IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

1597

Mining Recurring Events Through Forest Growing

Junsong Yuan, Student Member, IEEE, Jingjing Meng, Ying Wu, Senior Member, IEEE, and
Jiebo Luo, Senior Member, IEEE

Abstract—Recurring events are short temporal patterns that
consist of multiple instances in the target database. Without any a
priori knowledge of the recurring events, in terms of their lengths,
temporal locations, the total number of such events, and possible
variations, it is a challenging problem to discover them because
of the enormous computational cost involved in analyzing huge
databases and the difficulty in accommodating all the possible
variations without even knowing the target.

We translate the recurring event mining problem into finding
temporally continuous paths in a matching-trellis. A novel al-
gorithm that simulates a ‘“forest-growing” procedure in the
matching-trellis is proposed. Each tree branch in the resulting
forest naturally corresponds to a discovered repetition, with
temporal and content variations tolerated. By using locality sen-
sitive hashing (LSH) to find best matches efficiently, the overall
complexity of our algorithm is only sub-quadratic to the size of
the database. Experimental results on the TRECVID video data
of 10.5 hours and a human dance video dataset of 32,260 frames
show that our method can effectively and efficiently discover
recurring events such as TV commercials from news videos and
typical dance moves from human dance sequences, in spite of large
temporal and content variations.

Index Terms—Event mining, motion pattern discovery, temporal
pattern discovery.

1. INTRODUCTION

F AN EVENT occurs repetitively, it can be a pattern of

great interest. The recurrence can be exact repetitions, like
commercials in TV programs [1] and popular music in audio
broadcasting [2], [3]. The recurrence can also be inexact repeats
which are similar to each other and share the same spatial-tem-
poral pattern, for example, the same human actions performed
by different subjects as shown in Fig. 1. In video analysis, it
is important to automatically discover recurring video events in
understanding, organizing, and searching based on video con-
tents. There are many related applications reported in the liter-
ature, such as commercial detection and analysis [1], [4], news
topic threading and tracking [5], [6], news broadcast structure
analysis [7], [8], [9], and many others mentioned in [10].

Manuscript received March 06, 2008; revised July 21, 2008. First published
September 26, 2008; current version published October 29, 2008. This work
was supported in part by National Science Foundation Grants I1S-0347877 and
1IS-0308222. This paper was recommended by Associate Editor S. Maybank.

J. Yuan and Y. Wu are with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60208 USA (e-mail:
j-yuan@u.northwestern.edu, yingwu@ece.northwestern.edu).

J. Meng is with Motorola Applied Research and Technology Center, Schaum-
burg, IL 60196 USA (e-mail: jmeng @motorola.com)

J. Luo is with Kodak Research Labs, Rochester, NY 14650 USA (e-mail:
jiebo.luo@kodak.com.)

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2008.2005616

HTIAR KRS
MYYERRRAK

Fig. 1. A typical dance movement in the Michael Jackson-style dance, per-
formed by two different subjects (first and second rows). Such a dynamic motion
pattern appears frequently in the Michael Jackson-style dance and is a recurring
event in the dance database. The spatial-temporal dynamics in human motions
can contain large variations, such as non-uniform temporal scaling and pose dif-
ferences, depending on the subject’s performing speed and style. Thus it brings
great challenges in searching and mining them.

Compared with video clip search, where a query clip is usu-
ally provided by the user and the task is to find the matches in
the video database [5], [11]-[14], the problem of recurring event
mining is more challenging, because it has to be unsupervised
and blind of a target [3], [15], [16], as these is no query pro-
vided. In other words, there is generally no a priori knowledge
of the events to be discovered, including (i) what the recurring
events are; (ii) where they occur in the video; (iii) how long
they last; and (iv) how many recurrences there are or even the
existence of such a recurring event. Exhaustively searching for
the recurrences by checking all possible durations and locations
is computationally prohibitive, if not impossible, in large video
databases.

Although efficient algorithms have been proposed to reduce
the computational complexity in finding exact repetitions [7],
[10], mining recurring events remains to be a very challenging
problem when the recurring patterns exhibit content or temporal
variations (i.e., they are not exact repetitions). For instance, the
same video event may vary depending on the encoding scheme
and parameters (e.g., frame size/rate, color format), or content
changes due to post-editing, not to mention the intra-class varia-
tions [17]. Taking the human action patterns as another example,
if we treat each typical action as a recurring event, such a re-
curring pattern can be performed very differently depending on
the speed, style, and the subject [18], [19]. As shown in Fig. 1,
although the two human actions belong to the same motion pat-
tern, they are far from identical. Consequently, how to handle
the possible variations in the recurring events brings extra chal-
lenges to the mining problem, especially given the fact that we
have no a priori knowledge of the recurring pattern [20].

To automatically discover recurring events, our emphasis in
this work is not only on exact repeats such as duplicate com-
mercials or music patterns as studied before [7], [10], but also
events that are subject to large temporal and spatial variations,
such as representative actions in human movements. To this

1051-8215/$25.00 © 2008 IEEE

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

1598

end, we propose a novel method called “forest-growing” in this
paper. First of all, a video or motion sequence is chopped into
a sequence of video primitives (VPs), each characterized by a
feature vector. Suppose the whole database generates in total
N VPs, instead of calculating and storing a full V x N self-sim-
ilarity matrix as in previous methods [7], [21], [22], for each
VP, we query the database and obtain its K best matches. A
matching-trellis can be built to store the N query results, which
is of limited size K x N (K < N). This treatment saves both
computational and memory costs, and it is still effective in pre-
serving the best K matches that keep the important information.
Based on the matching-trellis, it is clear that a temporally contin-
uous path established in the trellis corresponds to a repetition of
a recurring event. Without knowing the location and duration of
the repetition, we can grow trees in the matching-trellis, where
each branch is a continuous path and is associated with a rep-
etition. The length of the branch can be automatically adapted
to tolerate the content and temporal variations. Since the total
number of recurring events is unknown, multiple trees need to
be grown simultaneously. This process gives the name of our
method “forest-growing”.

In the proposed method, several techniques are used to
make the mining process computationally efficient. To speed
up the process of building the trellis, we utilize locality sen-
sitive hashing (LSH) [23] for approximate nearest neighbor
(NN) query. LSH is a sub-linear method compared with ex-
haustive linear search. Considering the fact that we have in
total N queries, the actual total complexity of building the
matching-trellis is sub-quadratic with respect to the size of the
dataset N. Therefore, a large computational gain is achieved.
To handle the possible variations in mining recurring events,
as well as the potential inaccuracy caused by the approximate
nearest neighbor search, a branching factor is introduced in our
method in growing continuous branches in the forest. Using
a carefully designed message-passing scheme that needs one
auxiliary array of size N, we achieve a O(NK) complexity
in finding all continuous paths. Thus the overall complexity of
our method remains sub-quadratic with respect to the database
size, and is memory-friendly compared with the methods that
need to store the full N x N self-similarity matrix.

We highlight the advantages of our forest-growing method as
follows:

— it can automatically discover all the recurring events
without a prior knowledge, and the duration of each
recurring event is dynamically determined without ex-
haustively searching for all possible ones;

— it can handle non-uniform temporal scaling and content
variations by using a branching factor in growing the
forest;

— itis computationally efficient with an overall sub-quadratic
complexity with respect to the dataset size, by using lo-
cality sensitive hashing (LSH) and a carefully designed
forest-growing process;

— it does not require video shot segmentation and can be
easily extended to other types of time-series data.

The remaining of this paper is organized as follows. We

briefly describe the related work in the literature in Section II,
followed by the description of the proposed forest-growing

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

algorithm in Section III. To test the efficiency of our method,
we apply our algorithm to find repetitive commercials in
TRECVID news video [24] and report the results in Section V.
To demonstrate the effectiveness of our method in handling
large spatio-temporal variations, we run the algorithm on a
32,260 frame motion captured human dance data to discover
recurring motion patterns and report the results in Section VI.
We conclude in Section VII.

II. RELATED WORK

There have been many works in mining exact repeats from
video [7] and audio [3], [10], [2] streams. In [3], an effective
on-line audio stream mining system is proposed to extract repet-
itive audio segments in real time without human intervention.
The method depends on robust audio fingerprints and its sim-
ilarity search is accelerated by taking advantage of the dense
sampling rate in audio signals. The boundaries of the repeat
segments can be accurately determined by performing an ex-
haustive search. In [7], a video repetition mining method is pro-
posed, which can discover very short repeats from news videos.
These short repeats are program lead-in/lead-out clips that in-
dicate the starting or ending points of a particular TV program.
Hence locating these short flag clips can help reveal and under-
stand the structures of the news videos. To speed up the simi-
larity matching process, locality sensitive hashing is applied in
[7]. Besides mining repetitive video segments, there are also ex-
isting works in finding repeats at the image or video shot level,
such as near-duplicate image detection [S] and identical shot
detection [6], [25]. However, these methods cannot be directly
applied to recurring event mining, where an event can be of ar-
bitrary length and may contain a number of shots.

Other than repetition discovery from videos, there are in-
creasing interests of mining recurring patterns from human
motion data as well in the computer graphics literature [26].
As more motion databases become available and their sizes
increase, manually labeling and categorizing motions becomes
a very time-consuming, if not impossible, task. On the other
hand, representative and recurring motion patterns (motion mo-
tifs [20]) in human motion data can reveal important semantic
structures in human motions, which can be used for motion
analysis, automatic database annotation, motion retrieval [27]
and motion synthesis from existing data [28], [29]. Due to the
large variations in human motions, it greatly challenges the task
of mining recurring patterns.

Related works in mining repetitive patterns from music have
also been reported in the literature. For example, the key melody
that appears repetitively in the music can be used in analyzing
the themes of the song. In [30], a music repetition mining
method is proposed that can tolerate significant variations in
parameters, such as dynamics, timbre, execution of note groups,
modulation, articulation, and tempo progression. Discovering
such recurring events in music can help understand the music
theme and structure [31] and it is helpful to construct indices
and facilitate queries for music retrieval applications [32].

Motivated by the successes of mining repetitions from text
data, one promising solution of recurring event discovery is to
translate temporal sequences (e.g., music, videos, or human mo-
tions) to symbolic sequences that are similar to text strings.

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

YUAN et al.: MINING RECURRING EVENTS THROUGH FOREST GROWING

Thus, it is hoped that traditional text search and mining methods
may be directly applied for temporal events discovery. For ex-
ample, by treating music as note strings, we can find repetitive
music segments by mining common sub-strings [32]. Similarly,
by quantizing each video frame into a discrete symbol [8] and
translating a video sequence into a DNA-like string, mining re-
curring events becomes a problem of discovering repetitive mo-
tifs from a string database. In spite of successes in previous work
[8], [32]-[34], we notice that it is unnecessary to translate mul-
timedia sequences into symbolic strings, in order to discover
repetitions. Compared with text data, multimedia data are not
characterized as symbolic sequences. For example, in video and
motion sequence analysis, a general practice is to characterize
a video frame or a human pose as a feature vector. Although
mapping the continuous feature vectors to discrete symbols can
significantly reduce the dimensionality, it inevitably introduces
quantization errors, and it in turn degrades the representation
power of the original continuous features, especially in high di-
mensional feature space. This paper presents a new event mining
method that utilizes the continuous video features directly, in-
stead of quantizing them into discrete symbolic labels.

ALGORITHM DESCRIPTION

A. Overview

Without loss of generality, we denote the whole database as
a long sequence: V = {S;}¥,, where S; is the video primitive
(VP). Depending on the application, S can be a video segment
or an individual frame. After feature extraction, each S; is char-
acterized by a d-dimensional feature vector: S; € R?.

We define that a sub-sequence V; C V belongs to a recur-
ring event, if it is similar to another subsequence Vo C V. In
such a case, both V; and Vs are recurring instances of the same
recurring event £ = {V;,V,»}. For a recurring event &, it is
possible that its multiple instances vary from each other. As a
data mining problem, before pattern discovery, it is unclear how
long the recurring instances are, where they are, and how many
of them there are. The algorithm is required to discover all these
repetitions of various lengths and content.

Although it is difficult to discover recurring events of un-
known lengths, it is straightforward to discover the repetitions of
individual VPs. Given S; € V, we denote all of its best matches
as its matching set

Ms, = {8;:[IS:=S;ll <, ¥ li—j| > N} (1)

where ¢ is the similarity threshold; || - || denotes the dissimilarity
measurement, e.g., Euclidean distance; N is the minimum tem-
poral distance used to filter similar matches caused by temporal
redundancy. Hence Mg, does not include the temporal neigh-
bors of S;.

To make the notation consistent, we assume that the average
size of Mg, is K and describe the matching-trellis My, as a
K x N matrix, where each column stores a matching set Mg, .
As briefly explained in Fig. 2, mining recurring events can be
translated into the problem of finding continuous paths in the
trellis M, where each continuous path corresponds to a recur-
ring instance. In the following, we discuss in detail how to effi-

1599

ciently build the matching-trellis in Section III-B, and how to ef-
ficiently find the continuous paths in Section III-C. Finally, how
to cluster all discovered recurring instances into event groups is
discussed in Section III-D.

B. Step 1. Build the Matching-Trellis

As an overhead of our algorithm, we need to find the best
matches for each S; € V, in order to build the matching-trellis.
Exhaustive search of best matches is of linear complexity, thus
is not computationally efficient considering that we have N
queries in total. To find the best matches more efficiently, we use
LSH [23] to perform approximate e-NN query for each prim-
itive S; € V. Instead of searching for the exact e-NN, LSH
searches for the approximate e-NN, and can achieve sub-linear
query time. Hence the total cost of building the trellis is reduced
to sub-quadratic given [N queries.

We briefly explain how LSH works as follows. Essentially,
LSH provides a randomized solution for a high-dimensional
e-NN query problem. It sacrifices accuracy to gain efficiency.
In LSH, there is a pool of hash functions. Each hash function
h(-) is a random linear mapping from vector S to an integer,

h:RY = N
a-S+b
r

where a is a random vector of d-dimension and b is a random
variable chosen uniformly from [0, 7]. Under a specific hash
function, two vectors S,, and S, are considered a match if their
hash values are identical. The closer S, and S, are in R, the
more possible that they have the identical hash value, which
is guaranteed by the property of (71,72, p1, p2)-sensitive hash
function [23]. By pre-building a set of hashing functions for
the database, each new query vector S, can efficiently retrieve
most of its nearest neighbors by only comparing its hash values
against those in the database instead of calculating the pair-wise
distances in RZ. Thus large computational cost can be saved.

However, despite the large efficiency gain from LSH, as a
solution to approximate NN search, LSH may result in problems
of missed retrieval. To compensate for the inaccuracy caused
by LSH and to handle the content and temporal variations, we
introduce a branching factor in Section III-C for forest-growing.
Later, we discuss how to determine the parameter € in the NN
search and the branching factor B in Section I'V.

hap(S) =

C. Step 2. Mining Repetitions Through Growing a Forest

As explained before, each temporally continuous path in the
matching-trellis indicates a repetition. However, to find all con-
tinuous paths through an exhaustive check is not efficient. As
seen in Fig. 2, there are in total KV possible paths of length N
in the trellis, not to mention those of lengths shorter than N.

Motivated by the idea of dynamic programming, we introduce
an algorithm that simulates a forest-growing procedure to dis-
cover all the continuous paths in a matching-trellis. Every node
in the K x N matching-trellis can be a seed and start a new tree
in the forest if it satisfies the following growing condition and
does not belong to any existing trees.

Definition 1: Tree Growing Condition: In the matching-
trellis, a VP S; € Mg, can grow if there exists another

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

1600

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

4 T N e /‘\}‘ — N N
—— — —e] g-gg‘g E!g!! .___L
[stard {[[- J [l ena
Nearest Neighbor Search Engine
I I !
120 720 300 725 222 98

50 |§20 721 723 E] 7220 7220 732

= o \

S B

= =

720 725 729

731

735 736 739 742

Fig. 2. Mining recurring events through finding continuous paths in the matching-trellis. Each node denotes a primitive S € V), labeled by its temporal index.
We show part of the whole matching-trellis from column 101 to 110. Given the dataset V, i.e., the top row sequence, we query each S € V and find its K
best matches, i.e., each column denotes a matching set M. For instance, the matching set of S1¢; is A/ls101 = {S120,S720,S410, S374,S10s,S721}. The
highlighted nodes constitute an established tree, which grows from left to right, with the temporal index increasing monotonically from root to leaf nodes. Each
tree branch is a continuous path in terms of temporal indices, which indicates a discovered repetition corresponding to the original sequence in the top row. For
example, the branch {S72¢, S722, S725, S729, S731, S733, S736 } 18 @ repetition of the top row segment {S101, S102, S103, S104, S105, S106,> S107 } - The longest
branch highlighted in orange is picked to represent the whole tree. Although we only show a single tree growing, because the algorithm mimics the process of

growing multiple trees simultaneously, we call it “forest-growing”.

available S; € Ms,_, , such that j € [i,i + B — 1]. Here ¢, 4,
j denote the temporal indices, and B € N7 is the branching
factor that adaptively adjusts the growing speed.

Fig. 2 illustrates one grown tree in the matching-trellis. As a
tree grows, it automatically establishes the temporal correspon-
dences between its growing branches and their counterparts in
the database (top row segment in dark green in Fig. 2). Repeti-
tions are thus naturally discovered. The total number of repet-
itive instances is determined by the number of valid trees. The
length of a repetition is determined by the length of the longest
branch in a tree.

It is worthy noting that the branching factor B plays an impor-
tant role in the forest-growing procedure. It handles variations in
the recurring events and ensures the robustness of our algorithm.
Given a tree branch, its temporal index increases monotonically
from the root to the leaf node, where the branching factor con-
trols the growing speed. For example, if B = 3, a tree branch
can grow up to 2 times faster than the original sequence (cor-
responding top row path as shown in Fig. 2), whose temporal
index is strictly increased by 1 in each step. On the other hand,
a tree branch can grow much slower than the original sequence
when its temporal index increases by 0 in each step. In other
words, the growing speed of a branch always adapts to the speed
of its corresponding repetition in the top row. Hence we can now
accommodate non-uniform temporal scaling among instances
of the same recurring event. More importantly, by introducing
the branching factor, our algorithm can also tolerate local errors
as a tree grows, such as noisy frames or the inaccuracy due to
the approximate NN search through LSH. For example, even if
LSH fails to retrieve a matching node thus the node does not
appear in the next column, the tree still has the chance to grow

via the other B — 1 branches. So the recurring events can still
be discovered despite the missed retrieval.

In terms of complexity, since there are in total N columns
in the trellis, the algorithm takes N — 1 steps to finish growing
the forest. In each step, we need to check K ? pairs of nodes be-
tween two consecutive columns. Therefore, the total complexity
is O(N K?). To further improve the efficiency, we carefully de-
sign a message-passing scheme with one auxiliary index array
of size N to speed up each growing step. Each tree branch is de-
scribed by a message {Root, Length}, where Roor denotes the
temporal index of the tree root and Length is the current length
of the growing branch. This message is carried by every cur-
rent leaf node in a tree and will be passed to its descendants as
the tree grows. To determine if a leaf node can grow, instead of
checking all of the K nodes in the next column in the trellis, we
only check the auxiliary array B times to see whether any of its
B descendants exists.

Fig. 3 illustrates one growing step from column 312 to 313,
using an auxiliary array for speedup. The auxiliary array is
essentially a lookup table that tracks the availability of each
matching node of 313 and stores the row indices of the matching
nodes for tracing back to the trellis. Take one matching node of
312 for example, 927 finds out if it can grow to its descendants
(927, 928 and 929) by simply checking the corresponding 3
elements in the auxiliary array. To keep the tree structure, we
update the binary flags in the auxiliary array to ensure that
each node has only one ancestor. For instance, the binary flags
of cells [927-929] are set to O after they are taken by node
927 in column 312, so when 312’s next matching node 929
grows, it can only branch to node 931 which is still available.
In each step, we need to grow K nodes in the current column,

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

YUAN et al.: MINING RECURRING EVENTS THROUGH FOREST GROWING

1601

TABLE I
COMPLEXITY ANALYSIS AND COMPARISON. THE COST OF FEATURE EXTRACTION IS NOT CONSIDERED. THE PARAMETER v > 1 IS THE APPROXIMATION FACTOR
DETERMINED BY € OF ¢-NN QUERY AND THE CORRECT-RETRIEVAL PROBABILITY p OF LSH. FOR THE METHOD IN [3], L 1S A CONSTANT DEPENDING ON
THE SAMPLING RATE OF THE VPS

Method Overhead | Pattern Discovery ‘ Total Complexity ‘ Memory Cost
Naive Exhaustive Search none O(N?®) O(N?®) O(N)
Self-Similarity Matrix [7] | O(NT#) O(N?) O(N?) O(N?)
ARGOS [3] none O(N?/L) O(N?/L) fized size
Basic Forest-Growing O(N'*%) O(NK?) O(N'*a + NK?) O(NK)
Improved Forest-Growing | O(N'* =) O(NK) O(N'*s + NK) O(NK)

Auxiliary Array Auxiliary Array

1] 0 1] ©
2| 1 1 1 1
31 0 3
927 1 2 927] 0 2
928 1 3 928| 0 3
929 1) 929 0 5
930 0 930 0
o [T[]] o R
N{ o] N[o]
(b) (©)

Fig. 3. Improved forest-growing step from column 312 to 313, with branching
factor B = 3. (a) Two columns 312 and 313 in the matching-trellis; (b) The
auxiliary array associated with column 313; each element in the first column
stores a binary flag indicating whether the corresponding node is available (0
means not). The second column stores the row index of each node in column
313, e.g., 928 is in the 3rd row of 313; (c) The updated auxiliary array after
growing from 312 to 313. In (a), the colored pair of numbers next to each node
is the branch message {Root, Length} to be passed to the descendants during
growing, e.g., node 927 belongs to a tree branch whose root is 857 and the
current length is 70. When node 927 grows to node 928 in the next column,
it updates the message from {Root = 857,Length = 70} to {Root =
857, Length = 71} and pass it to 928. The three colors denote different branch
status: a live branch (yellow), a new branch (purple) and a dead branch (green).
See texts for detailed description.

where each node need to look up the auxiliary array B times.
Therefore, the complexity of growing one step in the trellis now
becomes O(K B), with a neglectable additional O(2K) cost
incurred from clearing and re-initializing the auxiliary array.
Given N — 1 steps in total, the full complexity of the improved
forest-growing is now O(N K B), which is more efficient than
the previous O(NK?).

D. Step 3. Clustering Tree Branches

After forest-growing, we only keep the longest branch to rep-
resent each tree. The validity of a tree is determined by the
length of its longest branch. All valid trees are output to a candi-
date set 7 = {T; : |T;| > A}._,, where X is the minimum valid
length for pruning invalid trees, and |T;| denotes the length of
the longest tree branch of ;. Given the candidate set 7', we then

progressively merge any two trees T;, T} with significant tem-
poral overlaps (set to 3/4 times the length of the shorter branch)
to further reduce the redundancy among trees.

After merging highly overlapped trees, we end up with a
smaller set of M recurring instances Z' = {V; }£,, where each
V; is described by a message {Root, Length}. To cluster these
M instances into G event groups, we measure the similarity be-
tween any two instances V; and V; € I, again, based on the
matching-trellis. Our observation is that if V; is similar to V;,
then V; should appear in V;’s matching-trellis. The similarity
between two instances is hence defined as

1 [lsim(Vi, Vi) [sim(Vj, Vi)

s(Vi, V;) =
VeV =5 i

@

where |sim(V;,V;)| is the length of the longest branch ob-
tained from growing V; in V;’s matching-trellis. It is notable
that [sim(V;, V;)| can be different from |sim(V;,V;)| as the
forest-growing is nonsymmetric.

Finally, based on the resulting M x M similarity matrix,
whose element is s(V;, V;), we use the normalized cut [35] to
cluster these M instances into GG groups, where each group cor-
responds to a recurring event consisting of a number of recurring
instances. Besides normalized cut, other advanced clustering
methods for time-series data can be applied as well [19], [36].

E. Efficiency and Scalability

A comparison between our algorithm and other methods is
summarize in Table I. Both [7] and our method use LSH to
accelerate similarity matching, thus have the same overhead
cost. However, our pattern discovery procedure through forest-
growing in the matching-trellis is more efficient (O(N K')) com-
pared with that in the full N x N matrix (O(N?)). Moreover,
our memory cost is lower than [7], since we only store the best
K matches in a K x N trellis, instead of using a N x N ma-
trix. This presents a great advantage of applying our method to
large databases. As an on-line mining method, [3] can perform
real-time for broadcast audio streams. Although only linear or
fixed memory is required in practice, the worst-case complexity
of [3] is still quadratic.

In summary, the proposed forest-growing method has CPU
and memory cost comparable with previous methods that focus
on mining exact repeats [3], [7], but with added advantages of
handling content and temporal variations. Compared with the

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

1602

basic forest-growing, by using an auxiliary array of length [V,
the improved version further reduces the complexity of pat-
tern discovery from O(NK?) to O(N K B), which is essen-
tially O(IN K') because B is a small constant as is discussed in
Section IV.

III. DISCUSSIONS OF PARAMETERS

A. Branching Factor B

As mentioned before, besides tolerating temporal and local
variations, a suitable choice of B can also compensate for the
inaccurate matching results caused by LSH. To select a suitable
branching factor, we consider the following problem: if there
exists a recurring instance of length L in the database V/, what
is the probability that the instance fails to form a tree branch
of length L in the matching-trellis due to the missed retrieval
by LSH? Suppose the correct retrieval probability of LSH is p,
given branching factor B, the probability of breaking a branch
at a given step is

Prob, = (1 —p)? 3)

when all the B descendants are missed by LSH, hence the tree
branch cannot grow any longer. Therefore, the probability of
breaking a potential tree branch of length L is

Prob; =1 — (1 — Prob,)%
—1-[1-a-p"]")

when any of the L steps breaks.

Hence given p, a large branching factor B decreases the
break probability Prob;, which consequently decreases the
probability of missed detection of repetitions. In addition, a
potential tree branch can survive large content and temporal
variations with a large B.

To investigate how the branching factor B influences the
branch length L and its breaking probability Prob;, we show
the relations between L and Prob; in Fig. 4 with varying B.
Here the correct retrieval probability p = 0.9 is chosen as
the default parameter used for LSH. As can be seen in Fig. 4,
if only strict continuous growing is allowed when expanding
trees (B = 1), the breaking probability Prob; increases very
fast with respect to the branch length L. For example, when
L = 100, we have Prob; = 1. This means that it is very likely
a repetition of length L = 100 will be missed due to LSH. In
fact, the break probability is already large enough even for short
repetitions, e.g., Prob; ~ 0.5 when L = 7. As expected, when
more branches are allowed, it is less likely that a continuous
branch will break because of missed retrieval. Specifically,
when B = b5, the breaking probability Prob, is still small
(around 0.1) even for long branches of L. = 10,000.

Although a large B increases the power of handling varia-
tions and noises, on the other hand, it may introduce random
effects into the tree growing process. An extreme case is when
B = N, where every possible path in the forest can be a tree
branch, which generates meaningless results. In addition, the
computational cost of growing the forest (O(N K B)) will in-
crease as B increases. In our experiments, we select B < 5.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

b

B=1
B=2
0.8 B=3
B=4
——B=5 | |
06 .
o)
e
& o4
0.2

Fig. 4. How the branching factors B influences the relationship between the
branch length L and its breaking probability Prob,. The curve is drawn based
on (4), with p = 0.9.

B. Nearest-Neighbor Search Parameter €

It is important to select an appropriate e for approximate-NN
search as it determines the quantity of the best matches retrieved
hence the size of the trellis as well. An improper choice of ¢
will result in either insufficient number of retrieved NNs or an
excessive number of NNs [37]. In practice, a small € is preferred
for large datasets and memory-constrained conditions, so that
the N x K trellis is of limited size and can be loaded into the
main memory easily. On the other hand, a larger € retrieves more
NN candidates thus reduces the chance of missed retrieval by
LSH.

Considering both requirements, instead of selecting a con-
stant € in (1), we set it as a data-dependent parameter:

E=U—TXO (®)]

where 1 and o are the estimated mean and standard deviation
of the pair-wise distance d(S;, S;), and 7 is the parameter con-
trolling the threshold. Under the assumption of a Gaussian dis-
tribution, if we select 7 = 2, we will retrieve around 2.2% VPs
as the NNs. In such a case, we have K =~ 0.022 N < N.

C. Minimum Length of Valid Repetition \

As mentioned in Section III-D, for a discovered repetition to
be valid, it must has a minimum length of A. In the matching-
trellis, A determines the minimum length of valid tree branches.
On one hand, to avoid discovery of trivial short repetitions that
are caused by noise or randomness, we require A to be long
enough to filter these pseudo branches. On the other hand, A
should not be too long so we will not miss valid short repetitions.

To help select appropriate A\, we estimate the probability
in forming short repetitions due to the randomness in the
matching-trellis. Considering a random matching-trellis of size
N x K, where each column, i.e., a matching set, contains K
nodes selected randomly from the N candidates. We are inter-
ested in the probability of generating a tree branch of length L
in this random trellis. The selection of A should guarantee low
probability of finding such repetitions due to random effects.

Each of the N x K nodes in the trellis has the potential to
serve as a root and grow a new tree, if it is not taken by other

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

YUAN et al.: MINING RECURRING EVENTS THROUGH FOREST GROWING

—B=3,N=1000
-—B=3,N=10000
0.8 ——B=3,N=100000
---B=5,N=1000
i -e-B=5,N=10000
a -+-B=5,N=100000
o
o 0.4
0.2
% 20 30 40
L

Fig.5. Selection of effective length A, with e = pt— 20 and (K/N) = 0.022.

trees yet. If one node can start a new tree, then in the random
trellis, the probability that it can grow to the next step is

K
Prob, =1 — <1 — %) (6)

where (1 — (B/N))" is the probability that none of K nodes
in the next column can be its descendant. Thus the probability
for a random tree branch to reach length L (i.e., grows L — 1
steps) is

Prob;, = ProbéLil). @)

In the entire trellis, there are in total (N — L+1) x K potential
nodes that can lead to a tree of length L. Assuming these trees
are independent of each other, the probability that none of the
(N — L+ 1) x K nodes can generate a tree of length L is

Proby = (1 — Proby)N —E+DxK

)

To further investigate the relations between Probr and L, we
plot in Fig. 5 how Proby changes with respect to L, with two
sets of pre-specified B and N. It is surprising that Probr is sen-
sitive to a fixed threshold of L (e.g., around 10) under given B
and N. When L is longer than the threshold, it is highly likely
(Probr — 1) that a continuous branch of length L will not
appear in a random matching-trellis, while when L is smaller
than the threshold, it is highly likely (Proby — 0) that a con-
tinuous branch will appear due to random effects. During our
forest-growing, we make sure that each discovered tree is of
sufficient length (|7;| > A) under the specific parameters N,
K and B to rule out those formed at random.

(L—1)y] N=L+1)xK

. (8)

IV. EXPERIMENT 1: RECURRING EVENT DISCOVERY
FrOM NEWS VIDEO

To evaluate the efficiency of our method in mining exact rep-
etitions, we use broadcast news video as the test set, which con-
tains highly repetitive content including commercials, special
program lead-in and lead-out clips, and anchor person shots.

1603

TABLE II
COMPUTATIONAL COST WITH € = yt — 30 AND B = 3
\ Il Complexity | CPU Cost |
build the matching-trellis O(N* é) 422.1 sec
forest-growing O(NK) 7.5 sec
total cost O(N1+% + NK) | 429.6 sec

Considering that commercials are exact repeats and appear fre-
quently, we use them as the ground truth to evaluate the re-
sults of our algorithm. The video database contains 22 streams
of half-hour ABC news videos collected from the TRECVID
dataset [24]. All these half-hour segments are combined into one
video sequence with a total length of 10.5 hours. The frame rate
is 30 fps and the frame size is 352 x 240 or 352 x 264. For eval-
uation, we collect a set of 56 repetitive clips from the 10.5-hour
video dataset as the benchmark data, including 55 commercials
and 1 program lead-out clip. The lengths of the commercials
vary from 15 to 60 seconds and the program lead-out clip is be-
tween 10 and 11 seconds. Each repetitive clip has 2 to 8 recur-
rences in the database and we manually label the ground truth.
These 56 repetitive clips have in total 189 recurring instances in
the 10.5-hour dataset.

In our implementation, each video primitive (VP) S; is of 4.8
seconds with a sampling interval of 0.4 seconds. Thus each VP
has an overlap of 4.4 seconds with its temporal neighbors. In
total, the 10.5-hour video database generates N = 94,008 VPs.
We also set the temporal distance N = 300 VPs to filter neigh-
boring video segments in the matching set. The minimum length
of a valid repetition is set to A = 15 VPs as suggested in Fig. 5.
As aresult, a valid repetition is at least 4.8 + (15 — 1) x 0.4 =
10.4 seconds. The experiment is performed on a standard pen-
tium-4 3.19 GHz PC with 1 GB RAM. The algorithm is imple-
mented in C++.

A. Visual Signature Extraction

For exact repeat mining, it is desirable that the visual features
are robust under video coding variations, such as compression
rate, frame size and color format changes. Moreover, the vi-
sual features should also be unique enough to identify different
videos. To this end, we follow the feature extraction in [12], [16]
and use two types of compact visual signatures to characterize
each video segment S;: (1) color signature and (2) spatial sig-
nature. For each S;, we concatenate its 3 color histograms and
3 spatial pattern histograms into a single normalized histogram
F'. Since each individual histogram is of 24-dimension, a VP is
characterized by a feature vector: F € R? (d = 24 x 6 = 144).
As all of the signatures can be extracted from the MPEG com-
pressed video data directly [11], they cost fewer CPU time.

B. Efficiency

Table II summarizes the computational costs of (1) building
the matching-trellis and (2) growing the forest. Only CPU cost is
counted while file I/O cost is not included. Overall, our method
proves to be very efficient and can mine a 10.5-hour video in
about 7.16 minutes. It is notable that the forest-growing step
is extremely efficient and only takes 7.5 seconds to grow all

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

1604

TABLE III
COMPARISON OF BASIC FOREST-GROWING AND IMPROVED FOREST-GROWING
(X = 24 AND N = 94008)

| [[Basic (B=2) [Imp. (B=2) [Imp. (B=3) |
O(NK?) O(2NK) O(BNK)
101.4 sec 5.5 sec 7.5 sec

Complexity
CPU cost

the continuous paths. Therefore, the major computational cost
comes from the overhead of building the matching-trellis, which
takes 98.25% of the total CPU time, even with the help of LSH.
However, compared with computing a full N x N similarity
matrix, the overhead has already been largely reduced.

To estimate the parameters for e-NN query, we randomly
select 1% VPs from the whole dataset. The estimated mean
of pair-wise distances is ;x = 0.269 and the estimated stan-
dard variance is ¢ = 0.060. Considering that commercials are
exact repeats, we set a strict matching criterion with ¢ = p —
30 = 0.089. The e-NN query is fast by applying LSH with a
small ¢ = 0.089. In our database of size N = 94,008, the av-
erage CPU time for each ¢-NN query is only 5 milliseconds.
Since the average size of the matching set Mg is 24, the size of
the matching-trellis is approximately K x N = 24 x 94,008,
which is a much more compact representation compared with
the N x N self-similarity matrix, as K/N = 0.000255.

In Table III, we compare the improved forest-growing
method with the basic one. By using an auxiliary array, the
forest-growing procedure is largely accelerated. In terms of
CPU cost, the improved forest-growing method is around 18
times faster than the basic one.

C. Performance

To evaluate the performance of our forest-growing algorithm,
we treat the 56 repetitive clip set as the benchmark set, which
corresponds to 189 repetitive instances in total. We evaluate the
performance of our method by the recall and precision. The re-
call score is defined as the percentage of the total 189 instances
retrieved. It is measured in terms of the video length, where
the percentage is calculated by the number of frames that are
correctly discovered by the algorithm. This recall score reflects
how many of the 189 instances are finally detected. On the other
hand, because we do not have the ground truth of all possible
repetitions, which includes not only commercials, but also an-
chor person shots and still images, it is difficult to provide the
accurate precision score. So instead we estimate the precision by
randomly picking 20 discovered recurring instances and manu-
ally checking whether they are really repetitions. The precision
score is the percentage of correct ones from the 20 discovered
instances.

We compare different branching factors (B = 2 and B = 3)
in Table IV to see how they influence the performance. As ex-
pected, alarger branching factor leads to more trees in the forest,
as well as more valid branches. For example, when B = 2,
we get 2086 trees and 35084 valid branches, whose lengths
are longer than the minimum valid length A. In comparison,
when B = 3, more trees (2905) and much more valid branches
(94017) are returned. The average number of valid branches per
tree almost doubled when we allow trees to grow more flexibly

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

TABLE 1V
COMPARISON OF DIFFERENT BRANCHING FACTORS (€ = p1 — 30)

| [B=2]B=3

valid branches 35084 94017
trees 2086 2905
ave. # valid branches per tree 16.82 32.36
instances (merged trees) 939 926
recall of benchmark data 55.0% | 84.3 %
estimated precision 95.0 % | 90.0 %

TABLE V
COMPARISON OF DIFFERENT CRITERIA IN SELECTION € FOR NN-SEARCH
(30 -CRITERION V.S. 20-CRITERION). BRANCHING FACTOR B = 3

\ [e=p—30c [e=p—20 |

K 24 430
building trellis 422.1 sec 2741.9 sec
forest-growing 7.5 sec 191.0 sec

valid branches 94017 706462

trees 2905 18465

instances (merged trees) 926 3367
recall of benchmark data 84.3% 98.3%
estimated precision 90.0 % 70.0 %

by increasing the branching factor from B = 2 to B = 3. More-
over, the results of the benchmark data (189 commercial in-
stances) shows that the larger branching factor B = 3 also leads
to a higher recall compared with B = 2 in mining video rep-
etitions. This result validates our theoretical analysis in Fig. 4.
On the other hand, the precision drops as the branching factor
increases.

We further compare different selections of € for e-NN search,
as shown in Table V. A larger ¢ (¢ = pu — 20) for e-NN query
results in a better recall. But it also brings a worse precision
score than using a stricter criterion € = p— 30. As expected, the
computational time is also much longer with larger ¢, because
more NNs are retrieved. Hence a much larger matching-trellis
is built and needs to discover.

V. EXPERIMENT 2: MINING RECURRING PATTERNS
FrROM HUMAN MOTION

To validate that our algorithm can handle more general
spatio-temporal variations, we further test our algorithm on
motion captured human motion data to discover recurring
motion patterns, which exhibit representative spatio-temporal
dynamics in human motions. In the case of human dance data,
they are typical dance moves that appear repetitively in a certain
type of dance. Our test dataset consists of 32,260 frame human
motion data from Carnegie Mellon University Graphics Lab
mocap database [38]. It includes 15 motion sequences from 5
different motion categories: break dance, acrobatics, Indian
dance, Michael Jackson-style dance and salsa. These motions
are captured in different mocap sessions and performed by
different subjects. Since the same type of dance can be per-
formed at different speeds and by different people, instances
of the same motion event can vary significantly due to the
differences in the skeletal/spatial configurations and speeds.
Thus compared with mining exact repeats from videos, mining
recurring motion patterns is a much more challenging problem.

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

YUAN et al.: MINING RECURRING EVENTS THROUGH FOREST GROWING

The 14 recurring instance.

The 2,,4 recurring instance.

The 3;;, recurring instance.

Fig. 6. A discovered recurring event consists of three motion instances.
Each instance is a segment in the long motion sequences; the figures
are sampled every 10 frames. All of the three instances belong to the
same event in break dance, but are of various length and dynamics.
More results of the discovered recurring motion patterns can be seen at
http://www.ece.northwestern.edu/~jyu410/motionmotifs/.

We completely rely on our mining algorithm to discover mo-
tion patterns without providing any a priori knowledge of the
underlying motion data. This experiment is performed on a
standard Pentium-4 2 GHz PC with 2 GB RAM.

A. Feature Extraction and Similarity Matching

Given a human motion sequence V), we can represent it as a
sequence of human poses V = {Si}?’:l. Each S; is an indi-
vidual frame and the skeletal pose is characterized by its root
position and joint orientations. By treating each pose as a prim-
itive, we measure the similarity between two poses S; and S; as
the weighted Euclidean distance between the quaternion repre-
sentations of the two poses:

J
d(Si,8;) = > willgik — ikl (€
k=1

where ||-|| denotes the Euclidean distance; wy, is the weight of
joint k; g;), € S® is the unit quaternion representation of the
orientation of joint k£ with respect to its parent joint in frame
1; J is the total number of joints in the skeletal representation
(J = 29 in our test set). As in [21], wy is set to 1 for important
joints like the shoulders, elbows, hips, knees, pelvis, lower back
and upper back, whereas wy, is set to O for less important joints,
like the toes and wrists.

B. Results

Considering the large variations that may exist in human
motion data, we choose a less strict 20 criterion for selecting

1605

TABLE VI
DISCOVERY OF RECURRING MOTION PATTERNS. THE ERRORS ARE
HIGHLIGHTED. THE TOTAL ERROR RATE FOR CLUSTERING IS 11.29%

[[[Acrobatics [M.J. [Salsa [Indian | Break | Total |
11

—_ =l ol =l ol =
S| B v o o wf W T 0| S| | S| W o | M| B[O Lnf W B

0

—_

o
N o B oo o o o o = o o o o o o S S| o | O o O | | O O O O S|
NEE R EEEREEEEE EEENEEEEREEE EE R -
o = B O = o o o o = o o of oy o o o o N o o o O m| o | o| | O S| O
Bl o o| o o of o| o =| 0| o v| o of W] o| o =| V|| S| | o o 0| | o Y| o | o
SERREEE RS R EEE R EEE RN N E - EEEE

00| A O W O\ H| | W

—
N

€, which helps to retrieve similar but not necessarily identical
poses given a query. The estimated mean and standard variance
of pair-wise distances are p = 3.23 and o = 0.94, respectively,
thus € = u — 20 = 1.35. The average size of the matching
setis K = 1163. Branching factor is set to B = 5, in order to
accommodate the possibly large temporal variations in human
motions. When building the match trellis, we filter temporally
nearby N = 300 frames and set the minimum valid length
A = 60 to eliminate too short motion fragments.

It takes 241 seconds to build a matching-trellis of size
32260 x 1163, and 213 seconds to find all continuous paths
using our forest-growing algorithm. In total, 2,527,496 valid
branches are discovered, from which we obtain 6,944 raw paths
by only picking the longest branch from each tree. Then we
iteratively merge raw paths with temporal overlaps greater than
3/4 and finally obtain 186 recurring instances. The average,
maximum and minimum length of the instances are 183, 839
and 60, respectively. These 186 recurring instances are then
clustered into 30 event groups using normalized-cut based on
the similarity matrix defined in (2). In Fig. 6, we show an event
cluster containing three similar human dance sequences.

A person with animation expertise checks the effectiveness of
our algorithm by visually identifying if instances in each cluster
are indeed similar patterns (temporal-spatial variations in the
motions are allowed). Table VI presents the instance distribu-
tion in each individual cluster, labeled by the animation expert.
For a cluster containing instances from different motion cate-
gories, we take the majority as the ground truth and evaluate the

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from |IEEE Xplore. Restrictions apply.

1606 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

error rate by the percentage of mis-clustered instances in this
cluster. The final error rate is defined as the weighted sum of
the error rates of all 30 clusters, where the weights are based
on the number of recurring instances in each cluster. Judged by
the expert, 22 of the 30 event classes are 100% accurate, while
8 out of the 30 events contain instances from different motion
categories. The resulting error rate is 11.29%.

Interestingly, in one of the erroneous clusters (C27 in
Table VI), where the majority belong to Michael Jackson style
dance (4 out of 6), the salsa instance and the break dance
instance that are mis-clustered into this event actually share a
full-body rotation pattern that is similar to the Michael Jackson
dance instances.

VI. CONCLUSIONS

Because recurring events may not be exact repeats, it poses
extreme challenges to algorithms that try to discover and detect
such events automatically. To overcome the large computational
cost and to handle content and temporal variations, we translate
the recurring pattern mining problem into finding continuous
paths in the matching-trellis. The proposed forest-growing al-
gorithm is efficient and of only sub-quadratic complexity with
respect to the database size. By introducing a branching factor
when growing the forest, it is able to handle content and tem-
poral variations, as well as the misses caused by the approximate
search using LSH, which is critical for reducing the computa-
tional cost of finding best matches.

The experiment with news video demonstrates the efficiency
of our method, which can mine a 10.5 hour video within 8 min-
utes, upon feature extraction. The other experiment on human
dance video validates that our method is capable of handling
large content and temporal variations, including pose changes
and non-uniform time warping in human motion patterns. Our
forest-growing algorithm is applicable to different underlying
feature representations and therefore can be easily extended to
other types of time-series data for mining recurring patterns.

REFERENCES

[1] R. Lienhart, C. Kuhmuench, and W. Effelsberg, “On the detection and
recognition of television commercials,” in Proc. IEEE Conf. Multi-
media Comput. Syst., 1997, pp. 509-516.

[2] C. Herley, “Extracting repeats from media streams,” in Proc. [EEE
Conf. Acoust., Speech, Signal Process., 2004, pp. 913-916.

[3] C. Herley, “Accurate repeat finding and object skipping using finger-
prints,” in Proc. ACM Multimedia, 2005, pp. 656-665.

[4] S. ching, S. Cheung, and T. P. Nguyen, “Mining arbitrary-length re-
peated patterns in television broadcast,” in Proc. IEEE Conf. Image
Process., 2005, pp. 181-184.

[5] D.-Q. Zhang and S.-F. Chang, “Detecting image near-duplicate by sto-
chastic attributed relational graph matching with learning,” in Proc.
ACM Multimedia, 2004, pp. 877-884.

[6] K. M. Pua, J. M. Gauch, S. E. Gauch, and J. Z. Miadowicz, “Real time
repeated video sequence identification,” Comput. Vis. Image Under-
stand., vol. 93, no. 3, pp. 310-327, 2004.

[7]1 X. Yang, Q. Tian, and P. Xue, “Efficient short video repeat identifica-
tion with application on news video structure analysis,” IEEE Trans.
Multimedia, vol. 9, no. 3, pp. 600-609, 2007.

[8] P. Wang, Z.-Q. Liu, and S.-Q. Yang, “A probabilistic template-based
approach to discovering repetitive patterns in broadcast videos,” in
Proc. ACM Multimedia, 2005, pp. 407-410.

[9] X. Naturel and P. Gros, “Detecting repeats for video structuring,” Mul-
timedia Tools Applicat., vol. 38, pp. 233-252, 2008.

[10] C. Herley, “Argos: Automatically extracting repeating objects from
multimedia streams,” IEEE Trans. Multimedia, vol. 8, no. 1, pp.
115-129, 2006.

[11] J. Yuan, Q. Tian, and S. Ranganath, “Fast and robust search method
for short video clips from large video collection,” in Proc. IEEE Conf.
Pattern Recognit., 2004, pp. 866—869.

[12] J. Yuan, L.-Y. Duan, Q. Tian, and C. Xu, “Fast and robust short video
clip search using an index structure,” in Proc. ACM Multimedia Work-
shop on Multimedia Inf. Retrieval, 2004, pp. 61-68.

[13] A. Joly, O. Buisson, and C. Frlicot, “Content-based copy detection
using distortion-based probabilistic similarity search,” IEEE Trans.
Multimedia, vol. 9, no. 2, pp. 293-306, 2007.

[14] C.-Y. Chiu, C.-S. Chen, and L.-F. Chien, “A framework for handling
spatiotemporal variations in video copy detection,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 18, no. 3, pp. 412-417, 2008.

[15] L. Xie, H. Sundaram, and M. Campbell, “Event mining in multimedia
streams,” Proc. IEEE, vol. 96, no. 4, pp. 623-647, 2008.

[16] J. Yuan, W. Wang, J. Meng, Y. Wu, and D. Li, “Mining repetitive clips
through finding continuous paths,” in Proc. ACM Multimedia, 2007,
pp. 289-292.

[17] D. Xu and S.-F. Chang, “Visual event recognition in news video using
kernel methods with multi-level temporal alignment,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.

[18] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for
learning statistical motion patterns,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 9, pp. 1450-1464, 2006.

[19] T. Xiang and S. Gong, “Abnormal behaviour recognition through in-
cremental learning,” Comput. Vis. Image Understand., vol. 111, no. 1,
pp. 59-73, 2008.

[20] J. Meng, J. Yuan, M. Hans, and Y. Wu, “Mining motifs from human
motion,” in Proc. EUROGRAPHICS, 2008, pp. 255-258.

[21] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard, “In-
teractive control of avatars animated with human motion data,” ACM
Trans. Graphics, vol. 21, pp. 491-500, Jul. 2002.

[22] L. Kovar and M. Gleicher, “Automated extraction and parameteriza-
tion of motions in large data sets,” ACM Trans. Graphics, vol. 23, pp.
559-568, Aug. 2004.

[23] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distribution,” in Proc. 20th Annu.
Symp. Computat. Geom., 2004, pp. 253-262.

[24] Trec Video Retrieval Evaluation. NIST, 2004 [Online]. Available:
http://www-nlpir.nist.gov/projects/trecvid/

[25] S. Satoh, “News video analysis based on identical shot detection,” in
Proc. IEEE Conf. Multimedia Expo, 2002, pp. 69-72.

[26] C. Faloutsos, J. Hodgins, and N. Pollard, “Database techniques with
motion capture,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 Courses
21, 2007.

[27] M. Muller, T. Roder, and M. Clausen, “Efficient content-based retrieval
of motion capture data,” ACM Trans. Graphics, vol. 24, pp. 677-685,
Jul. 2005.

[28] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans.
Graphics, vol. 21, pp. 473-482, Jul. 2002.

[29] O. Arikan, D. A. Forsyth, and J. F. O’Brien, “Motion synthesis from
annotations,” ACM Trans. Graphics, vol. 22, pp. 402—408, Jul. 2003.

[30] M. Mller and F. Kurth, “Towards structural analysis of audio record-
ings in the presence of musical variations,” EURASIP J. Appl. Signal
Process., vol. 1, no. 2, pp. 200-208, 2007.

[31] L. Lu, M. Wang, and H.-J. Zhang, “Repeating pattern discovery and
structure analysis from acoustic music data,” in Proc. ACM Multimedia
Workshop on Multimedia Inf. Retrieval, 2004, pp. 275-282.

[32] J.-L. Hsu, C.-C. Liu, and A. L. P. Chen, “Discovering nontrivial re-
peating patterns in music data,” IEEE Trans. Multimedia, vol. 3, no. 3,
pp. 311-325, 2001.

[33] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan, “Detecting
motifs under uniform scaling,” in Proc. ACM SIGKDD, 2007, pp.
844-853.

[34] Y.-L. Lo, W.-L. Lee, and L. h. Chang, “True suffix tree approach for
discovering non-trivial repeating patterns in a music object,” Multi-
media Tools Applicat., vol. 37, no. 2, pp. 169-187, 2008.

[35] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, 2000.

[36] T. Xiang and S. Gong, “Video behaviour profiling for anomaly de-
tection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp.
893-908, 2008.

[37] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
nearest neighbor meaningful,” in Proc. Int. Conf. Database Theory
(ICDT), 1999, pp. 217-235.

[38] CMU Graphics Lab Motion Capture Database. [Online]. Available:
http://mocap.cs.cmu.edu/

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

YUAN et al.: MINING RECURRING EVENTS THROUGH FOREST GROWING

Junsong Yuan (S’°06) is currently a Ph.D. candidate
in electrical engineering and computer science at
Northwestern University, Evanston, IL. He received
the M.Eng. degree from the National University of
Singapore in 2005. He was enrolled in the Special
Program for the Gifted Young of Huazhong Univer-
sity of Science and Technology, Wuhan, P. R. China,
and received the B.S. degree in communication
engineering in 2002. His research interests include
computer vision, multimedia data mining, and
statistical machine learning.

During the summer of 2008, 2007, and 2006, he was a research intern with the
Communication and Collaboration Systems group, Microsoft Research, Red-
mond, WA, Kodak Research Labs, Rochester, NY, and Motorola Labs, Schaum-
burg, IL, respectively. From 2003 to 2004, he was a research assistant in the
Institute for Infocomm Research in Singapore.

Mr. Yuan was awarded the national outstanding student and the Hu-Chunan
fellowship in 2001, by the Ministry of Eduction in P. R. China.

Jingjing Meng received the B.E. degree in elec-
tronics and information engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 2003, and the M.S. degree in computer
science from Vanderbilt University, Nashville, TN,
in 2006.

She was a research intern at Vanderbilt University
Institute of Imaging Science (VUIIS) during summer
2005. Since January 2007, she has been a Senior Re-
search Engineer with Motorola Applied Research and
Technology Center, Schaumburg, IL. Her current re-

Wiy

search interests include computer animation and graphics.

1607

Ying Wu (SM’06) received the B.S. degree from
Huazhong University of Science and Technology,
Wauhan, China, in 1994, the M.S. degree from Ts-
inghua University, Beijing, China, in 1997, and the
Ph.D. degree in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
(UIUC) in 2001.

From 1997 to 2001, he was a research assistant
at the Beckman Institute for Advanced Science
and Technology at UIUC. During summer 1999
and 2000, he was a research intern with Microsoft
Research, Redmond, Washington. In 2001, he joined the Department of Elec-
trical and Computer Engineering at Northwestern University, Evanston, IL,
as an Assistant Professor. He is currently an Associate Professor of electrical
engineering and computer science at Northwestern University. His current
research interests include computer vision, image and video analysis, pattern
recognition, machine learning, multimedia data mining, and human-computer
interaction.

Dr. Wu serves as an associate editor for IEEE TRANSACTIONS ON IMAGE
PROCESSING, SPIE Journal of Electronic Imaging, and IAPR Journal of Ma-
chine Vision and Applications. He received the Robert T. Chien Award at UTUC
in 2001, and the NSF CAREER award in 2003.

\ -

Jiebo Luo (SM’99) received the B.S. degree in
electrical engineering from the University of Science
and Technology of China in 1989, and the Ph.D.
degree in electrical engineering from the University
of Rochester, Rochester, NY, in 1995.

He is a Senior Principal Scientist with Kodak Re-
search Laboratories, Rochester, NY. His research in-
terests include image processing, pattern recognition,
computer vision, computational photography, med-
ical imaging, and multimedia communication. He has
authored more than 130 technical papers and holds
over 40 granted U.S. patents.

Dr. Luo currently serves on the editorial boards of the IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), the IEEE
TRANSACTIONS ON MULTIMEDIA (TMM), Pattern Recognition (PR), and the
Journal of Electronic Imaging. He is a Kodak Distinguished Inventor, a winner
of the 2004 Eastman Innovation Award, and a fellow of the SPIE.

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:39 from |IEEE Xplore. Restrictions apply.

