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Abstract—Conventional subspace learning or recent feature
extraction methods consider globality as the key criterion to
design discriminative algorithms for image classification. We
demonstrate in this paper that applying the local manner in
sample space, feature space, and learning space via linear sub-
space learning can sufficiently boost the discriminating power,
as measured by discriminating power coefficient (DPC). The
proposed solution achieves good classification accuracy gains and
shows computationally efficient. Particularly, we approximate
the global nonlinearity through a multimodal localized piecewise
subspace learning framework, in which three locality criteria
can work individually or jointly for any new subspace learning
algorithm design. It turns out that most existing subspace learning
methods can be unified in such a common framework embodying
either the global or local learning manner. On the other hand,
we address the problem of numerical difficulty in the large-size
pattern classification case, where many local variations cannot be
adequately handled by a single global model. By localizing the
modeling, the classification error rate estimation is also localized
and thus it appears to be more robust and flexible for the model
selection among different model candidates. As a new algorithm
design based on the proposed framework, the query-driven lo-
cally adaptive (QDLA) mixture-of-experts model for robust face
recognition and head pose estimation is presented. Experiments
demonstrate the local approach to be effective, robust, and fast for
large size, multiclass, and multivariance data sets.

Index Terms—Discriminating power coefficient (DPC), face
recognition, globality, head pose estimation, human-centered
computing (HCC), locality, mixture-of-experts model, subspace
learning.
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I. INTRODUCTION

H UMAN-CENTERED COMPUTING (HCC), a recently
emerging field, tightly connects various methodologies

that are applied to computing system designs and implementa-
tions with personal, social and cultural contexts of human activ-
ities for human machine interaction [26]. As a key human iden-
tity, human face in multimedia data, such as images and videos,
has attracted much attention and plays essential roles in sup-
porting human activity analysis.

The difficulty of appearance-based face analysis, such as
recognition [14] and pose estimation [6], stems from the diffi-
culty in statistical modeling of face images under pose, scale,
expression, occlusion, and illumination variations. Conven-
tional global linear models [16] under the Gaussian-assumption
[17], such as principal components analysis (PCA) [20] and
linear discriminant analysis (LDA) [27], have been found to
be effective in either an unsupervised or supervised manner.
Especially, the incorporation of the labeled data improves
the performance by finding subspaces where discriminative
features are preserved, while nondiscriminative features are
dropped. However, for the real-world system design, such
kind of linear models in a global manner are fundamentally
limited because of the complexity in local variations and
the nonlinearity of the underlying face manifold structure.
To further enhance the recognition accuracy, better subspace
learning methods with higher discriminative ability need to be
developed considering local modeling.

In recent years, advances have focused on nonlinear methods
(e.g., kernel based method [22], [23] or manifold learning [2],
[5]) and graph modeling method (e.g., GE [24]). By applying
a nonlinear kernel mapping or a locally preserved graph em-
bedding, the discriminating power of the feature representation
can be significantly improved. However, a complex numerical
problem arises because the covariance modeling in kernel
method or the neighborhood graph in the graph modeling
method is typically of dimension, where is the
number of the labeled training samples. When is very large,
the solution can be unstable and the operation on the
matrix is computationally impractical. Thus, more efficient
methods are desired. Moreover, the manifold learning solutions
are nonlinear functions depending on the training data, and
cannot directly handle unknown test data. For example, it is
difficult to embed a new query point into the learned nonlinear
manifold without recalculating the embedding with the whole
data set. The linearization of the nonlinear manifold learning or
graph modeling methods, e.g., locality preserving projections
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(LPP) [3] and locally embedded analysis (LEA) [5], partially
solves this problem by finding a linear subspace embodying
the graph embedding objective. Even though the solutions
have better performance than pure Euclidean metric based
approaches like PCA and LDA, they are still global and linear
solutions. When the sample space is large, the subspace/metric
learning performance decreases, since the large data set defeats
the discriminating power of the locality preserved graph em-
bedding model. Furthermore, a single global model that tries
to capture all the variations in the sample space has serious
limitations. To fit the large size training data, a kernel mapping
original data to a much higher dimensional space is required,
which sometimes results in a complex decision boundary with a
poor generalization ability and often involves time-consuming
optimization or computation of pairwise distances.

A. Our Work

To tackle the mentioned problems, we present new feature
extraction algorithms based on a localized piecewise linear sub-
space learning framework. The basic idea is to let the subspace
learning procedure embody local structure and characteristic,
which has been demonstrated to effectively boost the discrim-
inating power of the feature extraction [5], [7]–[9] in several
aspects. The SVM-KNN in [25] is the most related work to our
ideas. However, since it is an non-trivial issue to find informative
nearest neighbors in high-dimensional spaces [31], a more com-
prehensive model is expected for the discriminant analysis. We
therefore present a general framework, which can unify many
of existing algorithms and formulate new algorithms to improve
the discriminating power. In addition, it embodies much more
generalized novel properties and can cover the particular case
in [25]. This framework is composed of two main levels in a
top-down manner. In the first level, which is the overview of
the basic learning scheme, it assumes that most existing sub-
space learning methods can be categorized into two classes,
globality learning or locality learning [34]–[38]. In the second
level, the first-level strategy is specified in the feature space,
sample space, and learning space. We therefore define the fol-
lowing concepts to provide basic learning criteria for our frame-
work.

• Feature-globality (FG) or feature-locality (FL): FG takes
each training image as a single feature with each pixel
being a dimension of the feature vector/matrix. FL selects
local parts or local patches in the global feature space to
build multiple models. The final decision is based on the
voting of both local and global models via appropriate
model fusion.

• Sample-globality (SG) or sample-locality (SL): SG, like
conventional methods, applies all training data points to
build the global model. SL partitions the sample space or
searches local neighborhoods of a query to build linear
models in local data sets.

• Learning-globality (LG) or learning-locality (LL): In a
graph embedding view, LG constructs a globally con-
nected graph to measure the data affinity for learning the
low-dimensional representation. LL removes the unim-
portant edges to construct a partially connected graph
embodying local connectivity.

It turns out that the above three local criteria can work in-
dividually or jointly for any new designs of subspace learning
algorithms. Most existing subspace learning methods can be
unified in such a common framework with either a global or
local learning manner. To measure the performance of those cri-
teria, we also introduce the model discriminating power coeffi-
cient (DPC), which provides a quantitative evaluation to com-
pare global and local learning strategies. We will prove in both
theory and experiment that local learning can improve the DPC
of global learning in a valid range and thereby significantly en-
hance the classification accuracy. By applying the locality in
subspace learning, the numerical difficulty problem for large
database is naturally addressed, where many local variations
cannot be adequately handled by a single global model. By lo-
calizing the modeling, the classification error rate estimation is
also localized and thus it appears to be more robust and flexible
for model selection among different model candidates.

Based on the framework, we developed a mixture-of-experts
model of the query-driven locally adaptive (QDLA) method that
can work with multiple appearance models for face recognition
and head pose estimation. A single QDLA model is achieved
as follows. A local neighborhood of the querying (unknown)
face [25] is first identified from labeled faces, in a sample-lo-
cality manner. Depending on the number and quality of the la-
beled samples in the neighborhood, a linear model for classi-
fication is created, as well as the resulting classification error
rate. The mixture-of-experts model is achieved by building mul-
tiple QDLA models according to feature-locality and voting the
final result with corresponding QDLA models based on the error
rates. Specifically, we build multiple appearance models of dif-
ferent parts and scales of faces to improve the face recognition
performance. A piecewise linear subspace learning method in a
learning-locality manner is applied in the QDLA model to map
out the global nonlinear structure for head pose estimation. The
local sensitive hash (LSH) [1], [13] based fast querying strategy
is also introduced to deal with the high-dimensional nearest
neighbors (NN) search problem. The proposed mixture-of-ex-
perts model is a general framework for classification and appli-
cable to large size, multiclass, and multivariance face recogni-
tion data sets.

The paper is organized into the following sections. In Sec-
tion II, we discuss the globality in linear models and introduce
the concept of DPC. In Section III, we amply present the idea
of the three types of locality in linear models and discuss how
to build the joint local models. Extensive experiments and eval-
uations are presented in Section IV to support our theory. We
draw the conclusion and point out future directions at the end of
the paper.

II. GLOBALITY IN LINEAR MODELS

Learning a model which can be applied globally in the sense
of feature, learning algorithm and sample set is a common prac-
tice in the literature. Examples include Eigenface and Fisherface
in face recognition, in which the data distribution is assumed
to be Gaussian. A general idea to apply globality in subspace
learning can be explained as follows. Take the whole face image
as the original feature and train the entire given data to learn a
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linear projection, which can map the original data to a low-di-
mensional subspace embodying the discriminative property. In
this section, we will first highlight the objective of applications
for our proposed ideas.

A. Objective for HCC Problems

Since human identity and activity are basic key issues in
HCC, we mainly investigate the face recognition [14] and
head pose estimation [6] problems in this paper. For those
problems, typically a training data set of subjects, with

samples in total, that characterized by identity and pose,
, is given as aligned and cropped

image luminance data, are the vectorized image data,
where . A different set of test data with subjects
and samples in total is also given, denoted as , where

. Both face recognition and pose estimation consist
of a subspace learning (discriminative feature extraction) phase,
where the objective is to find a -dimensional subspace with
bases , and therefore to obtain a projection ,
where and , such that clas-
sifiers like SVM or nearest neighbor [15] achieve the highest
accuracy. Here, the projection matrix is used to characterize
this subspace where subject or pose variations are captured.

B. Model Solutions for Sample-Globality

Conventional model solutions for sample-globality are often
based upon the assumption that the training data are drawn from
the same underlying distribution as the test data. PCA and LDA
can represent the two specific cases of unsupervised and super-
vised globality [15], [16]. The unsupervised globality takes the
entire training data as a whole and maximizes the data variance
in the projected linear space

(1)

where is the mean vector of . The supervised glob-
ality takes the advantage of label by projecting between-class
appearances far-apart while keeping within-class appearances
closer

(2)

where is the mean vector of samples in class . Since
, , and are functions of all , the global subspace is a

function of the entire training data.

C. Discriminating Power Coefficient

Most existing linear subspace learning methods can find a
good graph embedding interpretation [4], [24] in a common
framework, where denotes an undirected

weighted graph with a vertex set and similarity ma-
trix . The general objective is to preserve data points adjacent
relationship. In particular, the intrinsic graph of PCA connects
all the data pairs with equal weights and is constrained by scale
normalization on the projection vector, while the intrinsic graph
of LDA connects all the data pairs with the same class labels
and the weights are in inverse proportion to the sample size of
the corresponding class. The intrinsic graph of PCA is also used
as the penalty (between-class) graph of LDA.

In order to reflect the discriminating power of the model to
characterize inter and intra-class point relationships, it is nec-
essary to measure the tradeoffs between the complexity of the
embedded graph, , and the expressive power of the
model, . A graph is composed of its vertices

and edge set .

Definition: Discriminatating Power Coefficient (DPC)
Given the training data set and its graph embedding

, the model DPC of a linear model is
defined as the ratio between the number of free variables in the
model and number of edges involved in

(3)

A relatively large DPC value indicates a large discriminating
power of the model. It is clear to see that DPC is directly pro-
portional to both and and inversely proportional to .
Given fixed , a larger indicates more available discrim-
inative subspace bases while a larger provides more local de-
tails of feature patterns to enhance DPC. As grows for
a given model, the DPC decreases. For example, when
is fixed, we have and therefore

. We derive that the
for unsupervised and supervised globality can be calculated as

(4)

(5)

Notice that a single model contains variables to charac-
terize the subspace, where lies the manifold, spanned by data
points. For large size problems such as face recognition or head
pose estimation, as grows, the number of edges in an affinity
graph of both unsupervised and supervised globality is in power
growth. We expect that the DPC has a limited valid range since
there are obvious inaccurate indications for very small
in the case of statistical insufficiency. In another word, the larger
the DPC, the better the model. But, the DPC cannot be unlim-
itedly large due to trivial values. We will discuss this
issue in the experiment section.

III. LOCALITY IN LINEAR MODELS

Given a training data set , the data size is
fixed. To boost the DPC of the resulting model, an intuitive way
is to either enlarge or reduce in (3). The subspace size

can be enhanced by feature-locality, in which locality in the
feature space can provide chances to gain more discriminative
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Fig. 1. Feature-locality versus globality. Part-based face modeling for feature-
locality using FERET database. (a) Upper part face model (18� 16). (b) Lower
part face model (14 � 18). (c) Full face model (21 � 28).

bases for subspace learning. The number of embedded graph
edges can be reduced by sample-locality, in which the
size-reduced subgraph is achieved by reducing the number of
vertices in the original graph. Moreover, note that and
are often correlated. Learning locality can achieve higher DPC
by changing the two parameters at the same time using a partic-
ular graph construction strategy.

A. Feature-Locality

Feature locality is the key in part-based and patch-based
models [11], [12], [32]. The basic idea is to consider not only
the original whole image features, but also parts or local patches
extracted from the images simultaneously [7], [33]. This ap-
proach offers the advantage to enrich the feature space because
the parts can be modeled more or less independently. Thus, the
subspace size can be enhanced by combining both global and
local features to gain more discriminating power reflected by
the DPC. For example, Fig. 1 shows the part-based face models
on the FERET database. Since the upper and lower parts of
human face appearance have less dependency, we can model
the two separately and combine them with the full model. It
turns out that we have three subspaces in total for an integrated
model which provides larger than any single subspace.

B. Sample-Locality

Instead of improving the DPC by directly reducing the edges
of a global graph , sample-locality achieves the higher DPC
by reducing the number of vertices in . A feasible way to re-
alize this as suggested by [10] is to partition the training data
into a hierarchical structure via kd-tree. For each data subset
corresponding to a sub tree, we can compute its model via un-
supervised or supervised globality. As a result, there is a set of
linear models with a hierarchical structure that we need to deal
with. However, this strategy brings a difficulty to select the right
model or hierarchical levels that offer the best discriminating
power, especially when a query point lies on the boundaries of
the kd-tree partitions.

1) Model Solutions for Sample-Locality: To solve this
problem, instead of building a model for each data partition
node in the kd-tree, a query point driven local neighborhood
based model is computed. The first step for the modeling is
to search for the nearest neighbors of the query datum in the
feature space. By considering only the local distribution of the
high-dimensional data, such a local model is more discrimina-
tive than the global one. For a given query , we

find its -NNs in the original sample space, where

Fig. 2. Query-driven sample-locality model flowchart.

. The unsupervised sample-locality takes as

a whole and maximizes the data variance in the projected and
localized sample space

(6)

where for , and is the

mean of . The supervised model of this query point

for sample-locality is formulated as

(7)

where is the number of classes in .

is the number of samples in class . is the minimum number
of samples required in each class. This is used to remove trivial
points with limited impact of graph structure. Since , ,
and are functions of and , the learned subspaces
are functions of both query and training data in the localized
sample space. Fig. 2 shows the flowchart for the query-driven
sample-locality model.

2) DPC for Sample-Locality: The DPC of the sample-lo-
cality model is calculated as

(8)

where the number of local graph edges, , for unsuper-
vised and supervised sample-locality are given by

(9)
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(10)

We have and
, since

and . Hence, the sample-locality offers better discrim-
inating power than globality in the sense that the model is well
adapted to the local data and the DPC can be tuned to achieve
better performance.

3) Fast Nearest Neighbors Querying: The exhaustive linear
scan method to search for the NNs is computationally expensive
for large databases . Note for every query datum, we
need to perform such an NN query to build the local model.
One speed-up solution is to take advantage of the data set
spatial distribution in . From the database point of view,
NN search can be treated as a querying problem. In order to
speed up the NN search, many index structures have been well
studied in the database community, such as kd-tree and R-tree.
Nevertheless, almost all of such index-based search methods
suffer from the problem of curse-of-dimensionality. When
compared with exhaustive linear scan search, such index-based
search methods normally cannot perform better in the high-di-
mensional space. We instead use LSH [1], [13] to speed up the
NN query. The local model can then be built based on the NNs
of the query. To overcome the curse-of-dimensionality, LSH
provides a randomized solution for the high-dimensional NN
search problem. Instead of searching for the exact k-NN, LSH
tends to search for the approximate NN which is defined as
-nearest neighbor search ( -NNS)—For the data set ,

we preprocess it to efficiently search for the approximate NNs
of any given query , that is, to find ,
such that . Here,

denotes the distance of to its closest
neighbor in and is a predefined parameter.

C. Learning-Locality

Learning-locality changes both and to enhance the
DPC. This task can be achieved by constructing a particular
graph embedded model with effective
weights designed to fit the learning-locality criterion. One
criterion is the local connectivity, which is to remove graph
edges from the global graph via -NN search, -thresholding,
or from the ground truth.

1) Model Solutions for Learning-Locality: Given training
data , the weights can be either calculated in closed-
form or set with empirical values after constructing the graph.
Locally embedded analysis (LEA) [5] and locality preserving
projections (LPP) [3] can represent the two specific cases.

LEA constructs the graph and learns the weights in a neigh-
borhood-preserving manner by exploiting the local symmetries
of linear reconstructions [2]. The linear subspace learning on the
entire training data is formulated as

(11)

(12)

where are the -NNs of , and are the

graph weights.
LPP learns the subspace that preserves the essential manifold

structure by measuring the local neighbor distance information.
The graph weights are set empirically,

when and are the -NNs of each other, oth-
erwise . Here, is a tunable parameter. The linear sub-
space learning on the entire training data is formulated as

(13)

2) DPC for Learning-Locality: The above two cases indeed
construct the same graph with different weights if we fix the
parameter . Then we have the same number of graph edges,

. So the DPC of the model solu-
tion for learning-locality is given by

(14)

Note that the number of graph edges for learning-lo-
cality only grows linearly, which can achieve higher DPC
than globality. From some simple derivations, we have

when .
By introducing the parameter and enhancing the value of

, learning-locality expands the learned subspace with more
discriminative bases, which leads to the enhanced DPC. For
example, supervised globality like LDA in an -class problem
can only learn a subspace with up to dimensions. But
the learning-locality like LEA can learn a subspace with the
dimension up to , which is obviously larger than .

D. Joint Local Models

The more effective way for designing discriminative learning
algorithms is to integrate different local concepts. Since the
feature, sample, and learning localities are from less dependent
aspects of local definition, it is straightforward to combine
some or all of them to construct new models. For example, we
can first localize the -NNs of a query datum with sample-lo-
cality; then apply learning-locality in the local data set to learn
a piecewise linear subspace; finally label the test datum with a
neighborhood-based classifier. More specifically, we develop
the framework of combining feature-locality and sample-lo-
cality together, and design a mixture-of-experts model of
QDLA Fisher faces [27] for face recognition applications.

1) Feature-Locality Sample-Locality: For the general
image classification problem, we can design the joint model
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of feature-locality and sample-locality. Assume we have a
known set of object images with class label set

. Now for an unknown test image sample , we
need to select a label from to identify . Our joint locality
algorithm for a single appearance model is as follows.

• Identify a local neighbor of the query (unknown) image
from known labeled images.

• Pick -NNs in the training data for .
• In case the -NNs have the same label , then label

with and exit; otherwise, depending on the number and
quality of the labeled samples in the neighborhood, create
a local linear model for , along with the locality-model
classification error rate.

• Classify with the local model that has the lowest training
error.

The joint model of feature-locality and sample-locality is sum-
marized as follows.

• Build multiple appearance models with variation in parts,
patches and resolution of object images.

• Run the above joint locality algorithm on each appearance
model respectively.

• Vote the final classification decision with individual local
models and the global model based on error rates.

As an instantiation of this model design, we introduce the fol-
lowing mixture-of-experts model of query-driven locally adap-
tive fisher faces.

2) Mixture-of-Experts Model of Query-Driven Locally
Adaptive Fisher Faces: As an example in the face recogni-
tion scenario, the mixture-of-experts model of QDLA fisher
faces is a joint model of feature-locality and sample-locality.
The framework of mixture-of-experts model of QDLA-Fisher
faces for face recognition is shown in Fig. 3. For the global
appearance based face model, we take the cropped whole
face image as the learning feature. We apply three different
appearance models with labeled face data, that is, to obtain

from original face image
data , where indicates different appearance models. An ex-
ample for the basis functions of upper, lower, and full FERET
face models are visualized in Fig. 1. The parts can be overlapped
to capture the appearance in different areas and resolutions. In
the recognition phase, for an unknown face , and its projection

in the th model space, we apply LSH to identify its local
neighborhood with
and build the local fisher model for each appearance feature
set, i.e., the distribution of each class of faces contained in

. Here denotes the local neighborhood radius. For
the th Fisher model, its training error rate is also computed
and recorded, depending on . The query face is then
classified by combining these local models.

After we do face recognition with each local model, the final
recognition result is based on the error rate of each local
model. In the preferred embodiment, we select the local model
with the minimum training error rate and treat its recognition
result as our final result. If there is a tie in error rates, the pref-
erence is given in the order of full face model, upper face model
and lower face model. We also define two parameters to tune
the local model. One is the default local Fisher model classifi-

Fig. 3. Joint local model. Framework of mixture-of-experts model of QDLA-
Fisher faces for face recognition.

cation error and the other is the minimum local sample ratio
. During the query stage, if the ratio between the number of

local samples within the range of the local neighborhood radius
and the number of total training samples is lower than , we
consider the local Fisher model is insufficient for training. In
this case, we substitute the feature-locality model with the fea-
ture-globality model and adopt the error rate to be the default
global Fisher model classification error rate.

IV. EXPERIMENTS AND EVALUATIONS

We evaluate the proposed methods with extensive ex-
periments on several most popular data sets for the HCC
applications.

A. Data Sets and Methods

We use following standard face data sets in the experiments.
Sample images of those face data sets are shown in Fig. 4.

• FERET Database [18]. The original database, containing
1209 subjects, was released in 2001 and consists of 14051
greyscale images. The images, in a resolution of 256
384, were taken with head views ranging from frontal to
left and right profiles. We select 2550 near frontal face
images, crop and resize the images to the size of 21 28
according to the eye locations and pupil distance.

• ORL Database [19]. This database contains 40 subjects
with ten grayscale face images for each. The 400 images,
in a resolution of 92 112, were taken at different times,
varying lighting, facial expressions (open/closed eyes,
smiling/not smiling) and accessories (glasses/no glasses),
showing whole frontal and slight tilt of the head. We crop
and resize the images to the size of 21 28 according to
the eye locations and pupil distance.

• YALE Face Database [27]. This database contains 165
grayscale images of 15 individuals. The 11 images for
each subject, in a resolution of 320 243, were taken in
the conditions of center-light, w/glasses, happy, left-light,
w/no glasses, normal, right-light, sad, sleepy, surprised,
and wink. The images are cropped and resized to 32 32.

• UMIST Face Database [30]. This database contains 564
grayscale face images for 20 subjects. Each subject has
19 to 36 images, in a resolution of 220 220, in various
angles from left profile to frontal view. The images are
cropped and resized to 28 34.
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Fig. 4. Data sets. (a) Pointing’04 head-pose image database. The left part shows all the subjects in the database. The right part shows all the head pose orientations
of one subject. (b) Face image samples in the ORL, YALE, UMIST, and UIUC-IFP-Y internal databases.

TABLE I
LIST OF DIFFERENT METHODS

• UIUC-IFP-Y Internal Face Database [5]. This is an in-
ternal face database which contains 3520 grayscale images
taken from video sequences for 22 subjects, with 160 im-
ages for each. Each cropped image has a resolution of 40
40, with large variations in facial expression, illumination,
pose and occlusion.

• Pointing’04 Head-Pose Image Database [28], [29]. This
database consists of 15 sets of images for 15 subjects,
wearing glasses or not and having various skin colors. Each
set contains two series of 93 images of the same person at
different poses. The first series is used for training, and the
second is for test. The pose or head orientation is deter-
mined by the pan and tilt angles, which vary from to

. Fig. 4(a) shows the Pointing’04 head-pose images.
We evaluate our proposed framework by comparing the different
methods listed in Table I.

B. Learning-Locality versus Globality

Extensive face recognition experiments are performed to
compare the discriminating power between learning-locality
and globality. Both unsupervised and supervised algorithms
that cover most cases of globality are evaluated. The algorithm
examples corresponding to unsupervised globality, supervised
globality, and learning-locality are PCA, LDA, and LEA,
respectively. The four data sets ORL, YALE, UMIST, and
UIUC-IFP-Y are adopted for the experiments. We choose the
Euclidean distance and the nearest neighbor classifier in all the
recognition experiments and assume that the gallery set [17] of
each experiment is the same as the training set. We randomly
select 3, 6, and 25% images of each subject for training on ORL,
YALE, and UMIST, respectively and the rest of 7, 5, and 75%

for test. In total, the training data size of the three databases are
120, 90, and 145, respectively, while the test data size are 280,
75, and 419. In a brute-force manner, the recognition rates of
PCA, LDA, and LEA on each case of dimensionality reduction
are all calculated. To generalize the performance, we repeat the
data set partition 100 times on each data set. Fig. 5(a)–(c) show
the average recognition rates of the 100-times run for each
method against the dimension of the subspace. Table II summa-
rizes the lowest average error rates of unsupervised globality,
supervised globality, and learning-locality on the ORL, YALE,
and UMIST respectively. It turns out that the learning-locality
consistently outperforms the globality with lowest error rates
of 9.7%, 7.7%, and 4.3% on the three data sets respectively.
The significant improvement of learning-locality has no extra
sacrifice on the dimensionality since its reduced dimensions for
the optimal cases are comparable to or even lower than those
of globality.

We choose the UIUC-IFP-Y data set to evaluate the gen-
eralization ability of learning-locality. In this experiment, the
gallery set, training set and test set are all different. The 20,
10, and 130 images of each subject are randomly selected for
training, gallery and test, respectively. For all 20 subjects, we
have 440, 220, and 2860 images in total for each data sets.
Fig. 5(d) shows the average recognition rates of the 100-times
run for each method against the dimension of the subspace. It
turns out from Table II that the lowest error rates and the corre-
sponding reduced dimensions are (32.7%, 31.2%, 10.7%) and
(145, 21, 32) respectively for the three methods. These results
still indicate that the learning-locality consistently and signifi-
cantly outperforms the globality.

C. Sample-Locality and Learning-Locality versus Globality

We compare the sample-locality and learning-locality with
globality in dealing with the head pose estimation problem on
the Pointing’04 head-pose database. In this scenario, we take
each head pose orientation as one class, so we have
and . The first series of each set is used for training,
and the second for test. For each method in the comparison, we
learn the linear subspace via globality, locality, or joint metrics,
and estimate test head poses via the NN classifier.

The error rates for pan and tilt angle estimations for
and are shown in Table III. We use
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Fig. 5. Learning-locality versus unsupervised/supervised globality with face recognition evaluations on the ORL, YALE, UMIST and UIUC-IFP-Y data sets. The
algorithm examples representing unsupervised globality, supervised globality, and learning-locality are PCA, LDA, and LEA, respectively. (a) ORL. (b) YALE.
(c) UMIST. (d) UIUC-IFP-Y.

TABLE II
FACE RECOGNITION PERFORMANCE FOR UNSUPERVISED GLOBALITY, SUPERVISED GLOBALITY, AND LEARNING-LOCALITY ON THE ORL, YALE, UMIST, AND

UIUC-IFP-Y DATA SETS

TABLE III
HEAD POSE ESTIMATION ERROR RATES ON THE POINTING’04

HEAD-POSE DATABASE

the popular algorithms PCA, LDA and LPP to represent unsu-
pervised globality, supervised globality, and unsupervised/su-
pervised locality respectively. The evaluation has 0 estima-
tion error tolerance. For sample-locality, we have for
the -NNs local search. We can see that all kinds of local met-
rics outperform the globality metric. Supervised sample-locality
performs the best overall, and achieves the best results in three
out of four cases, followed by another supervised learning-lo-
cality. Supervision is important since supervised methods con-
sistently perform better than unsupervised methods. Unsuper-
vised learning-locality does not perform well in this scenario.
However, the unsupervised sample-locality mitigates the lack
of labeling information by localization, and rather surprisingly,
performs well and is comparable to supervised globality and su-
pervised learning-locality. This observation indicates the benefit
brought by sample-locality.

A more extensive comparison on this evaluation is summa-
rized in Fig. 6, which also shows the case of 15 estimation tol-
erance. For Fig. 6(a), we set ,

, and , while for Fig. 6(b),
, , and . We observe

that supervised sample-locality and supervised learning-locality
both outperform globality in most cases.

Fig. 6. Sample-locality versus unsupervised/supervised globality with head
pose estimation on the Pointing’04 head-pose database. The algorithm examples
representing unsupervised globality, supervised globality, and learning-locality
are PCA, LDA, and LPP, respectively. For sample-locality, we have � � ��
for the �-NNs local search. ��� �� � estimation tolerance; ���� �� ��
estimation tolerance. (a) � � �	, � � 	, (b)
� � ��, � � �	.

D. Feature-Locality Sample-Locality versus Globality

We train each single upper, lower, and full model of QDLA-
Fisher faces with the FERET images. The model sizes are de-
fined by 18 16, 14 18, and 21 28, respectively. Fig. 1
shows the basis functions of the QDLA-Fisher model created
by the FERET data. Since the ORL face data set has specific
labels for each subject with the 10 poses, we partition the data
set into 6 subsets with different training and test samples (some
difficult recognition cases). Table V shows the description of the
data set partitions for the 6 recognition experiments. The model
basis functions and model parameter are fixed for each
single QDLA-Fisher model. The average face recognition ac-
curacy for the six different data set partitions under the FERET
basis is plotted in Fig. 7. We can see that the mixture-of-ex-
perts model of QDLA-Fisher outperforms all the single QDLA-
Fisher model under the 6 data set partitions. The full QDLA-
Fisher model performs better than the upper and lower models,
but worse than the mixture-of-experts model of QDLA-Fisher

Authorized licensed use limited to: Northwestern University. Downloaded on May 21, 2009 at 21:37 from IEEE Xplore.  Restrictions apply.



FU et al.: LOCALITY VERSUS GLOBALITY 1749

TABLE IV
RECOGNITION ACCURACY (%) FOR THE ORL DATABASE WITH QDLA-FISHER FACES OF MIXTURE-OF-EXPERTS MODEL BASED ON FERET BASIS FUNCTIONS.
(UPPER, LOWER, AND FULL�� SINGLE MODELS OF QDLA-FISHER FACES; PCA�� EIGENFACE RECOGNITION; QDLA��MIXTURE-OF-EXPERTS MODEL

OF QDLA-FISHER FACES; TIME�� COMPUTATION TIME NEEDED FOR EACH RECOGNITION ATTEMPT; � �� � OF SUBJECTS; � �� � OF TRAINING

IMAGES PER SUBJECT; �� �� � OF TEST IMAGES PER SUBJECT; � �� MINIMUM LOCAL SAMPLE RATIO.)

Fig. 7. Average ORL face recognition accuracy for the 6 different data set par-
titions under the same model parameter settings.

faces. To further demonstrate the generalization and robustness
properties of our method, we design the following more specific
recognition experiments.

The recognition performances for the ORL database with the
mixture-of-experts model of QDLA-Fisher faces based on the
FERET basis functions are shown in Table IV. We randomly
partition the 10 images of each subject by either 6 labeled and 4
un-labeled, or 8 labeled and 2 un-labeled faces. We set up 10 sets
of 160 and 80 recognition attempts in total for the four cases of

TABLE V
DESCRIPTION OF THE DATA SET PARTITIONS FOR FIG. 7

test. We set the local neighborhood radius to 420, 400, and
860 for the single upper, lower, and full models of QDLA-Fisher
faces respectively in the upper two cases of Table IV, and set
to 640, 600, and 1000 in the lower two cases. The default NN
classification error rate is set to 0.005 and the minimum local
sample ratio is set to 0.2 or 0.3. The experiments show pos-
itive and encouraging results since the recognition and query
modules are accurate, fast, and robust. We can observe that the
recognition performance of the QDLA-Fisher mixture-of-ex-
perts model is better than any single QDLA-Fisher model and
the global PCA Eigenface [20] recognition. It also has very low
recognition rate variance of the random tests since the local-
ization of models and adaptive multiple modes of classification
make the error estimation robust. The computation time needed
for each recognition is only , shown in Table IV, on
a 2.0-GHz Pentium CPU and 512 MB RAM PC with an un-op-
timized Matlab 6.0 implementation. The NN query is also com-
putationally efficient, costing for each query (de-
pending on the value of radius ).
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Fig. 8. Accuracy rate versus DPC for head pose estimation.

E. Discussions

To investigate the discriminative metric performance
changing with the DPC measurement, we set up experiments
for supervised sample-locality (localized LDA) and super-
vised sample-locality learning-locality (localized LPP). For
each query point, the local neighborhood size and subspace
dimension are selected to compute the local metrics. The
supervised sample-locality metric based head pose estimation
rate and its DPC are plotted in Fig. 8 for . In Fig. 8, the
estimation performance falls off as the DPC decreases beyond
certain points (around 50 or 150, etc.). We can see that the DPC
is only valid during the limited value range [0, 200]. It is not
guaranteed to get effective discriminating classifications when
the DPC is large.

The DPC captures the empirical tradeoffs between the data
complexity, as indicated by the number of edges among data
points, and the model complexity, as indicated by the number
of free variables in the linear models. In Fig. 8, the local neigh-
borhood size is changed from 15, 30, 45, to 120. When the
local neighborhood size is small, the model does not capture
the data variation well, the metric learnt does not generalize
well, and the recognition performance is not good. When the
local neighborhood size is very large, the data variation is well
captured, but the model power is also overwhelmed, where the
overall trend of estimation performance decreases with the DPC
increasing. A good tradeoff seems to be at a DPC value between
50 and 80, where the data variations are well captured by the
models and the models achieve good recognition performance.
This phenomenon conforms to our theoretical discussions in
Section II. Such statement is well demonstrated in Fig. 8 for
both Su-S-Locality and Su-S L-Locality cases. Note that here
the DPC value may not be generalized. This particular example
is used to demonstrate the tradeoff towards any problem and
model on the DPC concept.

The computational complexity of the local metric for the
head pose estimation experiment is summarized in Table VI,
with various subspace dimension and size of neighborhood

. The computational cost is low in the locality framework.
The average speed of pan/tilt angle estimation with a super-
vised sample-locality metric is about 7 to 10 estimations per
second, with un-optimized Matlab 6.0 code running on a 2.0
GHz Pentium CPU and 512 MB RAM PC. The joint model of

TABLE VI
COMPARISON ON COMPUTATIONAL COMPLEXITY (SECOND PER ESTIMATION)

FOR HEAD POSE ESTIMATION

sample-locality and learning-locality does not introduce more
computations and even saves the computational cost in most
cases.

V. CONCLUSION

In this paper, we have discussed the basic issue in the linear
subspace learning field—which criterion, globality or locality,
is more effective to enhance the discriminating power of feature
extraction? Measured by the discriminating power coefficient,
we demonstrate in both theory and experiment that applying the
local manner in sample, feature, and learning spaces via linear
subspace learning can improve the discriminating performance
of globality and thereby significantly enhance the classification
accuracy. We also address the problem of numerical difficulty
in the scenario of large size recognition, where many local vari-
ations cannot be adequately handled by a single global model.
By localizing the modeling, more discriminative bases and mul-
tiple models are exploited to contribute to the multimodal piece-
wise subspace learning framework. This new strategy appears to
be more robust and flexible for model selection among different
model candidates. In the extensive experiments and evaluations,
the proposed locality learning framework is demonstrated to be
effective, robust, and fast for large size, multiclass, and multi-
variance data sets. In the future work, we will try to find out the
criterion that can help us decide which types of localities should
be applied to what kinds of scenarios. More attentions will be
on designing advanced local metric modeling and judicious use
of multiple models [21] for real-world applications in HCC.
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