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Abstract

Matching based on local brightness is quite limited, be-
cause small changes on local appearance invalidate the
constancy in brightness. The root of this limitation is its
treatment regardless of the information from the spatial con-
texts. This papers leaps from brightness constancy to con-
text constancy, and thus from optical flow to contextual flow.
It presents a new approach that incorporates contexts to
constrain motion estimation for target tracking. In this ap-
proach, one individual spatial context of a given pixel is
represented by the posterior density of the associated fea-
ture class in its contextual domain. Each individual con-
text gives a linear contextual flow constraint to the motion,
so that the motion can be estimated in an over-determined
contextual system. Based on this contextual flow model, this
paper presents a new and powerful target tracking method
that integrates the processes of salient contextual point se-
lection, robust contextual matching, and dynamic context
selection. Extensive experiment results show the effective-
ness of the proposed approach.

1. Introduction
Matching points and regions is not only a fundamental

component in motion analysis, but also a critical link in
many applications such as target tracking, 3D recovery, and
video analysis. A basic task is to estimate the motion be-
tween two consecutive frames. A common base for match-
ing is on the local brightness and the constant brightness
constraint (CBC) is often assumed. This leads to the well-
known and elegant optical flow constraint and extensive re-
search has been performed. However, CBC is quite lim-
ited and is often invalid in practice, simply because of small
changes, such as image noise, illumination fluctuation and
local deformation. Under such circumstances, the optical
flow constraint does not always give the right constraint on
the motion to facilitate robust target tracking.

The root of such a limitation is its treatment regardless of
the information from rest of the image. As a matter of fact,

any pixel is not isolated, but related to its spatial context
that is induced by the pixels in its vicinity (near or far de-
pending on the semantic levels). Although the brightness at
one pixel may undergo large changes between two consecu-
tive frames, its context shall be more stable and experience
much less significant changes, because the context gener-
ally exhibits a constant pattern. For example, it is difficult
to match the tip point of the nose. However, its context
that gives a pattern of the nose or even the face shall make
the matching less ambiguous. Therefore, integrating visual
context into matching shall make it more accurate and more
resilient to small local changes.

Visual context is a vague term, as it does not specify
what the context is. Although context has not been well
studied in motion analysis, there have been several ways in
contextual modeling for object recognition. They can be
roughly categorized based on the modeling of the spatial
structure. Structure-free models ignore the spatial relations
among pixels in the context, e.g., by using a bag of fea-
tures or using feature histograms. The second category is
structure-flexible contextual models that allow certain de-
formation of the spatial structure, e.g., the deformable tem-
plates, random graphs, and shape context. Another cate-
gory is structure-stiff models that enforce strict spatial con-
figurations or orderings, e.g., templates and spatial filters.
In general, the enforcement of spatial structure tends to
have a high precision in matching, but a low recall, because
many actual good matches under small deformation may be
missed. Structure-free models are generally easy to imple-
ment and have a higher recall, but they may give more false
positives. Structure-flexible models compromise the two,
but most of them tend to be complicated.

This paper presents a new approach that incorporates
contexts to constrain motion estimation for target tracking.
In the proposed contextual model, there are a number of
feature classes, each of which is associated with an individ-
ual context. One individual context of a pixel is represented
by the posterior density of this particular feature class at
this pixel location, based on the densities of all features ob-
served in its spatial contextual domain. Its total context is



the collection of these individual ones. For example, a pixel
observes many other pixels with different edge directions
in its vicinity, then its context on a particular edge direc-
tion (e.g., horizontal) is modelled by the posterior of having
this particular edge direction at this pixel. As the density is
less sensitive to small local appearance changes, matching
this context leads to more robust and resilient results than
matching brightness patterns.

The novelty of this paper includes the following three as-
pects. (1) It goes from matching local brightness to match-
ing spatial contexts for motion analysis. (2) As a coun-
terpart of the optical flow constraint, contextual flow con-
straints are derived and introduced in this paper. Corre-
sponding to a set of feature contexts, these contextual flow
constraints are linear constraints so that the motion can be
estimated in an over-determined linear system. (3) Based on
contextual matching, this paper presents a new and powerful
target tracking method that integrates processes of salient
context point selection, robust contextual matching, and dy-
namic context selection.

After a brief description on the related work in Sec. 2, the
basic formulation of contextual matching and the contextual
flow constraint are introduced in Sec. 3. Sec. 4 analyzes
four important issues in this new approach, including salient
contextual point determination, dynamic context selection,
estimating rotation, and handling scales. Based on that, a
new tracking method is presented in Sec. 5, and experiments
are reported in Sec. 6.

2. Related Work
There have been extensive studies on optical flow in the

literature. Optical flow can be determined locally (e.g.,
Lucas-Kanade’s method [15]) or globally through regular-
ization (e.g., Horn-Schunck’s Method [12]). 3D motion
can be recovered from the flow field based on flow mod-
els, or estimated directly through parametric flow and direct
methods [5]. To alleviate the limitations of CBC, many ap-
proaches have been investigated, such as robust flow com-
putation [4], dominant motion [16], and using subspace
constraints [3, 10, 13]. We do not intend to list all here.

Beyond the use of raw brightness patterns, matching can
be based on feature vectors. Local invariant features (such
as SIFT [14]) can be obtained, and they can be used to
match images of the same object from different views. Al-
though they can be quite powerful in wide-baseline match-
ing, it is not clear yet if they are appropriate for video track-
ing applications, because most of them are sensitive to local
appearance changes such as local deformation. In addition,
as these invariant descriptors are quite sophisticated, it is
extremely difficult, if not impossible, to have differential
forms, like optical flow, to enable computationally efficient
gradient-based search that is important for target tracking.
And thus the exhaustive search has to be performed.

Matching criteria that are suitable for target tracking
have also been proposed, such as using SVM classifica-
tion scores [1] and using color histograms. The mean-
shift tracking method [7] and kernel-based tracking meth-
ods [6, 11, 8, 9] match color histograms between frames.
Multiple kernel-based tracking methods have been stud-
ied for better tracking performance [11], for scale estima-
tion [6], and for complex motions [8]. There methods are
specific examples of matching color contexts. The concept
of contextual flow introduced in this paper largely unifies
these methods in a coherent treatment, reveals the connec-
tions to the optical flow methods, and provides further in-
sights and new methods to motion analysis.

Modeling spatial context is a fundamental yet difficult is-
sue in computer vision. At a low level, as a pixel is closely
related to its neighborhood pixels, random fields have been
exploited in modeling the joint distribution of the contexts.
Because analytical solutions are only viable for low-order
random fields, this limits their applications in motion anal-
ysis and target tracking. Another representation of spatial
context uses filter responses that extract spatial features,
which may reflect the higher-order relations to the context.
A relation between filters and random fields is also stud-
ied [18]. The existing methods on the filter design are ei-
ther pragmatic or biologically-motivated. At a higher-level,
a pixel is closely related to the pixels that share the same
semantic concepts. If the context can be captured, it may
largely improve, for example, image segmentation [17] and
shape recognition [2].

3. From Optical Flow to Contextual Flow

3.1. Constant Context Constraint

A pixel is located at x = [u, v]T , and its appearance
is associated with a feature vector f(x) ∈ Rd in a feature
space. We quantize the feature space to have a finite set of
N discrete feature classes {ω1, . . . , ωN}. In this paper, we
refer a feature to a particular feature class for short. For
example, a particular color (e.g., a pure red) or a particular
type of texture is called a feature in this paper.

The set of features can be a mixture of various levels.
They can be low-level such as color and texture features,
and can also be at the object level (e.g. faces). In view of
this, a pixel x can be associated with one or more features,
i.e., we observe such features at the pixel location x.

A pixel is not isolated, but is surrounded by its spatial
contexts. For a pixel x, its spatial contexts are constituted
by the pixels in its spatial context domain Ω(x). Here we
define Ω(x) as a circle centered at x with a radius r. Within
Ω(x), an individual context of x consists of the pixels on a
particular feature, i.e.,

Ci = {y|f(y) ∈ ωi,y ∈ Ω(x)},



and the total context of x is the union of all the individual
contexts, i.e.,

C =
N⋃

i=1

Ci.

To represent an individual context Ci, we use its posterior
density at x, i.e., p(ωi|x), that is estimated from Ci based on
kernel density estimation. In this paper, we use 100 color
contexts and 18 edge contexts. A color context is associ-
ated with quantized color, and an edge context with a quan-
tized edge direction. For each feature ωi, its contextual map
Ci(x) shows p(ωi|x, Ω(x)) at a certain scale related to Ω.
Fig. 1 shows examples of various contextual maps.

Figure 1. (Top) Examples of color contextual maps associated with
the same color feature but at various scales. (Bottom) Examples
of edge contextual maps associated with various edge features at
the same scale.

It is clear that the constant brightness constraint (CBC),
i.e., I(x + ∆x, t + ∆t) = I(x, t), is quite limited, as it
rarely holds in practice. Here, we introduce a constant
context constraint (CCC), where two pixels are matched
if they have the same context:

p(ωi|x + ∆x, t + ∆t, C) = p(ωi|x, t, C), (1)

where t is the time. We can omit C without confusion. This
constraint says the motion ∆x should not change the con-
text and the context of the new location is the same as before
the movement. Specifically, the posterior feature density of
the point x keeps the same after the movement. This is more
flexible than CBC, as it tolerates certain local deformation.
If the features are carefully selected and designed, it is also
robust to illumination fluctuations.

3.2. Contextual Flow Constraint Equations

Let’s see how we go from optical flow to contextual flow.
Based on the first order approximation for p(ωi|x+∆x, t+
∆t), it is clear that

∇T
x p(ωi|x, t)∆x +∇tp(ωi|x, t)∆t = 0, (2)

where we call ∇xp(ωi|x, t) the contextual gradient, and
∇tp(ωi|x, t) the contextual frame difference. ∇x denotes
the derivatives w.r.t. x, and ∇t w.r.t. t.

We approximate∇tp(ωi|x, t)∆t by the posterior density
difference p(ωi|x, t + ∆t)− p(ωi|x, t) over the context do-
main Ω(x). It is clear that

p(ωi|x, t) ∝ p(x|ωi, t)p(ωi|t)

where the prior p(ωi|t) can also be easily estimated within
a given context domain, and p(x|ωi, t) can be easily com-
puted based on kernel density estimation,

p(x|ωi, t) ∝
∑

xk∈Ci

K(x,xk|t)

where K(, ·, ) is a kernel function.
The following shows that the contextual gradient

∇xp(ωi|x, t) can be computed very easily. We define a lo-
cal conditional shift µi(x) vector for each context Ci at time
t (here we omit t without confusion):

µi(x)
4
= E{(y−x)|y ∈ ωi} =

1
Zi(x)

∫

Ω

(y−x)p(y|ωi)dy,

where Zi(x) =
∫
Ω

p(y|ωi)dy ' VΩp(x|ωi). We approxi-
mate the conditional p(y|ωi) by its Taylor series at x:

p(x|ωi)+∇T
x p(x|ωi)(y−x)+

1
2
(y−x)T∇2

xp(x|ωi)(y−x).

Noticing Ω is symmetric, we have

µi(x) = c
∇xp(x|ωi)

p(x|ωi)
, where c =

r2

2

Similarly, we can define a local total shift:

µ0(x)
4
= E{(y − x)|y ∈ Ω} = c

∇xp(x)
p(x)

,

which is the average of all the conditional shifts for various
contexts. To compute the contextual gradient, we have,

∇xp(ωi|x) = ∇x

{
p(ωi)

p(x|ωi)
p(x)

}

=
1
c
p(ωi|x)

[
µi(x)− µ0(x)

]
(3)

Putting Eq. 3 into Eq. 2, for each context Ci, we have a
contextual flow constraint equation:

[
µi(x)− µ0(x)

]T

∆x + c

[
p(ωi|x, t + 1)

p(ωi|x, t)
− 1

]
= 0, (4)

where ∆x is the contextual flow and we use ∆t = 1 without
loss of generality. When we denote

µ̄i(x) = µi(x)−µ0(x), and bi = c

[
1− p(ωi|x, t + 1)

p(ωi|x, t)

]
,



we see a simple linear constraint on motion for context Ci:

µ̄i(x)T ∆x− bi = 0. (5)

In practice, the conditional shift µi(x) and the total shift
µ0(x) can be easily estimated by:

µ̂i(x) =
1
ni

∑

y∈Ci

(y − x) =


 1

ni

∑

y∈Ci

y


− x

where ni is the number of samples in Ci, and

µ̂0(x) =
1
n

∑

y∈C
(y − x),

where n is the total number of samples in Ω.
It is clear from Eq. 4 that each individual context con-

tributes a linear constraint on the motion. Each constraint
is weighted by Wi(x) = p(ωi|x, t), meaning a stronger

context has a larger weight. We denote by W(x)
4
=

diag[W1(x), . . . , WN (x)]. Considering all N > 2 con-
texts, the total context gives a weighted over-determined
linear system, called contextual system. We denote by

Ur(x)
4
=

[
µ̄1(x), . . . , µ̄N (x)

]T

, br(x)
4
= [b1, b2 . . . , bN ]T ,

U(x) = W(x)Ur(x), b(x) = W(x)br(x)

and we have

U(x)∆x = b(x), or simply U∆x = b. (6)

If rank(U) = 2, the weighted least squares solution, ∆x =
(UT U)−1UT b, of this overdetermined system leads to a
unique determination of the contextual flow at x, and thus
the motion at x. In addition, we can also adjust the weights
adaptively (see Sec. 4.2) based on the consistency of indi-
vidual contexts.

This new method is conceptually different from mean-
shift tracking, although they both use kernel density estima-
tion. Mean-shift method matches histograms and explicitly
gives a motion vector that maximizes the density of the re-
weighted pixels, while our method matches the contextual
posteriors and gives a set of linear constraints on motion
that enables easy dynamic context selection and adaptation.

3.3. Two Extensions

It is clear from the above that the contextual flow ∆x
can be determined by the contextual system associated with
x in its basic form in Eq. 6, i.f.f. the system is of a full
rank, i.e., rank(U) = 2 or ∆x is fully observable from its
evidence (or observations) b. There exist cases where U is
rank deficient, and thus the solution is not unique.

This difficulty of rank deficiency can be alleviated by
considering the pixels in the vicinity of x. We assume a
set of pixel locations X = {x1, . . . ,xm}, each of which is
associated with a set of context flow constraints, i.e.,

Ui(xi)∆xi = b(xi), or simply Ui∆xi = bi

where ∆xi is the motion for pixel xi.
If they share the same motion, i.e., ∆xi = ∆x, we have

an extended Lucas-Kanade method. We have



U1

. . .
Um


 ∆x

4
= Uc∆x =




b1

. . .
bm


 (7)

where Uc is a direct concatenation of {Ui}. We can also
assign weights to different xi. It is clear that Uc is more
likely to have a full rank than any individual Ui.

If their motion are correlated and are constrained in a
subspace, we have




∆x1

. . .
∆xm


 = Bm

where B is constituted by a set of basis vectors, and m is
the component motion. For example, the set of pixels share
an affine motion, and we can write:




∆x1

∆x2

. . .
∆xm


 =




u1 v1 0 0 1 0
0 0 u1 v1 0 1
u2 v2 0 0 1 0
0 0 u2 v2 0 1

. . . . . . . . . . . . . . . . . .
um vm 0 0 1 0
0 0 um vm 0 1







m1

m2

m3

m4

m5

m6




Of course, the motion subspace can also be learned if train-
ing examples are available.

Putting the subspace motion to the context flow con-
straints, we have a generalized subspace contextual flow:




U1

U2

. . .
Um


Bm

4
= UsBm =




b1

b2

. . .
bm


 (8)

where Us is a block diagonal concatenation of {Ui}.

4. Beyond Basic Contextual Flow
4.1. Salient Contextual Point Determination

For any pixel location x, its contextual flow is associ-
ated with its contextual system, which is characterized by
U(x) in its basic form, and Uc(x) and Us(x) in its ex-
tended forms. The quality of the solution to the contextual



flow is largely determined by the characteristics of the con-
textual system.

If the contextual system is close to singular, meaning
that a small perturbation of the system (i.e., U + ∆U) can
change the solution to ∆x dramatically. Such small per-
turbations may be induced by many factors such as image
noises, feature quantization, and small changes in visual ap-
pearances, which are inevitable and common in practice.
For example, if the context domain of x exhibits small de-
formation, or is influenced by small amount of occlusion,
there will be small changes in U. For a close-to-singular
contextual system, such small changes will lead to drastic
changes in estimation of the contextual flow, which is cer-
tainly undesirable.

Therefore, it is of great interest to determine the pixel lo-
cations that can give robust contextual flow. We call such
points salient contextual points. It is clear that the contex-
tual systems associated with such locations have to be far
from singular. Here we use the condition number κ(x) of
U(x), which is the ratio between the largest singular value
and the smallest singular value of U(x). It is clear that
κ(x) ≥ 1.

In practice, we can have two ways to determine salient
contextual points. A simple method is to threshold κ(x),
i.e., x is a salient point if κ(x) ≥ κ0. Without using a
threshold, another way is to find the local minima of κ(x).
Some examples are shown in Fig. 2 by using edge contexts.

As such salient contextual points are more resilient to
many local perturbations, matching them in different image
frames (at different time instants or from different views) is
more reliable. Thus, they tend to have better repeatability
in matching and tracking. To tracking a target, we use a
set of salient contextual points when applying the extended
Lucas-Kanade method and the subspace context flow, as de-
scribed in section 3.3.

4.2. Dynamic Context Selection

In the basic form of contextual flow determination, we
assume various contexts are equally reliable. As differ-
ent contexts exhibit different reliabilities over time, we as-
sign additional weights to the individual contexts, and the
weighted least squares solution actually minimizes the fol-
lowing objective function:

E(∆x) =
N∑

i=1

αiWi(x)||µ̄i(x)T ∆x− bi||2, (9)

where αi is the reliability weight for context ωi.
In target tracking, we collect statistics so as to adapt

these reliability weights over time. We call this process
dynamic context selection. For each ωi, once we have es-
timated the contextual flow ∆̂x, we compute its fitting error
at every frame, i.e., we have ei(t) = ||µ̄i(x)T ∆̂x−bi||2. In

a sliding time window, we can compute the variance σi(t)
based on each ei(t). σi(t) reflects the uncertainty of con-
text ωi and its reliability. A larger σi implies a less reliable
context. Thus, we use its inverse to weight the context, i.e.,

αi(t) =
1

σi(t)

/( N∑

i=1

1
σi(t)

)
,

which reduces the influence of the unreliable contexts.
In addition to the above adaptation process over time,

robust statistics techniques can be also applied at a certain
time instant. There are cases when some contexts become
outliers, i.e., they provide completely different estimates
from others. By examining the fitting errors {ei}N

i=1, ap-
parent outliers can be spotted. More sophisticated methods
such as RANSAC can also be applied here.

In its extended forms, as we have a number of m anchor
points and a number of N individual contexts, the objective
in determining the contextual flow is:

E(∆x) =
m∑

j=1

βj

N∑

i=1

αiWi(x)||µ̄i(xj)T ∆x−bij ||2, (10)

where αi weights the reliability of context i and βj for an-
chor point xj . The same principle of adaptation and outlier
detection can also be applied to the anchor points. This is
especially useful to handle partial occlusion.

4.3. Estimating Rotation

Some features, such as color, are rotation invariant, and
thus the corresponding contexts are rotation invariant. On
one hand, it is good as matching such contexts is insensitive
to rotation. On the other hand, we cannot estimate rotation
based on such contexts, as rotation is unobservable.

Some other features, such as image gradients and edge
directions, are not invariant to rotation. As image gradient
provides clues to the the shape of the target, it provides more
accurate matching and alignment than rough color features.
However, its matching has to optimize over rotation besides
the location. Resolving this extra degree of freedom de-
mands more computation in estimating rotation.

Here we introduce a new method that is able to provide
computationally efficient rotation-invariant matching and is
able to estimate rotation at the same time. The features we
use here are the directions of image gradient. We quantize
them to a number of N directions (e.g., N = 18). Each
individual context is constituted by the points having the
same edge direction, and the points are weighted by their
image gradient magnitudes, i.e.,

Ci = {(y, γ)|∠∇I(y) = θi,y ∈ Ω},
where ∇I(y) is the image gradient at y, θi is the angle of
the edge direction (θ ∈ [0, π)), and γ = |∇I(y)| is the
weight of y.



Figure 2. Salient anchor point determination. Red dots show the selected salient contextual points.

It is clear that the context consistency constraints in Eq. 1
and Eq. 2 are not satisfied if there is a rotation. However,
the constraint actually holds up to a shift, i.e.,

p(ωi|x + ∆x, t + ∆t, C) = p(ωj |x, t, C), (11)

where j = mod(i+k, N), and k is a constant but unknown
shift (i.e., context ωi matches another one). Considering all
the contexts in the contextual system, we have:

U∆x = Sb (12)

where S is a circular shift matrix of an unknown shift. For
example, if k = 2 and N = 5,

S =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




=
[

0 I3

I2 0

]

Both ∆x and S are unknowns in Eq. 12. A conventional ap-
proach is to estimate them in an EM framework, but it may
not give the global optimum. Considering the special char-
acteristics of the shift matrix, our new solution is to match
them in the frequency domain. The unknown shift does not
change the magnitude of the Fourier coefficients, i.e.,

|FU∆x| = |Fb|, (13)

where F is the DFT matrix of the discrete Fourier transfor-
mation. Eq. 13 does not have the unknown shift S anymore.
In practice, we only need to use a subset of low-frequency
Fourier coefficients in matching. Once ∆x is determined
from Eq. 13, rotation can be solved straightforwardly by
checking the shift, if needed.

4.4. Handling Scale

It is in general difficult to handle scale in matching, as
most known simple features are not scale invariant. Here
we give a new method in handling scale following the same
idea as in handling rotation.

A context is not only determined by its associated fea-
ture class, but also by its effective context domain that is

determined by the scale. For a certain context class ωi, we
collect a series of contexts over a spectrum of effective con-
text domains, i.e.,

Ck
i = {y|f(y) ∈ ωi,y ∈ Ωk(x)},

where Ωk is the effective context domain at scale sk. The
context consistency constraint still holds up to a scale shift:

p(ωk
i |x + ∆x, t + ∆t, C) = p(ωk+τ

i |x, t, C), (14)

where τ is constant, unknown but small shift in the scale
spectrum. For a certain type of context ωi, once we collect
all the constraints over a scale spectrum, we have

Ui∆x = Sbi (15)

where S is a contaminated shift matrix. For example, if the
target is zoomed in by τ levels in the scale spectrum:

S =
[

0 IK−τ

Nτ 0

]

where K is the range of scale spectrum, and N is a random
matrix. In practice, τ is generally small because we gener-
ally do not have dramatic zooming in and out in video. So
we can still do the matching in the Fourier domain, i.e.,

|FUi∆x| = |Fbi| (16)

If we consider all classes of contexts, we minimize the fol-
lowing objective function for motion estimation:

E(∆x) =
N∑

i=1

(|FUi∆x| − |Fbi|)2

5. Contextual Target Tracking
Based on the above contextual flow techniques, we de-

sign a new target tracking method. Shown in Fig. 4, it has
three major components:

• Salient contextual points selection. Once the target re-
gion in initialized, we can select a number of m con-
textual anchor points according to their saliency using
the method described in sec. 4.1. Each anchor point
contributes N constraints on the target motion. This is
an early selection process.



Figure 3. A comparison of contextual flow tracking and mean-shift. (top) the proposed method, and (bottom) Mean-shift tracker.

Figure 4. The diagram of context target tracking.

• Contextual flow determination. Based on the con-
straints from m anchor points, we compute the contex-
tual flow using the extended Lucas-Kanade method 7
or the generalized subspace contextual flow method 8.
If rotation and scaling are needed, we use the methods
described in Sec. 4.3 and Sec. 4.4. As contextual flow
reflects the velocity field, a line search is needed to de-
termine the actual displacement and motion, as in the
treatment in the optical flow-based matching methods.

• Dynamic context learning and selection. We keep a
sliding time window of T frames for adaptation. After
collecting the matching variances for all the contexts,
we re-weight these contexts. In addition, we also re-
weight the importance of the anchor points. This is a
late and on-line selection process.

This algorithm is implemented in C++ and tested on
Pentium-IV 3Ghz desktop. Without code optimization, the
program runs comfortably at 15− 20fps on average.

6. Experiments
6.1. Handling Local Appearance Changes

Tracking targets undergoing local deformation is dif-
ficult in practice. As contextual matching is insensitive
to local deformation, it handles quite well the appearance
changes due to local deformation in our experiments. We
use 18 edge contexts in our CFT and 10∼25 contextual an-
chor points in the extended Lucas-Kanade method. A com-
parison example between CFT and a Mean-Shift tracker that
is implemented in an enhanced YCbCr space with 1040 bins
is given in Fig. 3. Several other examples of CFT are shown
in Fig. 6. The scale of Mean-shift tracker becomes unstable
when nearby background exhibits similar color histograms,
while the CFT is quite robust to the local deformation due
to the constancy of the context.

We manually labelled the ground truth of our testing se-
quences for evaluation. Fig. 5 shows the comparison be-

tween CFT and Mean-Shift in tracking error over time on
the zebra sequence. It clear that CFT outperforms.

Figure 5. The comparison of tracking errors between contextual
tracking and Mean-Shift.

We show an example of CFT in handling partial occlu-
sion in Fig. 6(3rd row), where the target undergoes severe
occlusion when passing the tree and the sign. The context
plays a critical role in finding the right matches. More ex-
amples can be viewed in the supplementary materials.

6.2. Handling rotation and Scaling

It is in general difficult to handle rotation and scaling in
differential tracking methods. These two issues are espe-
cially difficult for the Mean-Shift tracker, because rotation
is unobservable in matching color histograms and a single
bandwidth is used in estimate the histogram in Mean-Shift.
These two issues can be handled in contextual flow tracking
by using edge contexts and multiple context domains. Two
examples are shown in Fig. 7, and more can be seen in the
supplementary materials.

7. Conclusion
This paper presents a new concept of contextual flow,

based on which motion analysis can be performed on con-
textual matching. As an image pixel is by no means isolated
but closely tied to its spatial context, matching its contexts
between image frames is more resilient to local appearance
changes than matching its brightness. A certain feature,
which can be at any semantic level, induces one individual



Figure 6. Examples of contextual tracking in handling local appearance changes due to local deformation, lighting and occlusion.

Figure 7. Estimating rotation and scaling. (top) The red line shows the orientation of the target estimated by contextual matching. (bottom)
Contextual flow tracking is able to estimate scale quite well because of the matching of contexts at different scales.

context that is represented by the belief of having this fea-
ture class at the pixel of interest. Each individual context in
turn contributes one linear contextual flow constraint on the
motion at this pixel location. Motion is determined by all
the constraints from various contexts. Based on the contex-
tual flow model, a new target tracking method is designed
and is integrated with the salient contextual point selection
and the dynamic context selection processes.
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