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ABSTRACT

Identifying space-variant motion blurs is a very challenging
task in blind blur identi cation research. This paper describes
a novel method towards blind identi cation without deblur-
ring. Based on the image gradients in the α-channel compo-
nent of a blurred color image, an elegant α-motion blur con-
straint is proposed, which is a linear constraint for local mo-
tion blur parameters. It makes possible ef cient blind identi-
cation of space-variant and even nonlinear motion blurs and

the estimation of motion blur elds, without deblurring.

Index Terms— space-variant blur, blind identi cation

1. INTRODUCTION

Being a common type of image degradation, motion blur has
been widely investigated in image recovery and most of the
research assumed linear space-invariant motion blurs. In real
applications, however, a degraded picture is likely to present
space-variant and nonlinear blurs when the motion becomes
more complex than simple 2D translational motion. For ex-
ample, the image may contain multiple moving objects, or
the moving object undergoes 3D motion that largely changes
its depth and orientation. Without the prior knowledge of the
motion, estimating such complex motion blurs and deblurring
the picture is a very challenging task in blind blur identi ca-
tion (BBI) research [1, 2].

There have been some attempts to overcome this great
challenge in image recovery. An early attempt looked at the
zero-crossings in the frequency domain [3, 4]. This idea is
natural, but it is confronted by the noise in the blurred image,
as the true zero-crossings that correspond to the blur cannot
be reliably identi ed from a large number of zero-crossings
that are produced by unknown noise. Then the most popular
approach in the recent research has been performing blur es-
timation and deblurring simultaneously [5, 6], which is quite
computationally demanding as there are a large number of un-
knowns to be estimated. In addition, complex blurs such as
space-variant and nonlinear blurs still remain open.

Can motion blur be identi ed and estimated without de-
blurring? If so, deblurring will be signi cantly less compu-
tationally demanding. Very recently, methods that decouples
blur identi cation and deblurring have been suggested. For

example, blurs can be identi ed and estimated locally by ana-
lyzing image patches [7, 8, 9] to enable space-variant deblur-
ring. We propose a novel approach in this paper to give a
positive answer to this question on pixel level.

To infer and estimate complex motion blurs, the most im-
portant thing is to extract informative image observations that
are closely related to the blur and invariant to irrelevant fac-
tors, and to construct effective constraints for blur estimation.
In this paper, we propose a novel local motion blur constraint,
which is based on the image gradient information in the α-
channel component of a blurred color image. This new con-
straint is local, as it is pixel-wise. In addition, it is linear
with respect to the motion blur parameters. More importantly,
this constraint only has two free parameters in general, and in
most case they can be further reduced to a binary value (±1).
Thus, this new constraint enables elegant and powerful solu-
tions to blind blur identi cation and estimation.

2. MOTION BLUR CONSTRAINT

Before working on discretized case, we rst describe our mo-
tion blur constraint on the continuous case, where the orig-
inal non-blurred signal is a continuous function I on R

2. I
is convolved with an ideal motion blur kernel h (point spread
function, or PSF), which is fully characterized by its direction
θ (θ ∈ [ 0, π)) and length l (l > 0). When θ = 0, the kernel
function is:

h0(x, y) =

{
1
l δ(y) − l

2 ≤ x ≤ l
2

0 otherwise,
(1)

where δ is the Dirac delta function. The kernels with nonzero
θ can be obtained by rotating h0 with θ. In our work, equiva-
lently, we can parameterize h by two different parameters as
a blur vector, b = (u, v)T , where u = l cos θ, v = l sin θ
are the projected lengths of the motion blur kernel on x and y
axes, respectively.

For space-invariant motion blur, b is constant throughout
the entire image, and the generation function of the blurred
signal is Ib = I ∗ h, where ∗ is the convolution operator. We
have the following theorem:

Theorem 1 A 2D continuous signal I is motion blurred by
kernel h. Ib = I ∗ h. The following equation holds at any
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(a) (b) (c) (d)
Fig. 1. Illustration of motion blur constraint and alpha channel im-
age description: (a) unblurred image (b) motion blurred image (c)
∇Ib · b on one color channel (d) alpha channel description of (b).

position p:

∇Ib |p · b = I(p +
b
2

)− I(p− b
2

) (2)

where ∇Ib |p = (∂Ib
∂x , ∂Ib

∂y )T |p is the image gradient and

b = (u, v)T is the motion blur vector.

We omit the proof due to the space limit. An illustration
on digital image is shown in Fig. 1. Eqn. 2 is veri ed by
Fig. 1(c), which shows a clear pattern of difference between
two translated versions of the original image with displace-
ments of b

2 and −b
2 .

We call Eqn. 2 the motion blur constraint. For each pixel
p, the image gradient of the blurred image ∇Ib |p can be
readily computed. The only two free parameters are two
pixels in the unblurred image, rather than an integral over a
large number of pixels in the unblurred image. Deblurring
is needed to recover these two free parameters, which is the
reason that deblurring has to be involved in blur estimation.

On the other hand, if the motion blur constraint has noth-
ing to do with the unblurred image, then blur identi cation
and deblurring can be separated. In the following sections,
we describe a novel treatment by using the α-channel com-
ponents to further reduce these two free parameters to one
binary unknown, which makes possible the decoupling.

3. ALPHA CHANNEL IMAGE DECOMPOSITION

For a color image, image matting is the technique that sep-
arates its foreground objects from the background. As the
pixels on the object boundary tend to be mixtures of both
foreground and background color components, the separation
needs to be done softly. A color image can be treated as a lin-
ear combination of the foreground and background. Speci -
cally, for each pixel p, we have

Ip = αpFp + (1− αp)Bp (3)

where Ip, Fp, and Bp are the pixel colors of the input, fore-
ground, and background images respectively, α ∈ [0, 1] is the
linear combination weight. Alpha matting is the inverse prob-
lem of the above generation process. It recovers F , B, and α
simultaneously for each pixel, given an input color image I .
An example is shown in Fig. 2

It is clear that image decomposition by alpha matting is
severely under-determined, and priors are needed to regular-
ize the problem. One commonly used prior is image smooth-
ness prior, which assumes local color smoothness for both

foreground and background. It is extended to local linear
color model in [10], resulting in a closed-form solution. User
interaction can be considered as another kind of prior, where
some pure foreground / background pixels are indicated man-
ually by providing a trimap or using brush tool (Fig. 2(b)).

We rewrite Eqn. 3 as follows

α =
1

F −B
I − B

F −B
, (4)

where the position index p in Eqn. 3 is omitted without con-
fusion. Taking the gradient on both sides, based on the local
smoothness assumption of F and B, we have

∇α =
1

F −B
∇I. (5)

This clearly shows that the edge information is preserved
in the α-channel. A more important and meaningful view
of Eqn. 5 is that the α-channel image gradient is a normal-
ized and locally adaptive description of image edge, because
F − B in the denominator serves as the normalization fac-
tor. Based on Eqn. 4, the magnitude of an image edge is
normalized to be a 0 to 1 transition in the α-channel. By
preserving the edge information, the α-channel component
of a color image actually provides a large amount of infor-
mation but in a much simpler form, i.e., a single channel
description of a color image. This can greatly simplify many
image processing tasks such as image deblurring [11, 12] and
super-resolution [13].

In addition, using the α-channel can explore the relation-
ship among three color channels, and naturally combine all
color information from three channels. In fact, color channels
are closely related to each other. One example is the linear
color model [10] mentioned previously, which means that the
pixels colors in a local image patch tends to form a line in
the 3D color space. Such information is totally discarded by
methods that process three color channels separately. The α-
channel is extracted in a way that all color information are
taken into account simultaneously, thus the color channel re-
lationship information is implicitly integrated.

Traditionally, user interaction is needed to obtain good
estimates of the α-channel. Very recently, the spectral mat-
ting technique [14] has make it fully automatic and unsuper-
vised to decompose a color image into a linear combination
of image layers. It can be considered as a generalization of
the traditional matting techniques. The foreground / back-
ground model is replaced by a multiple layer representation
as I =

∑
i αiLi, where

∑
i αi = 1. In most cases, image

pixels have at most two non-zero α values.

4. α-MOTION BLUR CONSTRAINT

Now we show how we can reduce the two free parameters in
the motion blur constraint in Eqn 2 to a binary unknown.

From Eqn. 4, based on the local smoothness assumption
of F and B, the following equation can be easily obtained by
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(a) (b) (c) (d) (e) (f)

Fig. 2. Illustration of the alpha matting technique. (a) blurred image, (b) user indication of foreground (in black) and background (in white),
(c) foreground component αF , (d) background component (1 − α)B, (e) alpha channel α, (f) illustration of Eqn. 8 with a patch of (e).

replacing I with its α-channel description α in Eqn. 2:

∇αb |p · b = α(p +
b
2

)− α(p− b
2

). (6)

where αb = α ∗ h is the blurred α-channel. We call Eqn. 6
the α-motion blur constraint. This constraint suggests that
the blur estimation problem for the original color image can
be done equivalently in the α-channel.

Moreover, working on the α-channel enables further re-
ducing the number of free parameter in the motion blur con-
straint by imposing very mild assumptions. Speci cally, if
we assume the α values for all pixels in a non-blurred image
I are binary, i.e., α(p) ∈ {0, 1}, then the uncertainty on the
right hand side is largely reduced as it can only be one of three
values {0, 1,−1}. Thus, from Eqn. 6, we have

∇αb · b ∈ {0,±1}. (7)

In reality, this assumption is valid for most pixels in non-
blurred images. Due to the high image quality of the modern
digital cameras, under good lighting conditions, most image
edges are clear and sharp for static objects. Thus almost all
pixels in an unblurred image indeed have α values 0 or 1.

In our experiments, we nd that zero in Eqn. 7 is taken
mostly when∇αb = 0. We call pixels satisfying ‖∇αb‖ �= 0
valid pixels. Then we can have the following simpli ed α-
motion blur constraint hold for each valid pixel:

∇αb · b = ±1. (8)

An intuitive explanation of this equation is illustrated by
Fig. 2(f). Given a blurred straight edge, the local blur pa-
rameters for the center pixel (on the green line) cannot be
uniquely determined, since it may correspond to any vector
ending on the blur line. That is why the constraint is lin-
ear. The magnitude of the blur vector, ||b||, is proportional
to the blur extent, thus inversely proportional to the local
α-gradient. There is still an ambiguity on the blur direc-
tion: b and −b can produce the same blurring, which is the
uncertainty we have, i.e., ±1 in Eqn. 8.

One important property of the proposed motion blur con-
straints is that this constraint holds locally for each pixel.
In other words, each individual pixel can provide some cues
for estimating the local blur parameters. This is very dif-
ferent from most existing motion blur estimation methods,
which rely on some global properties, such as nding the
zero crossing in frequency domain, matching multiple input

images [15], or other coupled blur estimation and recovery
method. By integrating such local cues, accurate blur estima-
tion can be obtained in a larger image region. Moreover, by
integrating such cues throughout the entire image, blind blur
identi cation and estimation problems can be done for space-
variant and nonlinear motion blurs. In those cases, our mo-
tion blur constraint can still be applied because it is local, and
the space-variant and nonlinear blurs can be approximated by
piece-wise locally invariant linear blurs.

5. APPLICATION TO MOTION BLUR ESTIMATION

The above α-motion blur constraints are not only simple for
estimating space-invariant blurs, but also powerful in iden-
tifying and estimating space-variant ones, as the deblurring
process is separated and it is no longer involved.

For space-invariant motion blur, a simple voting strategy
can be used to estimate the parameters, like the Hough trans-
form. From Eqn. 8, we can see that each valid pixel votes for
two lines in the blur parameter space. The nal voting result
exhibits two peaks in the parameter space, corresponding to
two valid blur parameters: ±b, which cannot be further dis-
tinguished, since they can generate the same blurring.

For space-variant motion blur with a global parametric
form, e.g., a global rotational motion 1, we rst locally ap-
proximate it by a linear form with Taylor expansion. Then
we can simply collect the set of the α-motion blur constraints
for a number of pixels. The set of constraints give an over-
determined linear system, and the blur parameters can be eas-
ily estimated by existing estimation techniques such as the
Least Square Fitting method.

For multiple unknown motion blurs, the RANSAC tech-
nique can be applied to handle multiple models and noises.
After estimating those blur models, minz=±1 |∇αb · b − z|
can be used as the indication of model tting errors. Com-
bined with a Markov Random Fields model to enforce region
continuity and smoothness, blur identi cation and segmenta-
tion can be further obtained. As no prior knowledge is re-
quired in this process, it is a blind identi cation method.

In practice, due to the computational reason, the spec-
tral matting technique [14] is applied independently on over-
lapping sliding windows of the input blurred image. The

1In fact, it is both space-variant and nonlinear, since the integral paths
for blur generation are curves, instead of straight lines. It has a parametric
form, since the blur kernel parameters at each position can be analytically
expressed by the rotation parameters.
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Fig. 3. Space-invariant motion blur estimation. [left]: input image,
[right]: voting result in the blur parameter space (i.e. the Hough
domain) overlaid with the estimated blur vector.

α value for each pixel is extracted based on the α compo-
nents for its surrounding window. The α channel gradient

∇α =
(

∂α
∂x , ∂α

∂y

)T
is computed within each sliding window.

The number of matting components in each slicing window
is limited to no more than two. Fig. 1(d) gives an example,
where the block effect is due to the use of sliding windows.

6. EXPERIMENTS

We test our method on real images with various motion blur
patterns. Fig. 3 shows an image with space-invariant mo-
tion blur. Two points get highest vote on the blur parame-
ter space, corresponding to two plausible blur parameters:
±(0.4, 12.6)T . Fig. 4 shows an image with a dominant ro-
tational motion blur, which is space-variant and non-linear.
The other part of the image is not blurred and can be treated
as outliers and identi ed by the RANSAC technique. The
extracted rotational blur model is visualized in Fig. 4, which
clearly shows that our estimation perfectly matches the blur
extent of the rotating object. Fig. 5 shows an image where the
motion blur is present in only part of the image. The domi-
nant blur parameter, b = (17.2, 1.4)T , is estimated by using
RANSAC. The model tting error is visualized. The nal
segmentation result is obtained by using MRF. These exper-
iments demonstrate the effectiveness of the proposed motion
blur constraint. These results are exciting and promising, as
the new constraints makes possible the identi cation and es-
timation of very complex blur patterns. Space-variant motion
deblurring is not discussed here since it is not the main focus,
and we leave it as future work.

7. CONCLUSION

In this paper, a novel motion blur constraint is proposed by us-
ing the α-channel components. This linear constraint enables
the decoupling of blur estimation and deblurring, and its local
property enables estimating various space-variant and nonlin-
ear motion blurs.
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