendicular to
b 2, and those points are treated as outliers in the following
sections. Based on this, we assume that for positions where
‖∇αb‖ 6= 0, the following equation holds:

∇αb · b = ±1. (7)
We call it α-motion blur constraint. The elimination of
zero case can simplify the parameter estimation process by
avoiding trivial solutions. A pre-filtering procedure for out-
lier rejection is presented in Sec. 4.

Due to the high image quality of current cameras, under
good lighting conditions, most image boundaries are clear
and sharp for static or slow moving objects. Thus it is rea-
sonable to assume that the alpha values of most pixels in the
unblurred images are 0 or 1, and the alpha channel transi-
tion is mostly caused by motion blur, which is also assumed
in [15, 25]. Even if the alpha channel is not purely binary,
Eqn. 7 still holds for most pixels. Other image degradations
such as out-of-focus blur is not considered in this work.

Fig. 2(e) illustrates the idea of Eqn. 7 by showing the
distribution of pixels on (∂αb

∂x ,
∂αb

∂y ) coordinate. Most
of the pixels with non-zero gradient lies on two parallel
lines, correspondingly to the two linear functions in Eqn. 7.
Hough domain for pixels with non-zero gradient is shown in
Fig. 2(f), where each gradient vector (∂αb

∂x ,
∂αb

∂y )T votes for
two lines according to Eqn. 7. The two salient points corre-
spond to the two equivalent blur parameters b and −b.

Please notice that Eqn. 7 is not limited to space-invariant
linear motion blur. For space-variant or nonlinear case, if

1It is also assumed in other works based on alpha channel modeling
and many existing matting algorithms.

2Examples of such points can be found in the Fig. 2(d), where two
blurred circles intersect. But even in this case,∇αb is very close to zero.

Figure 2. An example with b = (30 cos π
6
, 30 sin π

6
)T. (a) I , (b)

α, (c) Ib, (d) αb, (e) ∇αb distribution, (f) Hough domain.

the blur model is locally invariant approximately, and can
be locally approximated by linear motion blur, the proposed
α-motion blur constraint can still be applied. In this sense,
Eqn. 7 can be considered as a local constraint of the motion
blur parameter. More detailed discussion of various space-
variant or nonlinear cases will be presented in Sec. 5.

3.3. Analogy between motion and blur
The proposed motion blur constraint is closely related to

the well-known optical flow constraint. In this section, we
will analyze their similarities and also the difference.

For optical flow, the brightness constancy assumption
gives I(x + u, y + v, t + ∆t) = I(x, y, t). Using first or-
der Taylor expansion, the following optical flow constraint
should hold for every pixel,

∇I ·m = −It, (8)
where m = (u, v)T is the motion vector, ∇I = (Ix, Iy)T is
the spatial image gradient, and It is the temporal gradient.

Since motion blur is produced by object motion relative
to the camera imaging plane, so it is natural to consider the
blur vector b also as a motion vector, which represents the
motion within one camera exposure period.

Besides having similar physical meaning, both the opti-
cal flow constraint and the proposed motion blur constraint
are also similar mathematically in the following ways:

1. By considering the RHS of Eqn. 1 as the temporal
image gradient (the difference between unblurred images
taken before and after the motion), the motion blur con-
straint will have exactly the same form as Eqn. 8.

2. They are both linear constraints of the motion para-
meters. Particularly, it is interesting to notice that they have
very similar aperture problems. The one for motion blur is
illustrated in Fig. 3(a). Given only one blurred straight edge,
the blur vector could correspond to any red arrow shown.
This problem could be solved if blurred edges of different
directions are given as in Fig. 3(b). Fig. 3(a) also provides
an intuitive explanation why the constraint is linear.

3. They are both local constraints, which hold for pixels.
In another word, a single pixel alone can provide some cues
for the local motion property. Thus more complex (e.g.,
space-variant, or even nonparametric) motion model could
potentially be extracted. This property is especially signifi-
cant for blur estimation. It can greatly advance the blur es-
timation technique, since almost all previous methods rely



(a) (b)
Figure 3. The aperture problem for motion blur estimation.

on some global image properties (such as methods on fre-
quency domain or using matching between multiple input
images), or statistics over local image patches [17].

These similarities enable the possibility of extending the
vast amount of achievement of flow estimation onto the mo-
tion blur estimation problem. However, the main difficulty
is that the RHS of Eqn. 1 is unknown for ordinary single
image deblurring problem. Even with alpha channel image
modeling and the sharp edge assumption, there is still an
unknown parameter z ∈ {±1} in Eqn. 7. It is impossible to
remove this unknown, since it is in essential due to the lack
of time information for the blur estimation problem with
only one input image. In fact, both b and −b can produce
the same blur result. This property poses extra difficulty for
the blur estimation problem than the optical flow problem.

4. Space-invariant motion from blur
The space-invariant linear motion blur can be estimated

by minimizing the following objective function

b∗ = arg min
b

∑
p∈Ω

min
zp=±1

(
∇αb|p · b− zp

)2
, (9)

where p indices pixels, zp = ±1 indicates which constant
is actually applied in Eqn. 7 for p. Ω is the set of involved
pixels chosen by a pre-filtering technique introduced later
in this section. Assume

z∗p = arg min
zp=±1

(
∇αb|p · b− zp

)2
, (10)

it is obvious that once all z∗ps are known, Eqn. 9 becomes a
standard Least Square Fitting problem, and the solution is

b∗ = A†Z, (11)

where Am×2 = (∇αb|p1 ,∇αb|p2 , · · · )T, A† is the
pseudo inverse of A, Zm×1 = (z∗p1

, z∗p2
, · · · )T, m = |Ω|.

In practice, we use EM-like algorithm to optimize z∗p
and b∗ iteratively. The initial estimation is obtained by
RANSAC to tolerant noisy data. To be more specific, in
each round, we select two pixels and randomly assign cor-
responding z value to solve for the initial blur parameter.
The algorithm for space-invariant linear blur parameter es-
timation is summarized in Fig. 4. The inliers are pixels sat-
isfying minz=±1

∣∣∇αb|p · b− z
∣∣ < 0.1 in our experiment.

The second step in Fig. 4 is trying to remove noisy data,
since it is well-known that less noisy data can fasten the
RANSAC process, and also increase the robustness. In our
case, noise comes from two sources: outliers for Eqn. 7 as
discussed in Sec. 3.2 and imperfectness of matting compo-
nent extraction. A local consistency check is applied first,

Input Space-invariantly motion blurred image Ib.
Output Motion blur parameter estimation b∗ = (u, v)T

1. Get α by using spectral matting. Compute ∇α.
2. Get the set Ω of locally consistent pixels. n∗ = 0.
3. For t = 1 to T :

(a) Randomly select two pixels in Ω, assign corre-
sponding z values randomly (∈ {±1}).

(b) Solve motion blur parameter b by Eqn. 11.
(c) Get the number of inlier pixels n.
(d) If n > n∗, n∗ = n, b∗ = b

4. Update z∗ and b∗ iteratively by Eqn. 10 and Eqn. 11
for inlier pixels in Ω.

Figure 4. Space-invariant linear motion blur estimation algorithm.

to only keep those pixels which can share the same linear
blur model and z value with its neighbors. More formally,
we measure the local consistency for pixel p as

C(p) = min
b

∑
q∈Np

(∇αb|q · b− 1)2, (12)

where Np is the 3 × 3 neighborhood window of p. p ∈ Ω
if and only if C(p) below a threshold and ∇αb|p 6= 0. This
procedure is applied for all of the following experiments.

Based on the analogy between motion estimation and
blur estimation, other techniques for motion estimation
could also be adapted to the blur model estimation problem,
such as multi-resolution strategy, robust penalty function,
more sophisticated gradient computation method, etc.

5. Space-variant motion from blur
The local property of the proposed motion blur con-

straint enables estimating more complex blur model. In
this session, after analyzing the generation process of spa-
tia variant motion blur, we demonstrate how to apply the
α-motion blur constraint on to affine blur estimation, rota-
tional blur estimation, multiple blur model estimation and
segmentation, and nonparametric blur estimation.

5.1. Generation of space-variant motion blur
Assume during the exposure period, the integration path

of pixel p = (x, y)T is rp(t) = (xp(t), yp(t))T, where
t ∈ [− t0

2 ,
t0
2 ] is the time variable, t0 is the total length of

the exposure period. Then the blurred result at p is

Ib(p) =
1
t0

∫
t∈[− t0

2 ,
t0
2 ]

I(rp(t))dt. (13)

For static regions, rp(t) = p.
For space-invariant linear motion blur, rp(t) = p + b

t0
t,

where b is the blur parameter. b = r′p(t) × t0 is the speed
times the moving time, thus can be considered as the first
order approximation of the motion path (it is exact here).

For more complex function r, which could be nonlin-
ear or have space-variant derivative, by using the first order
approximation and local smoothness assumption, the pro-
posed α-motion blur constraint can still be applied.



5.2. Affine motion from blur
Two dimensional affine motion can be used to better ap-

proximate the blur field of a 3D motion, which may not
be parallel to the imaging plane, than the simple space-
invariant model. Assume the affine blur model as follows

rp(t) = p + vpt, (14)

bp = vpt0 =
[
a11 a12

a21 a22

] [
x
y

]
+

[
a13

a23

]
, (15)

Put Eqn. 15 in Eqn. 7, we have

dx

(
a11x+a12y+a13

)
+dy

(
a21x+a22y+a23

)
= zp, (16)

where dx = ∂αb

∂x |p and dy = ∂αb

∂y |p. Thus

(xdx, ydx, dx, xdy, ydy, dy)T · ba = zp, (17)

which is linear for ba = (a11, a12, a13, a21, a22, a23)T, the
motion blur parameter. Thus the model estimation problem
becomes a standard Least Square Fitting problem given zp.
It can be solved in a similar way as the algorithm in Fig. 4.

5.3. Rotational motion from blur
Rotational motion blur is also commonly observable in

real life. It is space-variant and nonlinear (the integration
path is a circular arc). Assume the object rotates with a
center p0 = (x0, y0)T and a constant angular speed ρ, then

rp(t) = p0 +R(ρt)(p− p0), (18)

where R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
is the rotation matrix. So{

xp(t) = x0 + cos(ρt)(x− x0)− sin(ρt)(y − y0)
yp(t) = y0 + sin(ρt)(x− x0) + cos(ρt)(y − y0)

(19)If ρt0 is very small, cos(ρt) ' 1, and sin(ρt) ' ρt, then{
x′p(t) = −ρ(y − y0)
y′p(t) = ρ(x− x0)

(20)

So the local motion blur parameter is

bp = r′p(t)t0 =
(
− ρ(y − y0)t0, ρ(x− x0)t0

)T
. (21)

Let br = (β, a, b)T = (ρt0, ρx0t0, ρy0t0)T, thus from
Eqn. 7

(b− βy)dx + (βx− a)dy = zp, (22)
or

(xdy − ydx,−dy, dx)T · br = zp, (23)
which again becomes a Least Square Fitting problem given
zp, and it can be solved in a similar way as the algorithm in
Fig. 4. In fact, after linearizing rp(t), the rotational motion
blur becomes a special case of affine motion blur.

5.4. Motion segmentation from blur
There might be multiple motion blurred objects with a

still background in a single image. To handle this case, a
multiple blur model estimation algorithm is proposed, fol-
lowed by an MRF segmentation method.

To estimate multiple motion blur models, RANSAC is
first applied to extract those models one-by-one as initial-
ization, until no more model could be fitted by a meaningful
proportion of pixels. The number of models is also auto-
matically determined. After initialization, an EM-like algo-
rithm can further refine those models by updating the model
assignment and model parameters iteratively.

Once the having the model parameters, MRF is used to
enforce region continuity of the motion segments by mini-
mizing the following energy function

E({lp}p∈I) =
∑
p∈I

φp(lp)+β1

∑
(p,q)∈N

ψp,q(lp, lq), (24)

where lp is the pixel label, indicating which blur model is
applied for pixel p or it is non-blurred. Assume bl is the l-
th extracted model, φp(l) = minz=±1 |∇αp · bl − z| is the
likelihood term which favors better fitting of Eqn. 7. The
penalty for setting a pixel as non-blurred is fixed as β2.
The prior term ψp,q(lp, lq) = (1 − δ(lp, lq))eβ3‖Ip−Iq‖

prefers label continuity. δ(l1, l2) = 1 if l1 = l2, and 0 oth-
erwise. The pairwise penalty is large for positions around
edges to favor segmentation boundary at homogeneous re-
gions. Since each image edge usually undergoes the same
motion model and homogeneous regions tend to be ambigu-
ous for different motion models. N is the set of neighboring
pixel pairs, β1, β2, and β3 are constants, and set to 1.8, 0.6,
and 5.0 in our experiments respectively. The above energy
function can be optimized efficiently by Graph Cuts [8].

5.5. Nonparametric motion from blur
We propose a nonparametric motion blur estimation

method to handle more complex motion patterns.
Nonparametric optical flow estimation has been investi-

gated for long time [2, 4], starting from the classical Lu-
cas/Kanade [21] and Horn/Schunck [14] methods. Due to
the analogy between optical flow and motion blur, those
methods could potentially be applied. We extend the HS
method directly, resulting the following objective function,∑

p∈Ω

min
zp=±1

(∇αb ·bp−zp)2+λ
∑

(p,q)∈N

‖bp−bq‖2
2, (25)

where the variables are motion vector field bp for each pixel
p in the image. The first term is the data term based on
Eqn. 7, and the second term is the prior term preferring
smooth motion field. N is the set of all neighboring pixel
pairs. The difference with HS method is that we have zp
due to the lack of time information, which makes the ob-
jective function non-convex, thus very difficult to be opti-
mized. To address this issue, blur model with parametric
form is estimated first, and the initial model is used to get
the z value. Better initialization strategy such as using a
number of piece-wise parametric models as in [7] could also
be applied. Once having z, the motion field is optimized by
standard iterative algorithm based on Jacobi method.



(a) (b)
Figure 5. (a) A color image and its alpha channel representation
α, (b) top: original unblurred image, one blurred image with blur
parameter b = (20, 20)T, bottom: error (‖b∗ − b‖) map of para-
meter estimation for all (u, v) ∈ {(u, v)T |u, v ∈ {0, 1, ..., 30}}.

5.6. Removing space-variant motion blur
We modify the Richardson-Lucy method [24] for space-

variant motion deblur. Assume the blurred image Ib is gen-
erate by Ib(p) =

∑
q I(q)Ppq, where I is the clear image

we want to recover, p and q are pixels, Ppq is the blur ker-
nel weight from q to p. Then the RL iteration is It+1(q) =
It(q)

∑
p

Ib(p)
It
b(p)

Ppq, where It
b(p) =

∑
q I

t(q)Ppq. How-
ever, for the space-variant case,

∑
p Ppq may not equal to 1.

Thus even if It = I is a perfect estimation, It+1 6= I will be
wrong, this will produce artifacts. In our implementation,
we first compute Qpq = Ppq/

∑
p Ppq as a normalized P

w.r.t. each p, then iterate with the following equation

It+1(q) = It(q)
∑
p

Ib(p)
It
b(p)

Qpq. (26)

6. Experiments
We first test our algorithm with synthesized data to get

quantitative evaluation, then use real data to demonstrate
the general applicability. Please refer the electronic version
for better visualization of all results in this section.

The spectral matting algorithm [20] is applied indepen-
dently on overlapping sliding windows of the input image
for computational reason, which is very robust in our ex-
periment. In fact, the effectiveness of a closely related
approach [19] has been demonstrated by several recent
works [11, 15, 25]. The number of alpha components is
limited to 2 for each window. The alpha value for each win-
dow is set to be one of these two components. The com-
putation of ∇α and the pre-filter step are also performed
within each window. One example is shown in Fig. 5(a).
The alpha value of one homogeneous region in two neigh-
boring blocks could be flipped. Some edges are missing due
to the limit of component number. All motion blur kernels
are generated by Matlab. To synthesize space-variant mo-
tion blur given the pixel path function, we equally sample
the exposure period, and average those warped images.

6.1. Synthesized data
Fig. 5(b) illustrates the accuracy of the proposed algo-

rithm for space-invariant motion with a proof-of-concept
experiment. The proposed algorithm is tested for b ∈

Figure 7. Rotational motion from blur with synthesized data. Top:
blurred image, our deblur result, ground truth, visualized rota-
tional blur vector field, bottom: close-up views.

Figure 8. Motion segmentation from blur. (a)(b) The penalty terms
φ for two models in [0, 2], (c) segmentation result, (d) voting map
in the Hough domain and visualized blur parameters.

{(u, v)T|u, v ∈ {0, 1, ..., 30}}, which is a fairly large range
for blur parameters. The estimation error is visualized. Ac-
curate motion parameters are obtained under the non-ideal
conditions with discretized image grid, discretized blur ker-
nel, and not purely binary edges in the non-blurred image.
The error for small blur vector (‖b‖ ≤ 2) is due to very
small number of pixels for edge transition.

Fig. 6 shows an affine blur estimation result. The
input image is synthesized with an affine blur model
ba = (−0.6, 1.8, 1000, 2.4,−3.6,−1000)T × 10−2, and
the estimation using the proposed algorithm is b∗a =
(−0.54, 2.23, 940, 2.55,−3.54,−1054)T × 10−2. The
maximum estimation error over the entire image is 0.96,
and the average is 0.43, which is very small comparing with
the average length of motion vector 15.8. The deblur result
is clear and sharp. Three close-up views are shown together
with their local blur vectors. The estimated blur vectors
match with the blur extent precisely. Fig. 7 shows a rota-
tional blur estimation result. The input image is synthesized
with parameters x0 = 90, y0 = 120, β = π/18 ' 0.175.
The estimation result is x∗0 = 89.6, y∗o = 113, β∗ = 0.169,
which are very close, thus successful deblurring is enabled.

Fig. 8 shows a result for multiple motion blur estima-
tion and segmentation. To synthesis the input image, we
first use alpha matting [19] to extract foreground of Lena



Figure 6. Affine motion from blur with synthesized data. From left to right: affine blurred image, deblur result, ground truth, visualized
affine motion field estimation result with close-up views (please notice that the estimated local blur vector match the blur extend precisely).

Figure 9. Space-invariant linear motion blur and Hough domain.

f together with its alpha channel m. Assume the two blur
kernels are h1 and h2, then the input image I is generated
by I = (f ∗h1) ·(m∗h1)+(b∗h2)∗(1−m∗h1), where b is
the non-blurred background image. The blur parameters are
bf = (15.0, 0.0) for h1 and bb = (6.0, 10.4) for h2. The
initial estimations by RANSAC are b∗f = (14.7,−0.4) and
b∗b = (6.5, 10.0). They are refined to b∗f = (15.0,−0.2)
and b∗b = (6.5, 10.4) finally. Fig. 8 (d) shows the voting
map in the blur parameter space. Two pairs of positions get
higher votes, corresponding to the motion blur vectors vi-
sualized in this figure. The penalty terms shown in (a)(b)
can provide valid cues for model fitting, which enables the
final segmentation result in (c). Some pixels fit both mod-
els well (such as those close to the leftup corner), which is
due to the aperture problem discussed in Sec. 4. The correct
model can be selected by enforcing region continuity with
MRF. There are some outliers in the texture region (such as
Lena’s hair) for Eqn. 7, which is discussed in Sec. 3.2.

6.2. Real data
Fig. 9 shows some results for space-invariant motion

blur estimation, and the estimated motion blur vectors over-
laid on the voting maps in the Hough domains, where the
peaks can be clearly observable. Fig. 10 and Fig. 11 show
the blur estimation results with affine, rotational, and non-
parametric blur models. From the close-up views, we can
see that the local blur vectors match with the blur extent pre-
cisely. Image details are greatly enhanced (such as book ti-
tle, fingers) due to the correctly extracted space-variant blur
parameters with our algorithm. The motion blur is success-
fully removed with the proposed modified RL debluring al-
gorithm. In Fig. 10, we compare our result with a space-
invariant blur model combined with deconvlucy function
in Matlab (the number of iterations is set to 30 for both).
Our result is better due to the space-variant property of the
underlining blur model. There exist some ringing effect

Figure 10. Affine motion from blur with real data. 1st row: blurred
image, our deblur result, deblur with space-invariant motion blur
model obtained by averaging the estimated affine blur field, and
estimated blur field, 2nd row: close-up views of the three images
in the 1st row, the book title becomes recognizable in our result.

Figure 12. More results for space-variant motion from blur. The
motion blur models for the top row: non-parametric, space-
invariant plus non-blurred, bottom row: affine, space-invariant
plus non-blurred, and rotational plus non-blurred.

in the deblur results, which is in fact commonly observ-
able [12, 26] in the literature for iterative restoration meth-
ods, especially with large kernels. More results including
the motion segmentation results are shown in Fig. 12.

7. Conclusion
In this paper, the α-motion blur constraint is obtained,

which is a local linear constraint for the blur parameter.
The analogy between the optical flow constraint and the
α-motion blur constraint enables solution for a number of
space-variant motion blur estimation problems, including
estimation of affine blur, rotational blur, nonparametric blur,
and multiple blur estimation and segmentation. Future work



Figure 11. Rotational (top) and non-parametric (bottom) motion from blur with real data. From left to right: blurred image, our deblur
result, visualization of estimated motion blur vector field and close-up views.

includes more principled approach to deal with outliers of
Eqn. 7, especially for texture regions, and more sophisti-
cated estimation of z in Eqn. 10 for nonparametric case.
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A. Proof of Theorem. 1
Without loss of generality, assume v = 0. Since other-

wise, we can rotation both h and I to make the blur direction
align with the x-axis, which will not change the values of
both sides of Eqn. 1. In this case, the blur kernel is

h(x, y) =

{
1
uδ(y) −u

2 ≤ x ≤ u
2

0 otherwise,
(27)

where δ is the Dirac delta function. We have ∂h
∂x = 1

u [δ(x+
u
2 , y)− δ(x− u

2 , y)]. Since b = [u, 0]T, so ∀ p = (x, y)T,

∇Ib|p · b =
∂Ib
∂x

· u+
∂Ib
∂y

· 0 =
(
I ∗ ∂h

∂x

)
· u

= I ∗ 1
u

[δ(x+
u

2
, y)− δ(x− u

2
, y)] · u

= I(p +
b
2

)− I(p− b
2

). � (28)


