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Abstract

The observation models in tracking algorithms are criti-
cal to both tracking performance and applicable scenarios
but are often simplified to focus on fixed level of certain tar-
get properties such as appearances and structures. In this
paper, we propose a unified tracking paradigm in which
targets are represented by Markov random fields of inter-
est regions and introduce a new way to adapt observation
models by automatically tuning the feature granularity and
model elasticity, i.e. the abstraction level of features and
the model’s degree of flexibility to tolerate deformations.
Specifically, we employ a multi-scale scheme to extract fea-
tures from interest regions and adjust the parameters of the
potential functions of the MRF model to maximize the like-
lihoods of tracking results. Experiments demonstrate the
method can estimate translation, scaling and rotation and
deal with deformation, partial occlusions, and camouflage
objects within this unified framework.

1. Introduction

Visual object tracking is the core task in motion anal-
ysis and crucial to many applications. The most critical
factor determining tracking performance is the matching
criterion, also known as observation model or likelihood
model, which defines what trackers are following. However,
matching is largely simplified in most tracking methods and
may only focus on certain characteristics of targets, for ex-
ample, the existences of certain local visual patterns or co-
herence with certain overall feature statistics in appearance-
based tracking. Consequently, successful tracking methods
for certain type of targets may not adapt to other targets eas-
ily. Therefore, for generally applicable trackers, matching
need to be flexible for distinctive targets and adaptive with
respect to target variations.

Designing generally applicable trackers is extremely
challenging, if not impossible, mainly due to enormous
variabilities of targets and their unpredictable changes in
practice. Actually, it is even hard to handle targets with
rotation and scale changes in a unified way if they also ex-
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perience different degrees of deformations and partial oc-
clusion, since the observation models of targets may not be
able to adapt to all these factors simultaneously. In order
to advance towards designing more general trackers, adap-
tation of more aspects of observation models need to be in-
troduced and incorporated in a unified framework.

Specifically, for appearance-based tracking, there are
two key aspects in designing observation models: what is
the abstraction level of features, and how to take into ac-
count the geometrical structures of targets. For example,
in two extreme cases, the template matching method [13]
uses local pixel intensities as features and employs sum of
squared differences (SSD) as the matching criterion that en-
forces rigid geometrical relations among pixels, so it is suit-
able for small and rigid targets but vulnerable to partial oc-
clusions and deformations. On the other hand, kernel-based
tracking algorithms [8, 7, 9] represent targets by weighted
histograms that delineate the overall statistics of targets’
appearances and largely ignore their geometrical layouts.
Therefore these algorithms can deal with non-rigid targets
with sufficient sizes but are insensitive to some motion pa-
rameters. In between of these two extreme cases, many
other algorithms, such as “super pixels” [26, 24] or “bag-
of-patches” approaches [3, 1, 25, 23], extract features from
some regions of interest on targets and consider their geo-
metrical relations to different degrees.
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Figure 1. Illustration of different tracking approaches in terms of
their relative granularity and elasticity.

We refer the two aforementioned dimensions as the fea-
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ture granularity and model elasticity. Granularity is a mea-
sure of descriptions of components that make up an object.
We use the feature granularity to indicate the abstraction
level of features, e.g. whether features describe attributes of
a pixel, a blob region or a whole object. Elasticity refers to
the degree of flexibility. Here we use the model elasticity
to indicate the ability that the model tolerates geometrical
changes among components, e.g. whether a model allows
deformations inside targets or not. The feature granularity
focuses on the target appearance and the model elasticity
puts emphasis on its structure. Some typical tracking ap-
proaches are illustrated qualitatively in Fig. 1 in terms of
their relative feature granularity and model elasticity.

Human also perceive different objects at different gran-
ularity levels [12]. For objects full of textures but with-
out clear structures, human eyes may focus on their local
appearance characteristics. For objects composed by sev-
eral parts, both the appearances of the parts and their struc-
tures may attract the attention. In addition, as the scales
of objects change or deformation/partial occlusion occurs,
the perception of target structure and local appearance may
also change. Inspired by these observations, a natural ques-
tion is whether trackers can adapt the feature granularity and
model elasticity in their observation models.

In this paper, we propose a unified tracking paradigm
in which targets are represented by Markov random fields
(MRF) of a set of interest regions where the feature gran-
ularity and model elasticity can be explicitly adapted with
respect to targets’ appearances during tracking. The feature
vectors that delineate the local appearances of interest re-
gions are extracted in a multi-scale manner. Thus, the scale
ratio between the patch sizes that are used to extract feature
vectors and the characteristic scales of interest regions spec-
ifies the feature granularity. On the other side, the geomet-
rical relations among the interest regions, i.e. the structures
of targets, are modelled in the pair-site potential functions
whose parameters control the elasticity of the model. Thus,
by updating the scale ratio and the parameters in the poten-
tial functions to maximize the joint likelihood of the MRF,
the tracker adaptively balances the requirements of consis-
tency with the local appearances and structures of targets.

The main contributions of the paper are on two-fold.
First, the proposed tracking paradigm can be viewed as
a unification of many previous tracking algorithms in the
sense of how to organize appearance-based features in tar-
get observation models. Second, the adaptation of feature
granularity and model elasticity in this paradigm exhibits a
new way to update observation models to handle dynamical
targets. The proposed method can estimate multiple motion
parameters including translation, rotation and scaling, and
handle partial occlusion, deformable targets and camouflage
objects within the unified framework as demonstrated by
extensive experiments.

2. Related work

Visual tracking has received intensive research efforts for
decades and different tracking algorithms may have quite
different applicable scenarios due to the use of different tar-
get observation models. Generally, feature vectors are ex-
tracted from hypothesis regions and are evaluated against
target observation models to find the optimal match. For
appearance-based tracking, the feature vectors may con-
cisely abstract the properties of targets at different granu-
larity levels, e.g. pixel intensity patterns [18, 13, 4, 2] or
filter bank responses [16, 11], a set of feature points or
interest regions [3, 1, 26, 24, 25, 23], or statistics of en-
tire objects [8, 7, 9]. On the other hand, the geometrical
structures of targets can be enforced fairly strictly in an
intensity template [13], a linear subspace [4, 15], a clas-
sifier [2], or “super pixels” templates [26, 24], or loosely
modelled in kernel functions [8, 7, 9] or a “bag of patches”
where targets are located with the confidence or occupance
maps [3, |1, 1, 25, 23] based on matching interest regions.

Most of these tracking algorithms involve observation
models with pre-defined degree of focus on targets’ local
appearances or structures. Although the observation mod-
els can be updated by latest tracking results [16, 15], on-
line classification [3, 11], or selection of different cues [7]
and feature points [22], the feature granularity and model
elasticity remain roughly at the same level. In contrast, in
our approach, we represent a target by an MRF of interest
regions where the feature granularity and model elasticity
are able to explicitly adapt to distinctive targets by extract-
ing features with different scale ratios and tuning the poten-
tial functions. Note, the proposed method is different from
some recent work [25, 23, 22] where target is represented by
a constellation of fixed-size (11 x 11) intensity patches ex-
tracted at Harris corners [25], or a bag of maximally stable
extremal regions (MSER) [20], or an attributed relational
graph of SIFT features [22].

The constellation model of feature points has been
deeply investigated and very successful in object recogni-
tion and categorization [17, 10, 5, 6]. Comprehensive sur-
vey of all graph-based object representations in computer
vision literature is out of the scope of the paper.

3. Target observation model

In this paper, we propose a unified tracking paradigm
where the target is represented by an MRF model of interest
regions, and the feature granularity and the model elasticity
can be explicitly modelled in a parametric way. In this sec-
tion, we first introduce the general tracking paradigm and
then describe the specific interest regions and MRF formu-
lation in our implementation.

3.1. A unified tracking paradigm

Given the target initialization, we construct an MRF
based on the interest regions within the target. The hidden
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variables X = {x;} in the MRF are the parameters of the
interest regions on the target, and the observable variables
are the parameters Y = {y;} of detected interest regions
in every frame. The adjacent interest regions are linked in
pair-wise cliques that encode their relative geometrical re-
lations, as shown in Fig. 2. Then, by matching features ex-
tracted from the interest regions in successive frames, the
motion of the targets can be first coarsely estimated based
on the motion of the interest regions. Afterwards, we refine
the target’s motion parameters by searching the maximum a
posteriori (MAP) estimate P(X*|Y). We employ the scale
ratio between the sizes of image patches to extract features
and the characteristic scales of interest regions to model the
feature granularity. The elasticity of the model is controlled
by the parameters in the potential functions. Assuming the
tracking results are true realizations of the MRF, we adapt
the granularity and elasticity to maximize the joint proba-
bility P(X*). The entire paradigm is summarized in Fig. 3.

Figure 2. Illustration of the MRF model.

With different types of interest regions and strategies in
extracting features, the MRF-based observation model in
this tracking paradigm can substantialize to different ob-
servation models. For example, if we regard each pixel
as an interest region and enforce strict geometrical rela-
tions among the pixels, this model degenerates to template
tracking, or if the entire object is an interest region and fea-
tures are kernel-weighted histograms, then it turns to kernel-
based tracking. Additionally, “bag-of-patches” method can
be well categorized into the paradigm if no geometrical con-
straints are enforced in the MRF and the motions of tar-
gets are estimated from the confidence map or probabilistic
occupance map generated from interest region matching or
outputs of classifiers.

3.2. Interest region detection

For interest regions in the MRF, salient image patches
that are stable in affine transforms are preferable since their
motion parameters can be explicitly estimated. There are
many successful affine region detection methods [20], and
we select Harris-Laplace interest regions in our implemen-
tation mainly due to its computational efficiency and the
ability to yield rich candidate regions.

The Harris-Laplace interest point detector [14, 19] ex-
tracts points that are both local maxima of the Harris cor-
nerness measure in spatial domain and maxima of the nor-
malized Laplacian in scale space. The cornerness is mea-

sured based on the second moment matrix p of the image
gradient distribution in a neighborhood of a pixel {u, v}, as

/1'({% U}, 51, SD) =
Li({u’ U}v SD)

L,L,({u,v},sp) ) ,
L,L,({u,v},sp)

L%}({u7 U}: SD)
()

where L, ({u,v},sp) and L,({u,v},sp) are image gra-
dients after smoothed by a Gaussian kernel with variance
sp, a.k.a. the derivation scale [19], and ¢(s;) indicates the
Gaussian kernel to integrate the gradients whose variance
sy is referred as the integration scale or the characteristic
scale [19] of this point. The two eigenvalues A\; > Ay of
1 characterize the pixel intensity distributions in the neigh-
borhood. Two large eigenvalues imply the motion of the
image patch surrounding this pixel may be phenomenal in
all directions [21], thus it is a stable corner. Each Harris
corner can be delineated by an ellipse region R centered at
{u, v} with the characteristic scale s; and a shape matrix [
that are normalized by the larger eigenvalue ;.

After extracting the ellipses R = {u,v, s, i} whose
centers are Harris corners, we calculate the normalized
Laplacian for those nested ellipses, that is, R and R are
nested if R C R. Note, the centers are not necessarily
the same for the nested ellipses. The regions that are local
maxima of the normalized Laplacian s%,| Ly, ({u, v}, sp)+
Lyy,({u,v},sp)| are selected as the detected interest re-
gions {R}, -, R, } where M" denotes the number of re-
gions detected at frame ¢.

Please refer to [19] for details about Harris-Laplace in-
terest point detector. In [19], the location and shape of an
interest region are iteratively refined in order to reflect the
gradient distributions more accurately. As there is no guar-
antee of the convergence and the computation load is not
affordable for tracking, we do not refine the interest regions.

shatsn) o

3.3. MRF model formulation

Given the detected interest regions {RY,---,R%,}
within the initial target at frame ¢ = 0, we build the MRF
including the hidden sites x; = {u;, v;, S;, [i; } that corre-
spond to RY and incorporate the target’s motion parameters
in the pair-wise potential functions.

The initial interest regions {RY,--- R} are re-
garded as a true realization of the MRF and denoted as
{x?,-++,x8,0}. Then, the joint probability P(X) =
P(x1,---Xp,) is expressed by the Gibbs energy defined
over pair-wise clique set C, as

1
P(X) = Zexp—( _Z;GCV(Xi’Xj)’ 2)

where Z is the partition function and V' is the pair-wise po-
tential function. (x;,x;) is a pair-wise clique if the corre-
sponding interest regions overlap. The higher order cliques
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Figure 3. The proposed unified tracking paradigm.

and the dependencies among cliques with common interest
regions are ignored to enable the problem tractable.

It is open and flexible to define the potential function
V' to model the relative geometrical relation between two
interest regions. To allow rotation and scaling of targets, in
V' we only involve the difference of the angle Hf»j between
¢ and xz» at frame ¢ against the reference angle H?j between

K3
x; and xJ, and the target’s current rotation angle A", as

X

(0% — 09, — A0")?

202 ’

Vi(xt,xt) =

ir X 3)
where o is the assumptive variance of angle differences
A}, = 6j; — 67, which can control the elasticity of
the MREF, i.e. how rigid the relative geometrical relations
among interest regions are enforced. The angle (‘)fj between

two adjacent interest regions is calculated with the link con-
). With these

definitions, the partition function Z can be explicitly ex-
pressed as Z = (v/270)!¢l where |C| is the number of
pair-wise cliques. An example of MRF model is illustrated
in Fig. 4 where the interest regions are drawn as yellow el-
lipses and the centers of those that are neighbors are linked
with red lines.

t
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t
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necting their centers, i.e. 95 = arctan( =
J uy—

t
u
J

Figure 4. An example of the MRF model initialization.

Since histograms are generic and rotation invariant, for
each interest region, we extract a histogram of certain cue
to describe its appearance. For a Harris-Laplace interest
point, although the characteristic scale sy is available, but
how large area around the point should be used to extract
the features to insure good matching can not be determined
before tracking. Thus, we utilize a scalar r to specify the
scale ratio between the size of image patch used to extract
the histogram and the characteristic scale s;. For each x;,
H (rx;) represents the histogram extracted from the ellipse

with the length of the major axis equal to rs;. Therefore,
the ratio 7 controls the feature granularity.

For an observation yﬁ of x;, we define the likelihood of
individual interest region based on the Bahattachaya coeffi-
cient p between the corresponding histograms, as

P(yilxi) = exp(1 — p(H(rx}), H(ry}))). (4

Fixed r may not be appropriate for all tracking scenarios, so
r need to be adjusted during tracking.

4. Motion estimation

We estimate the motion parameters of the target with two
steps. First, the interest regions detected in current frame
are matched with the initial regions in the MRF so as to
coarsely estimate target’s motion parameters, i.e. transla-
tion, scale and rotation angle, which mainly relies on the
resemblance of appearance. Then, a few more motion pa-
rameters are sampled guided by the coarse estimates. The
hypothesis that yields the highest joint posterior probability
of the MRF is regarded as the tracking result, which takes
both appearance and structures into consideration.

4.1. Coarse motion estimation

For every incoming frame, we perform Harris-Laplace
interest points detector to locate the interest regions
{RY,---,RY,.} at current frame in an enlarged region sur-
rounding the previous tracking result. If one interest region
is matched to an initial interest region x?, we regard it as an
observation of the hidden site x; and denote it by y!. The
matching can be achieved by a classifier [3, | 1], instead, we
directly threshold the Bhattacharya coefficient p with the

scale ratio r by a threshold 7', as
p(H(rx)), H(ry})) > T. (5)

This matching is not necessarily a one-on-one mapping.
Incremental estimation of the motion parameters of tar-
gets, especially for the rotation angle, is not reliable since
the estimation error could be accumulated. Thus, we esti-
mate the target motion Aut, Avt, Ast, A9t with respect to
the target initialization. These motion parameters are first
coarsely estimated by Auf, Avf, Asf;, Afj; of individual
observations y} and each pair of y and y? within a clique.
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The translations Au! = (uf — u?) and Avl = (vf — vY)
are cast in a 2D histogram. The scale factor and the rotation
angle are estimated through 1D histogram of those of the

detected pair-wise cliques (y;,y%),

. bty = us o) ©
Y 0oy — (o}

A0 =01, — 07, (7

The modes of the distributions of these motion param-
eters present coarse motion estimation for the target, i.e.
Aut, Avt, Ast, AGt. The histograms of interest regions’
motion parameters are similar as the confidence map or oc-
cupance map used in “bag-of-patches” approaches and the
geometrical relations among the interest regions have not
been taken into account. Then, we employ these rough esti-
mates to guide fine sampling of target motions and evaluate
the posteriors to refine the motion estimation.

4.2. Motion parameter refinement

As the interest region detection and matching may con-
tain errors, we further refine the coarse motion estimates
Aut, Avt, Ast, AG by sampling a few more motion pa-
rameters around them and evaluating these hypotheses.

Given the observations Y = {yi1,---,ym} within
a hypothesis target region, the MAP estimation X* =
argmax P(X]|Y) presents the upper bound of the posterior
of these observations Y. With the Markovian properties and
the field model structure P(y;|X) = P(y:i|x;), the joint
posterior can be expressed as

P(X|Y) x P(YX)P(X)

= P(X) HP(yilxi)- (8)

The joint probability P(X) is calculated with Eq. 2 and
Eq. 3 that utilize the hypothesis A#* as a parameter. The
likelihood of individual interest region P(y;|x;) is defined
in Eq. 4. Then, the hypothesis whose optimal labelling X*
yields the highest posterior P(X*|Y) is regarded as the
tracking result.

5. Granularity and elasticity adaptation

In calculating P(y;|x;) with Eq. 4 and P(X) with Eq. 2
and 3, the scale ratio r to control the feature granularity and
o to control the elasticity of the MRF play important role in
interest region matching and MAP estimation. Pre-defined
fixed r and o are not likely to assure good matching for
different targets and challenging situations such as partial
occlusions and camouflage objects nearby. Thus, we adapt
them in every frame to maximize the posteriors of tracking
results. The updated parameters 7! and o at frame ¢ are
used in motion estimation at next frame ¢ + 1.

5.1. Feature granularity adaptation

We update the scale ratio by searching r* + Ar until lo-
cal maximum of P(Y*/X*") = [], P(ytx';). Note, here
locations and shapes of y! and x*; are given, only r* affects
P(Y*|Xt"). This is equivalent to maximize the sum of the
Bhattacharya coefficients of all observed interest regions y*
in the tracked target, as

Pt = argmax Z p(H(r'xy), H(r'y!))). ©))

The histograms H (r'x?) are pre-calculated and stored
at tracking initialization. To reduce the computation over-
head of adaptation, we perform local gradient search around
rt & Ar with 7 = 2 and Ar = 0.1 in our experiments.
Thus, the feature granularity is updated according to the ap-
pearance changes. If the target is rigid and stable, good
matching can be obtained with large ratio . If partial oc-
clusion or deformation happen, small  may be appropriate.

5.2. Model elasticity adaptation

The parameter o in the pair-site potential functions con-
trols the elasticity of the MRF. To enable o match the de-
gree of deformation of the target, we solve it by maximize
the likelihood of the current tracking result, as

Oln P(X'"|0)
do

Plug in the partition function Z and the potential energy in
Eq. 3 to P(Xj|o), we have

=0. (10)

1 tx tx
WGXP Z V(xi", xj")

(xj*xi*)eC

i 0

P(Xilo)

(MG — AGT)?

1
T (V2mo)al TP 2 207

(xj* xi*)eC

i 0

Solving Eq. 10, we obtain the assumptive variance o’ of
angle differences given the current tracking result,

1
e

(xt7.xt3)EC

(AG7; — A6T)2. (an

The optimal ¢! is the variance of the observed angle dif-
ferences. So, if the relative geometrical relations of the de-
tected interest regions are stable, o is small, on the other
hand, ot increases when deformations occur.

6. Experiments

We evaluate the proposed tracking algorithm for a vari-
ety of real-world sequences that present deformations, par-
tial occlusions, and camouflage objects. In the Harris-
Laplace interest point detector, up to 12 different integra-
tion scales are tested depending on the size of the target.
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The features used to match the interest regions are 2D his-
tograms in normalized-RG space with 24 x 24 bins and the
corresponding matching threshold for the Bhattacharya co-
efficient is set to 7" = 0.75. The proposed tracker is imple-
mented with C++ which runs at 2-10 frame per second on a
Pentium-IV 3GHz desktop. The computation load is jointly
determined by the number of scales in the interest region
detector and the number of interest regions detected.

To exhibit the generality of the proposed method, for dif-
ferent sequences, we compare the performance with three
trackers: a Mean-shift tracker that also employs 2D his-
tograms in normalized-RG space with 24 x 24 bins, a tem-
plate tracker where the image regions are normalized to
grey-level patches and compared with SSD, and a “bag-
of-patches” tracker using the same set of interest regions
but ignoring their geometrical relations. Although these 3
trackers can deal with different kinds of tracking scenarios,
we demonstrate the proposed method can overcome some
difficulties to them within the unified tracking paradigm.

6.1. Illustration of tracking results

The tracking results are displayed in three rows in Fig.5.
At the first row, the initialization of the MRF model is
shown in the first image where the cliques are drawn with
red lines, and followed by the interest region detection re-
sults where the matched regions are drawn as yellow el-
lipses while the non-matched ones are light blue ellipses.
Note the length of the major axis in drawing is the product
of the scale ratio r’ and the interest region’s characteristic
scale s;. Our tracking results are illustrated at the second
row where the target is indicated by a blue dash bounding
box and the pixels covered by matched interest regions are
highlighted with red boundaries. The comparison tracking
results are shown at the third row.

In sequence [Sidewalk], the size of target is small
which is suitable for the template tracker. However, when
a bicycler is passing by the pedestrian from frame 140, the
template tracker is easily distracted, shown in the third row
of Fig.5. In our tracker, as the interest regions on the up-
per body of the pedestrian remain stable, the tracker can get
along with the distractions.

6.2. Partial occlusions

The sequence [Face] first used in [1] presents different
degrees of partial occlusions. Large scale ratio » may jeop-
ardize the interest region matching when partial occlusions
occur. From Fig. 6 we can observe that in our method the
scale ratio r¢ is adapted to follow the changing of degree
of occlusions. r! decreases to about 1.2 at frame 285 and
increases to 3 when the book moves away. For the mean-
shift tracker, when partial occlusion happens, the scale esti-
mation is no longer reliable and can hardly recover. Some
representative frames are shown in Fig. 7.

— Scale ratio r

Scale ratio r
N
o

100 200 300 400 500 600
# of frames

Figure 6. Scale ratio r* for sequence [Face].

6.3. Deformable object

For sequence [Cock fight], when the target cock expe-
riences large deformation around frame 240, o in the po-
tential functions increases considerably, as shown in Fig. 8.
This means the structure or the relative geometrical rela-
tions among the interest regions are largely ignored, thus,
the target is located mainly by matching its appearance.
When the cock pauses fighting at frame 250, its structure
helps the proposed tracker to locate the target and estimate
the scale more accurately than the Mean-shift tracker.

251

Variance of angle differences

20

Variance of angle differences

0 100 200 300 400
# of frames

Figure 8. o for sequence [Cock fight].

6.4. Camouflage object

If the appearance of the target is distinctive in the scene,
“bag-of-patches” approaches may work well, however, they
are usually vulnerable when camouflages, i.e. similar or
even identical objects, present close to the target. As shown
in Fig. 10, when the camouflage package moves close to
the target from frame 640, the scale estimation in the pure
“bag-of-patches” tracker becomes unstable and it gradually
drifts to the wrong target. In our approach, though interest
regions detected on the camouflage package have similar
appearances, they are excluded since their relative positions
are not consistent with the MRF model.

7. Conclusions

In this paper, we introduce a new perspective of adapting
target observation models in terms of the feature granularity
and model elasticity in a unified tracking paradigm, where
targets are represented by MRFs of interest regions. By em-
ploying a multi-scale scheme to extract features from inter-
est regions and adjusting the parameters that regulate the
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Figure 5. Tracking [Sidewalk] for frame #1, 140, 145, 152 and 163, (1st row) initialization and interest region detection, (2nd row) the

proposed tracker (3nd) the template tracker.

Figure 7. Tracking [Face] for frame #1, 285, 345, 585 and 599, (1st row) initialization and interest region detection, (2nd row) the

proposed tracker (3nd) the Mean-shift tracker.

target geometrical layout, the proposed method automati-
cally tunes the observation model’s focus on target’s appear-
ances and structures. Furthermore, the proposed tracking
paradigm is flexible to incorporate different interest regions
and features. Future work will include investigation about
how to adapt the feature granularity of individual interest
regions and the potential functions for each clique.
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Figure 10. Tracking [Package] for frame #1, 640, 702, 740 and 792, (1st row) initialization and interest region detection, (2nd row) the
proposed tracker (3nd) the “bag-of-patches” tracker.
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