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Estimate 1:
Abstract pi®: (X1 =1 AND x2 = 1)
OR

@ (X1 =2 AND x2 = 2)

Fusing partial estimates is a critical and common prob-
lem in many computer vision tasks such as part-based de-

tection and tracking. It generally becomes complicated and Estimate 2: @ Estimate 3:

intractable when there are a large number of multimodal | " (2= 1ANDx3=1) bl (X1 = TAND X3 = 1)
partial estimates, and thus it is desirable to find an effec- | ™ x2=2aNDx3=1) 12 (X1 = 2 AND x3 = 2)
tive and scalable fusion method to integrate these partial

estimates. This paper presents a novel and effective apFigure 1. Example of fusing three MPEs, and each MPE has two
proach to fusing multimodal partial estimates in a prin- modes. The optimal fusion result CE is the most consistavith
cipled way. In this new approach, fusion is related to a allthe three MPEs.

computational geometry problem of finding the minimum-

volume orthotope, and an effective and scalable branch andits PEs tend to have multiple modes, where most of them
bound search algorithm is designed to obtain the global op- correspond to false positive matches. We refer one such PE
timal solution. Experiments on tracking articulated oligec ~ that has multiple modes asmaultimodal partial estimate

and occluded objects show the effectiveness of the proposetMPE), and our work is focused on the fusion of the MPEs.
approach. We want to emphasis that in our work we refer the word

multimodalto multiple modes ironePE, rather than multi-
ple estimates/sensors (Fig. 1).

1. Introduction If the PES{y1,y2,...,yn} are all unimodal, it is possi-
Many computer vision tasks involve the estimation of ble to obtain a closed-form fusion for the Gfze.g, through
the unknownx € R? from many independent estimates the best linear unbiased estimation (BLUE) [10]. However,
Y = {y1,y2,..-,¥n}, Where the individual estimatg; wheny; is multimodal €.g, modeled as a Gaussian mix-
may be obtained from various sourcegy, different views, ture), the fusion for the CE is likely to exhibit an extremely

time and cues), or from partial features. We refer each indi- complicated form. If each MPE has modes, the num-
vidual estimate as theartial estimatgPE) orpartial belief ber of modes in the CE is in the order ofm™). In its

and the final estimation as tlsemplete estimatio(CE). A discrete case, suppose each MPE consists of a setdis-
PEy; gives an individual estimate of the unknownand crete estimates, the complexity of searching for the best CE
it may only provide the estimate on several specific dimen- shall beo(m™). Such an exponential growth of the number
sions ofx, so it is called a partial estimate. As the PEs can of modes (or the combinatorial complexity in the discrete

be quite inaccurate, a critical question is how we can fuse case) makes any form of fuse , y», . .., y») very difficult
these partial estimates for a better estimation, how to to be optimized. As the complicated CE has an enormous
obtainx = fus€y1,y2,...,¥n)- number of local optima, fusion is likely to end up with a

One concrete example is the part-based object detectiofow-quality estimation unless an exhaustive search can be
and tracking. The target is represented by its parts and eaclperformed. Even when an exhaustive search is merely vi-
partis associated with a dedicated detector and trackeir, ea able whenn is small, such a method is not scalable when
of which provides a PE of the location and motion of the there are many MPEs to fuse. Thus, new scalable fusion
target. Because a part of the target is generally less dis-nethods are desirable.
criminative than the entire target, the matching to thig par ~ As the CEx = fus€y1,y2,...,yx) in general may not
is likely to include many false positives. This is espegiall have good analytical properties, it is difficult to manigala
true when the target is in a clutter background. Therefore, it directly. In this paper, we convert the error minimizatio



in the fusion problem into a problem that finds a minimum- locally. For example in [6], the authors present a principle
volumed-orthotope inR? subject to some constraints. The to estimate the fidelity of each measurement in a localized
minimum-volume orthotog@oblem can also be viewed as calculation.
a multi-class generalization of the closest-pair problam i Unfortunately, all of the above fusion methods are not
computational geometry. We design an effective branch anddesigned for multimodal cases, namely multiple modes in
bound search algorithm to determine the global optimal so-one estimate. To handle the multimodal estimates fusion
lution to this problem with a moderate computational com- problem, there have been two types of solutions: using
plexity. distributed algorithms [15, 12], or using randomized algo-

The novelty of this work includes the following three as- rithms [3]. If the estimates can be represented in a loosely-
pects. (1) The fusion of MPEs is converted to a tractable connected graph, several techniques can be applied, such as
minimum-volume orthotope problem, in which the intricate the variational methods [7], Belief Propagation (BP) [15],
CE is exactly optimized in a discrete view, or approximately or Nonparametric Belief Propagation (NBP) [12]. However,
optimized in a continuous view. This new treatment leads if the graph is densely connected, these methods are easily
to a tractable solution to fusion. (2) It reveals an inténgst ~ trapped by local minima, or cannot even converge, due to
connection between probabilistic data fusion and computa-the loops in the densely connected graph. To avoid local
tional geometry. The proposed solution to the minimum- minima and to guarantee the convergence, randomized al-
volume orthotope problem provides a non-trivial general- gorithms can be applied. For example, RANSAC [3] has
ization of the closest-pair problem. (3) The proposed fusio the ability to obtain a robust estimation from noisy MPEs.
method is very scalable w.r.t. the number of estimates, orEven if only one mode is correct, and all of the others are
information sources, as the complexity is almost constantoutliers in each MPE, RANSAC may still obtain the global
w.r.t. the number of sources. optimum with some probability.

The paper is organized as follows: related works are
briefly described in Sec. 2. In Sec. 3, we formulate the 3. Problem Formulation and Solution
problem and present the solution. We relate our method to  Given a collection of MPE$y1, yo, ..., y» }, we want to
computational geometry in Sec. 4. The experiment resultsobtain the CE of the high dimensional unknowne R<.
of articulated body tracking and occluded objects tracking To better explain our idea, we first examine the problem of
by fusing multiple local trackers are shown in Sec. 5, and fusing discrete MPEs, then present the solution of fusing

the conclusion is made in Sec. 6. continuous MPEs in Sec. 4.2.
For discrete MPEs, each MRBE contains multiple point
2. Related Work estimationsi(e. modes):
There have been extensive studies on distributed esti- yi={yi, -y},

mates fusion. In [10], the authors summarize two critenia fo
optimal fusion of unimodal Gaussian estimates. One is the

weighted least squares (WLS), and the other is the best lin- des i Gi des belonai diff
ear unbiased estimation (BLUE). These fusion techniquesmo es Iny;. |v§n two mo gs elonging 0 .tWO. ! ergnt
subspacesy € R andg € R”, we define their arithmetic

can be applied to some classic computer vision problems . . _ A
such as the optical flow estimation [11] operations (summation, subtraction and maximization) as
) below.

When bad or fault estimates exist, WLS or BLUE cannot
work well. To better handle noisy estimates, which refer to Computation Rule 1. Addition and Subtraction

wherey/ € R’ is the j-th mode ofy; in the h;-
dimensional subspacé( < d), andy; is the number of

bad or outlier estimates, one possible solution is to ateoca In addition or subtraction, we only perform the calcula-
large variances to the bad estimates, such as in the methodéon in spaceR“ NR?, i.e., if v = a + 3, then

of C;]ovarla:jndce Inter:sectlobr}/UmoE (CI/rC]ZU) [13]. In[17]eth [ a£p i eRANRE

authors address the problem when the measurement errors Vi undefined  otherwise

are heteroscedastic, and solve the problem in a WLS way.

Another solution to handle noisy estimates is to keep good Computation Rule2. Max and Min

estimates while discarding bad ones. Variable-Bandwidth N maximization or minimization, we perform the calcu-
Density-based Fusion (VBDF) [2] falls into such a category, lation in spaceR [ JR”, i.e., if v = max(«, §), then

which performs.globally, and attempts Fo alleviate the_ nflu max(a;, 3;) ifi € RARE

ence of the outliers by gradually reducing the bandwidth of o ifi € RAN RE

the modes. By applying VBDF, a tracking method is pre- Vi = ‘ . Y B

sented in [4]. However, it cannot guarantee the global opti- Bi . ifi € R _ﬂR

mality in fusion. Another method to alleviate the effect of undefined otherwise
bad estimates is to measure the goodness of the estimates An illustrative example is shown in Fig. 2.
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Figure 2. An illustration of arithmetic operations over twectors ‘ !
belonging to two different subspaces. Suppose there argdeoo 1 | | .
torsa € R* and € R”. We usew; to denote the value at * 4 I N N ,

o’s i-th dimension. For example, here = {2,3}, B = {1, 2}, .
which meansx is in the 2nd and 3rd dimensions of the whole i !

space, and’ is in the 1st and 2nd dimensions of the whole space.
As the figure showsy = [11,12], 8 = [13, 14], thenas = 11, X3

as = 12, 31 = 13, B2 = 14, while oy and3s are undefined. The

addition is performed at the intersection of the subspacbde
the maximization is performed at the union of the subspaces.

Figure 3. An illustration of orthotope search for partidimstion
fusion. There are three MPEg; = {ui, 3}, yo = {us, u3},
ys = {us, u3}. The orthotope/ contains a mode if and only if
3.1. The Obj ective Function this mode is contained i’s projection to this mode’s subspace,
A good fusion result should be consistent with the MPEs. €841 € V andu ¢ V. Minimizing estimation error (Eq. 2)

One natural objective is to minimize the average estimation S €quivalent to minimizing the volume of the orthotoggwhich
error.i.e must contain at least one mode from each MPE (Eq. 4). In this

figure, the orthotop& containsu?, 3, u3, soW(V) = 1.
min%Z\I/(x,yi), Q) ")
’ Our task is to find an orthotope (a high-dimensional bound-
where ¥(x,y;) is the measurement of the inconsistency. ing box) that can cover at least one mode from every MPE
For example, we can chooséx, y;) as: y,;. To minimize the maximum error in Eq. 2, we require
the longest edge of the orthotope has the minimum length.
Based on the above definitions, we propose the following

. . L ) optimization problem
where the final estimatios is expected to be consistent

W(x, yi) = min |x - ¥ lloos

with at least one of the modes »f. Here thel ., norm of min 1V oo

a vectora is ||af s = max; |a;|. Although other types of st W(V)=1 (4)
measurements are possible, we will show later thatthe ' '

norm leads to an elegant global optimal solution. Here we denote by a d-dimensional axis-aligned ortho-

Considering that it is difficult to minimize the average tope. An orthotopd’’s volume is related to the length of

estimation error in Eq. 1, we slightly change the original s |ongest edge, denoted ¥ ||.. W(V') is the predicate
formulation by replacing the average error with the maxi- fynction of the orthotop#':

mum error among the MPEs:
1 V4,34, suchthay’ e V
0 otherwise

x* = arg, chin mZaX\IJ(x, Vi) (2) W) = { (5)

or the median error among the MPEs: When a lower-dimensional mod¢ is inside the sub-

space projection of thé-dimensional axis-aligned ortho-
tope V, the orthotopeV contains the modey’, and we

We call Eq.2 as thenaximum fusionvhile Eq. 3 as the ~ denote byy; € V' (Figure 3).
median fusion The median fusion is less sensitive to noise  TO justify our formulation as an orthotope search prob-
while the maximum fusion may be influenced by an outlier 1€m, we prove the equivalence between Eq. 2 and Eq. 4 in
MPE, in which all its modes are outliers. For clarity, we Theorem 1. We further derive the property under the condi-
mainly discuss how to solve the maximum fusion in this tion of unique optimal solution in Theorem 2. The proof of
section. The solution to the median fusion follows the same Poth theorems can be found in [14].
strategy and will be briefly discussed in Sec. 3.4 as well.

x* = arg, minmedian; U (x,y;). 3)

Theorem 1. The equivalence of the optimization in Eq. 2

3.2. Equivalenceto Orthotope Search and Eq. 4
The minimization of Eq. 2 can be converted into a min- Let .
volume orthotope search problem, as explained in Figure 3. U1 = minmax U (x,y:)



and

vy = m‘}n IVl oos st. W(V)=1

Then
v = ’02/2.

Theorem 2. If Eq. 2 has a unique optimal* andV* is the
optimal solution to Eq. 4, ther™* is the center o/ *.

3.3. A Branch and Bound Solution

According to Theorem 2, we solve Eq. 2 by optimizing
Eq. 4, which is to find a minimum-volume orthotope satis-
fying the predicate. In order to obtain the global optimal so

Y

\Y

Vi

V;

Figure 4. An example showing the upper and lower boundg.of
The two black rectangles afg and V2, andV = {13, V2}. ¥
is the red rectangle which contaif$ and V%, andV is the blue
rectangle which is contained By andVx5.

We use the bound properties BfandV: If the union
of V cannot satisfy the predicate, it impossible for any

lution in the high-dimensional space, we propose a branchV to satisfy the predicate. As a result, onlyVif satisfies
and bound search algorithm to find the best orthotope effi-the predlcate, it is worth to perform a further checkn
ciently. As an efficient search method, branch and boundOtherwise thisv can be safely pruned.

has been applied to object detection [9] and action detec-

tion [16]. Our solution is related to [9, 16], but works in a
high-dimensional discretized space.

Algorithm 1: Maximum Fusion of MPEs
input : Multimodal partial estimates (MPES)

Y = {Y17Y27-- 7yn}
output: Complete estimation (CK

Initialize V as the collection of all orthotope
candidates in thé-dimensional space.

Initialize an empty priority queu@, in which the
element with the smallest key value pops first.

repeat
split Vinto V' andV”
if W(V') = 1 then

| V' — Q by the key valug| V||
if W(V7) =1 then

| V" — Q by the key valug|V"||
retrieve the top elemef from Q
until V contains only one element
retrieve the only element* of V
return x as the center point df *

We indexV with a key value||V||... This key value
provides a lower bound,e. VV' € V ||V]o < ||V co-
We use a priority queu@ to store the orthotope-sets by
their key values. Each time we retrieve frapha candidate
orthotope-seV with the smallest key value. The retrieving
process keeps going until the retrievéaontains only one
orthotopeV*, thenV* has to be the optimal solution be-
cause/* satisfies the predicate and has a minimum volume
compared with all other possible orthotopegdn

3.4. Median Fusion

As mentioned earlier, the limitation of the maximum fu-
sion is that it is sensitive to noisy MPEs. To address this is-
sue, we can modify our objective function to a robust form
by using the median fusion in Eq.3. The corresponding or-
thotope search problem can still be formulated in Eq. 4, but
with a different predicate function:

|
(6)

UsingW(V) in Eq. 6 and the same branch and bound pro-
cedure as in Algorithm 1, we can obtain the optimal solution
to the median fusion.

1 for atleast half of, 3 j, such thatyf eV

w(v) 0 otherwise

Our branch and bound search algorithm is presented in4. Beyond Basic Formulation

Algorithm 1. LetV = {V;} be anorthotope-setwhere each
V; is an orthotope in thé-dimensional space. The union of
V, denoted byV, is the minimum orthotope which satisfies
VYV € V,V D V. The intersection o¥, denoted by, is
the maximum orthotope which satisfig$” € V.,V C V.
We provide an illustrative example in Figure 4.

Given the original orthotope-s&t, our task is to find a
minimum-volumeV* € V satisfying the predicate, and the
optimal CEx € R¢ can be uniquely determined By*. In
each iteration in Algorithm 1, we spli into two partsV’
andV”, and the splitting point is the middle point of the
longest dimension 0¥ in the orthotope-set space.

Although we obtain the global optimal solution under the
discrete MPE case, the MPE fusion is more difficult when
each MPE provides a continuous estimation. In this section,
we firstly show the connection between our algorithm and
the bichromatic pair problem in computational geometry,
then we extend our solution to the continuous MPE fusion
and provide a probabilistic interpretation of our approach

4.1. Link to Computational Geometry
The bichromatic pair problem [8] is formulated as

min |yj(1) _ yé(?)l7 @)

3(1),3(2)



where the objective is to find the closest ga{i’l) €y;and

N 12 ¢ y» from different classeg; andys.

We extend this problem to multiple classes, as well as
multiple subspaces, whegg andy; are two MPEs and
can belong to different subspaces. Theltichromatic pair
problemis similar to Eq. 7:

4 (i) J(k)
m(lglfogﬁlx lyi" =y Moo

(8)
where the goal is to find a mode from each MPE, such
that the maximum distance among all mode-pairs is mini-
mized. Accroding to the following Theorem, the multichro-
matic pair problem is equivalent to Eq. 4, therefore it can be
solved by our proposed branch and bound method as well.

Theorem 3. The equivalence of Eq. 4 and Eq. 8.
Let
vy = min ||V ||,
and

min max ||y

U3 =
j(-) forall ¢, k

Then
Vo = V3.

The proof of Theorem 3 can be found in [14].

Corollary 1. Optimizing Eq. 2, Eq. 4 and Eq. 8 are equiv-
alent.

In summary, fusing discrete MPEs can be converted to
finding a minimum orthotope containing at least one mode
from each MPE, and is also equivalent to the multichro-
matic pair problem.

4.2. MPE Fusion in a Probabilistic View
Now we consider the fusion of continuous MPEs. Sup-
pose that each MPE; generates a multimodal distribution

Pi(x]yq):

X|yz X_yg)a (9)

Zp yi)

wherep(y?) is the prior of modey?. If k;(-) is the Gaus-
sian kernel, thep;(x|y;) is a Gaussian Mixture (GM). In
our definition ofk;(-), we callp; (x|y;) an Infinity Mixture
(IM), ask;(-) uses the.., norm:

ki (a)

Ci ex (10)

il
= Ciexp(—— ),
g
whereo is the kernel bandwidth, and’; is the normal-
ization term. This IM justifies our previous optimization
method in a probabilistic view.

Denote byY = {y1,y2,...,yn}- Suppose(x|Y) fol-
lows the Products of Experts (PoE) model [5], the distribu-
tion becomes:

p(x|Y) o sz-<x|yi>, (11)

wherep; (x|y;) is the partial estimation, or partial belief of
x from y;, and we assume that(x|y;) are independent.
Our objective is to find an estimatec R with the highest
probability:

\Yn}

(12)

Searchingp(x|Y) in the high dimensional space is an

extremely difficult problem. For an arbitray € R?, we
consider the orthotop¥ centered at x. If we only count
the modes located inside the orthotope, while ignoring the
modes outside the orthotope, we obtain the following lower
bound ofp(x|Y) by combining Eq. 9, 10 and 11:

x* :argmfxp(x|Y), Y ={y1,y2,---

p(x|Y) (,’11_[Zl)yZ x—yg)
>01H2pyz Jk(x —y7)
—Clnzpylcexp [[x yll\oo)
> Hzpwz)a exp(— 12 1)
i

wherej only counts the modes insidé, and(; is a con-
stant. The firstinequality is obtained by ignoring the contr
bution from the modes outside the orthotope, and the second
inequality is obtained fronix — y? |« < [|V]lo/2 when

J
y; €V.
By taking the logarithm of the above equation, we obtain
logp(x[Y) > C ”‘;& +Y 1og(>_p(y)))
7 : ; (13)

LV),

whereC, is a constanty is the number of MPES, thef(V')
is the lower bound ofog p(x|Y). Searching for the opti-
malx* now amounts to findind* with the largesiZ(V*),
i.e. maximizing the lower bound dbg p(x|Y). Wheno is
very small (the extreme caseds— 0, and it is degenerated
to the discrete case), thﬂ%fjﬁ term is dominant. Under
this condition, maximizingC (V') is equivalent to minimiz-
ing ||V]|«0, Which is equivalent to our discrete solution.

We maximize Eq. 13 by using a similar branch and
bound method as in Algorithm 1. To further speed up the



branch and bound process, we derive the lower and uppethe part-tracker. The collection of all such modes gives the

bounds ofL (V') — Cs, respectively: MPE of the corresponding tracker. To tolerate appearance
variations, we use a less rigid matching criterion that $ead
Zlog ZP yz to many false positive modes (Figure 7). In our approach,

we resample about 1,000 patches and obtain abou2@0
modes for each part-tracker.

V)= lVlloo N Zlog Zp ¥))

Heref™ (V) is obtained by putting all of the modes inside

at the center of the orthotopé, andf~ (V') is obtained by
putting all the modes insidg at the boundary of the ortho-
topeV. Neglecting the constant termg! (V) and f~ (V)
provide upper and lower bounds 6{V'), respectively. The
branch and bound technique can be further accelerated b
using these upper and lower bounds for more efficient prun-Figure 7. The left figure is the input frame, and the right fegur
ing. shows the modes of two part-trackers. Two part-trackersllban
the upper and lower arms, respectively. Each part-trackeery
ates 26-200 modes (shown in green rectangles) in one frame.

5. Experiments
We evaluate our new MPE fusion methods in two track- ~ After the MPEs are obtained, we apply our new fu-

ing scenarios: one is to track articulated objects (testig ~ sion method and compare its performance to RANSAC. In

max fusion), and the other is to track occluded objects-(test the RANSAC approach, we iterate 1,000,00%,000,000

ing the median fusion). times. In each iteration, we randomly select one mode from
each MPE to obtain the CE by averaging the selections.
5.1. Tracking Articulated Objects Then we choose the closest mode to CE from each MPE and

To track an articulated object, the object is decomposedcalculate the SSD. The experiment settings are the same in
into several parts, and each part is tracked by an individualour approach as in RANSAC, except for the fusion step. By
part-tracker, as explained in Figure 5. As the part-tra€ker increasing the number of iterations in RANSAC, it can give
are connected and influence each other, the final trackinggood results on tracking a two-part arm. However, for an ar-
result is obtained by fusing the results from the set of part- ticulated object that has more than two parts, the RANSAC
trackers. method performs poorly even if we increase the number of
iterations in RANSAC. The execution time of our algorithm
is almost fixed when we increase the number of modes in
each part-tracker. This shows the good scalability of our
algorithm to the number of modes from each MPE.

We test our new fusion method on tracking different ar-
ticulated objects, and some sample results are shown in Fig-
ure 8 and 9. Figure 8 shows the experiment results of track-
Figure 5. Example of a two-part articulated body. The CE jng articulated objects. By optimizing globally, our algo-
IS x = [x1,X2,X3,X4,X5,X]. MPE 1 provides the estima-  rithm can keep tracking the structure of the articulated ob-
tion of [x;, x2,x3,x4], and MPE2 provides the estimation of ;o0 From top to bottom, the articulated objects have 3, 4,
[x3, X4, X5, Xg]. 5 . . . )

parts, respectively. Figure 9 shows the comparison be

The flowchart of our tracking is shown in Figure 6. In tween our algorithm and RANSAC. The 1st and 2nd row
our experiments, each part-tracker is manually initialize of the figure shows the tracking results of a two-part ar-
by a fixed size rectangle which covers one part of the ob-ticulated arm, and both our algorithm and RANSAC can
ject. During the tracking process, each part-tracker ran-provide good results. The 3rd and 4th row of the figure
domly samples image patches in its neighborhood regionsshows the tracking results of a three-part articulated finge
These image patches are of the same size as the initializedur algorithm is able to track the finger successfully, but
rectangle. To track these patches, we check if their appearRANSAC fails to give correct results: it begins to drift afte
ances are similar to their initialized appearareg, using several frames. From further experiments, we observe that
the sum-of-squared-differences (SSD) measurement. Wherour fusion method is able to successfully find a global op-
the similarity score is higher than a predefined threshold, timum, and outperforms RANSAC. In general, we observe
we treat the corresponding coordinates of the matched lo-that the more parts we have in the fusion, the better our new
cation as one mode in the partial estimate of the location of fusion method achieves comparing with RANSAC.
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Figure 6. The flow chart of our tracking experiments.

5.2. Tracking Occluded Objects References

We evaluate the median fusion in tracking an occluded
object. The experiment setting keeps the same as that in
the articulated objects tracking. The only difference mtth
each part-tracker follows a certain part of the object,eath 2]
than an articulated part. For example, in the face sequence
shown in Figure 10, the face is modeled by eight overlap- [3]
ping parts. Instead of tracking the whole face, we track the
eight overlapping face patches. Although every individual
part-tracker tracks one of the eight parts and induces many
false estimates, the fusion of all the part-trackers leads t [4]
a strong tracker which is very robust to partial occlusion. .
As long as half of the eight patches are visible, the median {6%
fusion is able to successfully handle the severe occlusion.

(7]

6. Conclusions

Fusing partial estimates from different sources is chal-
lenging because of the multimodal nature of the partial esti (8]
mates: a multimodal objective function can make the opti-
mization process easily trapped in local minima. Generally [9]
it is difficult to obtain the global optimal estimation, espe
cially in a high-dimensional parameter space. By reveal-
ing the connection between the probabilistic data fusi@h an [10]
computational geometry, we present a novel approach to the
above challenges. We relate the error minimization prob-
lem of MPE fusion to a computational geometry problem [11]
of finding the minimum-volume orthotope in the parameter
space. A branch and bound search algorithm is designed td12
obtain the global optimal solution. Our proposed new fu- [13]
sion method is scalable w.r.t. the number of estimates and
its complexity is almost constant w.r.t. the number of (@érti
estimates. Our proposed algorithm can be applied to a Wide[14]
variety of applicationsd.g articulated objects tracking, oc-
cluded objects tracking), where effective informatioriéus
from separate sources is needed. [15]
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Figure 10. Tracking occluded face (sequence from [1]).



