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ABSTRACT
The changes of the target’s visual appearance often lead to

tracking failure in practice. Hence, trackers need to be adap-

tive to non-stationary appearances to achieve robust visual

tracking. However, the risk of adaptation drift is common

in most existing adaptation schemes. This paper describes a

bi-subspace model that stipulates the interactions of two dif-

ferent visual cues. The visual appearance of the target is rep-

resented by two interactive subspaces, each of which corre-

sponds to a particular cue. The adaption of the subspaces is

through the interaction of the two cues, which leads to robust

tracking performance. Extensive experiments show that the

proposed approach can largely alleviate adaptation drift and

obtain better tracking results.

Index Terms— visual tracking, motion analysis

1. INTRODUCTION

Visual tracking is important for video analysis. It plays a crit-

ical role in many emerging applications such as video surveil-

lance and vision-based interfaces. Although many tracking

methods have been proposed and investigated [1, 2, 3, 4],

there are still enormous challenges in the real situations for

long duration tracking in unconstrained environments. One

difficulty in practice is that the visual appearance of the target

may undergo unpredicted changes for many reasons such as

view changes, illumination changes, and partial occlusions.

Such non-stationary visual appearances jeopardize visual

measurements and lead to tracking failure.

There are two general approaches to overcome this dif-

ficulty. One is to find invariant features to the changes [5],

and the other is to adapt the tracker to the changes [6]. As

the visual invariants are in general very difficult to obtain,

adaptation-based methods tend to be more flexible, because

the appearance models are adaptive or the features used for

tracking can be adaptively selected. However, the risk of

adaptation is the model drift, and the appearance model may

adapt to the distracters and lose track. This challenge con-

fronts a large variety of adaptation-based visual trackers.

In most existing adaptation schemes, the data used for

adapting the model at time t are those that are identified by

the old model at time t − 1 (e.g., use those that are closest to

the old model). If no additional constraints are enforced, the

model tends to best fit any new data regardless. If the new

data used for adaption are from distracters, the model adapts

to the distracters and drifts away. In visual tracking, the best

match at t found by the appearance model at time t − 1 does

not necessarily to be the target, because of the changes of

the visual appearance. Thus, to reduce the risk of adaptation

drift, good constraints or supervision that are independent to

the old model are needed. For example, positive and negative

data that are from segmenting and clustering of the current

image can be used to constrain model updating [7].

This paper describes a new model adaptation method

based on the interaction between two visual cues or modal-

ities (e.g., color appearance and texture appearance). The

visual appearance of the target is represented by two fea-

ture subspaces, each of which captures the uncertainty in

one visual cue. We propose a bi-subspace model to stipulate

the interaction between these two subspaces. The new data

identified by one model are used as supervision to update

the other, and vice versa. The co-training between the two

subspace models exchanges information from one visual cue

to the other. It is the coupling of the two feature subspaces

that leads to robust model adaptation.

2. SUBSPACE APPEARANCE MODEL

The target is tracked or detected when its visual measure-

ments match the visual appearance model. The visual ap-

pearance of an object lies on a manifold in the corresponding

feature space. Depending on the features used to describe the

target and on the uncertainty of appearances, such a manifold

can be quite nonlinear and complex. In addition, in real appli-

cations, we may not be able to learn this appearance manifold

off-line, when we need a general purpose tracker. Instead,

we have to recover and update the appearance manifolds on-

the-fly during tracking [8]. Therefore, we make a reasonable

assumption that the manifold at a short time interval is lin-

ear [6, 9]. The appearances z ∈ �m lie in a linear subspace

L spanned by r linearly independent basis A ∈ �m×r. So z
is a linear combination of the basis A and we have z = Ay,

where y are the components or projections.

The projection of z to the subspace �r is obtained by the
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least squares solution of z = Ay, i.e.,

y = (AT A)−1AT z = A†z (1)

where A† = (AT A)−1AT is the pseudo-inverse of A. The

reconstruction of the projection in �m is given by:

z̄ = AA†z = Pz (2)

where P = AA† ∈ �m×m is the projection matrix, which is

unique for a subspace regardless of the basis. Its orthogonal
complement subspace is characterized by P⊥ = I − P.

In tracking, we denote by x(t) the location (i.e., the mo-

tion) of the target at time t, and by z(x(t)) the correspond-

ing visual appearance feature vector of the motion hypothesis

x(t). If the appearance model P(t) is given (and not updat-

ing), tracking can be done by finding the best match:

x∗(t) = arg min
x(t)

E[‖z(x(t)) − P(t)z(x(t))‖2]

= arg min
x(t)

E[‖P(t)⊥z(x(t))‖2] (3)

Similarly, if we know the target’s true location x(t), we can

find the best appearance model by doing:

P∗(t) = arg min
P(t)

E[‖P(t)⊥z(x(t))‖2]

But when x(t) and P(t) are both unknown, we cannot esti-

mate them simultaneously by simply doing:

{P∗(t), x∗(t)} = arg min
P(t),x(t)

E[‖P(t)⊥z(x(t))‖2]

because for any tracking result, good or bad, one can always

find a subspace to update.

To break this dilemma, outside supervision and con-

straints are necessary. Denote by z(x+(t)) and z(x−(t)) the

positive and negative data at time t, respectively. They are

given as the outside supervision. The appearance subspace

should be updated such that it is close to the old one and the

positive data, but far away from the negative data:

P∗(t) = arg min
P(t)

{E[‖P(t)⊥z(x+(t))‖2]

− E[‖P(t)⊥z(x−(t))‖2] + α‖P(t) − P(t − 1)‖2
F }

where α > 0 is a weighting factor. Denote by C+(t) =
E[z(x+(t))z(x+(t))T ] and C−(t) = E[z(x−(t))z(x−(t))T ].
Equivalently, we have:

P∗(t) = arg min
P(t)

{tr(P(t)C−(t)) − tr(P(t)C+(t))

+α‖P(t) − P(t − 1)‖2
F } (4)

where tr(·) denotes the trace of a matrix.

Here we employ an iterative algorithm [7] to solve the

above subspace fitting problem. A critical issue is: how to ob-

tain {z(x+(t))} and {z(x−(t))} in the set of unlabeled data

in the current image frame?

Fig. 1. The bi-subspace model.

3. BI-SUBSPACE APPEARANCE MODEL

3.1. Bi-subspace appearance model
As the appearance changes can be quite dynamic, the appear-

ance subspace can be quite different from time to time. Be-

cause the visual appearance has multiple cues, e.g., color and

texture, tracking is only feasible when at least one cue is sta-

ble for matching. Motivated by this, we propose a bi-subspace

appearance model for two interactive cues, where one cue

serves as the outside supervision for updating the other, and

vice versa. The interaction between the cues gives a robust

updating of two appearance subspaces.

We denote the image and the two appearance subspaces at

time t by I(t), P1(t) and P2(t), respectively. The bi-subspace

model is illustrated in Figure 1. In tracking, at the current time

t, the previous appearance subspaces P1(t− 1) and P2(t− 1)
are given. They can be used to find matches in the current

image frame I(t). Based on P1(t−1), P2(t−1), and I(t), we

need to track the target by estimating x(t), as well as updating

the appearance subspaces P1(t) and P2(t).
The two subspaces are interactive, i.e., the updating on

one shall influence the other. Thus, the updating of P1(t) is

conditioned on P1(t−1) for smoothness, on {P2(t−1), I(t)}
that provides outside supervision, and on P2(t) that gives in-

teraction. The same thing is applied to P2(t).
Even if the two modalities are independent a priori,

they become correlated a posteriori when the observation is

given [1]. This conditional dependency suggests the interac-

tion between the two modalities. The interaction between the

two subspaces results in the iteration between the updating

of P1(t) and P2(t). This iteration converges to a fixed-point

when neither subspace changes.

3.2. Interactions between subspaces
At a given motion hypothesis x(t), we extract two types of ap-

pearance features, denoted by z1(x(t)) ∈ �m and z2(x(t)) ∈
�n, respectively. At time t, the old appearance model P1(t−
1) is used to collect a set of “good matches” in the image I(t):

D+
1 = {x+

1 (t)|d1(z1(x+
1 (t)), P1(t − 1)) < θ1} (5)

where d1(z1(x+
1 (t), P1(t−1)) is a distance between z1(x+

1 (t))
and appearance subspace P1(t − 1), and θ1 is a threshold.
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Fig. 2. Illustration of the four training data sets.

Since D+
1 generates good matches based on cue 1, it can be

treated as the set of candidates for positive supervision for

updating the other cue. We also collect a set of “bad matches”

based on P1(t − 1), denoted by D−
1 :

D−
1 = {x−

1 (t)|d1(z1(x−
1 (t)), P1(t − 1)) ≥ θ1} (6)

D−
1 generates bad matches for cue 1, and it will be used to

form negative supervision in updating P2(t), as will be de-

scribed shortly. Similarly, for the second cue, we have:

D+
2 = {x+

2 (t)|d2(z2(x+
2 (t)), P2(t − 1)) < θ2} (7)

D−
2 = {x−

2 (t)|d2(z2(x−
2 (t)), P2(t − 1)) ≥ θ2} (8)

where d2(·, ·) is the distance and θ2 is the threshold in sub-

space P2. We illustrate an example of these positive and neg-

ative data in Figure 2. In practice, to reduce the computation,

the collection of these four training data sets can be performed

in a smaller image region based on motion prediction.

Now we describe how we identify the positive and neg-

ative data from these four training data sets. We denote

the optimal positive data by x+∗(t), then z1(x+∗(t)) and

z2(x+∗(t)) should be very close to the corresponding appear-

ance subspaces, i.e.,

x+∗(t) = arg min
x(t)∈D+

1 ∪D+
2

{w1d1(z1(x(t)), P1(t − 1)) +

w2d2(z2(x(t)), P2(t − 1))} (9)

where w1 and w2 are weights based on the variance of

{d1(z1(x(t)), P1(t − 1))} and {d2(z2(x(t)), P2(t − 1))}.

The optimal negative data should be selected carefully.

Because if the negative data are too far from the appearance

subspace, they are not quite informative for classification and

useless in updating. Hence, we select them based on the “min-

max” principle. Denote the optimal negative data for P1(t)
by x−∗

1 (t), which gives the closest match in P1(t−1) among

the bad matches in P2(t − 1) (i.e., the best one in D−
2 ):

x−∗
1 (t) = arg min

x(t)∈D−
2

d1(z1(x(t)), P1(t − 1)) (10)

This is reasonable because (1) x−∗
1 (t) ∈ D−

2 , so it is negative

data; (2) x−∗
1 (t) is the most informative among D−

2 . Simi-

larly, we find the optimal negative data x−∗
2 (t) for P2(t):

x−∗
2 (t) = arg min

x(t)∈D−
1

d2(z2(x(t)), P2(t − 1)) (11)

Then we use z1(x+∗(t)) and z1(x−∗
1 (t)) to update P1(t), and

use z2(x+∗(t)) and z2(x−∗
2 (t)) to update P2(t), using Eq. 4.

In order to obtain a stable solution, the updating process

should iterate between two subspaces. We replace P1(t − 1)
and P2(t− 1) with P1(t) and P2(t), and obtain the new posi-

tive and negative data with respect to P1(t) and P2(t). We de-

note the new optimal positive and negative data by x+∗(2)(t),
x
−∗(2)
1 (t) and x

−∗(2)
2 (t), and denote the new subspace by

P(2)
1 (t) and P(2)

2 (t). Similarly, we can obtain P(3)
1 (t), P(3)

2 (t),
. . .. We stop the iteration when

‖P(i)
1 (t) − P(i−1)

1 (t)‖2
F + ‖P(i)

2 (t) − P(i−1)
2 (t)‖2

F < Θ (12)

where Θ is a threshold.

The bi-subspace model in our approach is similar in spirit

to the co-training idea in [10] for self-supervised learning.

4. EXPERIMENTAL RESULTS

In our experiments, we use brightness pattern and edge as the

two cues. A hypothesized image region is normalized to 20×
20 and rasterized to z1(x(t)) ∈ �400 as the P1. We obtain

the magnitude of the image gradients and rasterize them to

z2(x(t)) ∈ �400 to form P2. The thresholds are determined

by the positive data obtained in the previous frame.

We compare the proposed algorithm with the method in

[7], where the clustering method is used to form supervision

data. We refer to this method as the clustering method. In the

quantitative study, we have manually annotated a challeng-

ing test video, in which a person is drinking, then sits down

and hides behind a desk. The ground truth of the target loca-

tion are manually annotated. The comparison is based on the

distance of the ground truth data to the centers of tracking re-

gion by various methods. A smaller distance implies a better

method. The result is shown in Figure 3.

As shown in Figure 3, the distance curve of our approach

is apparently lower than that of the clustering method. This

verifies that the bi-subspace training is effective. Some sam-

ple frames are shown in Figure 4, where the top row is the

results of the proposed method, and the bottom row shows

the result of the baseline clustering method. We can see that

the clustering method loses track when the head hides behind

the desk, as the blue color of the desk dominates the predicted

region and is treated as positive data in clustering method. In

this case, the result validates that bi-subspace model is more

capable in coping with such occlusion scenarios.

Figure 5 shows the results of tracking a moving car un-

der dramatic illumination changes. The appearances of the

car under different lighting conditions are significantly differ-

ent, which makes the tracking very difficult. The experiments

show that our approach is robust to illumination changes.

5. CONCLUSION

In this paper, we propose a bi-subspace model to handle the

non-stationary appearance tracking problem. In our method,
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Fig. 4. Tracking a partial occluded target. (top) our method, (bottom) clustering method in [7]

Fig. 5. Tracking a moving car under dramatic illumination changes

Fig. 3. Comparison of distances of the tracked region centers

against the ground truth data.

two appearance subspaces interact with each other in updat-

ing, which leads to a more robust tracking performance. In

addition, we impose both top-down (i.e., smoothness) and

bottom-up (i.e., data-driven) constraints from current obser-

vations to make the problem well-posed. Our experimental

results show that the proposed algorithm has a better perfor-

mance than the existing methods.
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