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Abstract

We present a novel decentralized probabilistic approach to visual tracking of articulated objects. Analyzing articulated motion is chal-
lenging because (1) the high degrees of freedom potentially demands tremendous computation, and (2) the solution is confronted by the
numerous local optima existed in a high dimensional parametric space. To ease these problems, we propose a decentralized approach that
analyzes limbs locally and reinforces the spatial coherence among them at the same time. The computational model of the proposed
approach is based on a dynamic Markov network, a generative model which characterizes the dynamics, the image observations of each
individual limb, as well as the spatial coherence among them. Probabilistic mean field variational analysis provides an efficient compu-
tational diagram to obtain the approximate inference of the motion posteriors. We thus design the mean field Monte Carlo (MFMC)
algorithm, where a set of low dimensional particle filters interact with one another and solve the high dimensional problem collabora-
tively. We also present a variational maximum a posteriori (MAP) algorithm, which has a rigorous theoretic foundation, to approach to
the optimal MAP estimate of the articulated motion. Both algorithms achieve linear complexity w.r.t. the number of articulated subparts
and have the potential of parallel computing. Experiments on human body tracking demonstrate the significance, effectiveness and effi-

ciency of the proposed methods.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Tracking articulated motion in video is an important
problem, especially when the research of video-based
human sensing has been advocated to achieve such emerg-
ing applications such as non-invasive perceptual human
computer interfaces [1,2], intelligent video surveillance
[3,4], gait analysis [5,6], automatic hand gesture recognition
[7,8] and automatic video footage annotation [9], etc. The
problem involves the localization and identification of a
set of linked but articulated limbs. Inheriting all the diffi-
culties from single object tracking, the problem of tracking
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articulated body has to tackle some special challenges.
Some of them are the complications incurred by the high
degrees of freedom of the articulated body: first, the com-
putational complexity may increase exponentially with
the increase of the dimensionality; and second, obtaining
the optimal solution in a very high dimensional space is
confronted by the numerous local optima.

Different from multiple target tracking where the
motion of each target is usually independent of the others,
the physical links among different limbs impose motion
constrains upon them. In other words, the motion of each
limb must be spatially coherent with the others, which is
reinforced by the kinematic structures of the articulated
limbs. We can have an intuitive comparison of these two
cases by the configuration space which is the joint motion
space of the set of limbs. If the motions of limbs are inde-
pendent, the configuration space will enjoy a nice property
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that the motion of each limb stays in a manifold which is
orthogonal to the manifold corresponding to the other
limbs. Thus, independent trackers can be used to track
independent multiple targets and the complexity is almost
linear w.r.t. the number of targets. However, when the
limbs are physically linked, the configuration space will
not have such a nice orthogonality and factorization prop-
erty. Thus, the high dimensionality seems unavoidable.
Various approaches have been investigated to alleviate
the computation complexity caused by high dimensional-
ity, such as dynamic programming [10,11], annealed sam-
pling [12], partitioned sampling [13,14], eigen-space
tracking [15], hybrid Monte Carlo filtering [16], covariance
scaled sampling [17], etc., to name a few.

Different from these approaches, in this paper, we pro-
pose a novel solution based on a dynamic Markov net-
work [18-20] and a mean field variational analysis. The
proposed dynamic Markov network encodes the spatial
coherence of different limbs in an undirected graphical
model associated with the image observation processes,
thus the model serves as a generative model for the artic-
ulated motion. We perform Bayesian inference based on
a variational mean field approximation, by which tight
approximation may be achieved while the computational
complexity is significantly reduced. At each time instance,
the mean field solution is achieved through Monte Carlo
simulation.

To alleviate the problem caused by local optima, we fur-
ther constrain the variational distribution to be multi-var-
iate Gaussian. Then, we could nicely incorporate a
deterministic annealing (DA) scheme into the mean field
fixed point iterations to obtain the optimal MAP estimate
of the motion. The theoretic foundation of such an varia-
tional MAP algorithm, is based on a theorem proven in
[21]. The variational MAP algorithm [21], with theoretical
guarantee, could achieve better MAP estimate of the
motion while only increase the computation linearly.

Related works are discussed in Section 2. In Section 3,
we present a decentralized probabilistic representation of
the articulated body based on a Markov network. In Sec-
tion 4, we present the mean field variational method to
achieve the Bayesian inference. Due to the multi-modality
of the motion posteriors, we use Monte Carlo simulation
to implement it. This results in the mean field Monte Carlo
(MFMC) algorithm [18-20] in Section 5. We then present
the variational MAP algorithm [21] in Section 6. Experi-
mental results are presented and discussed in Section 7.
Finally we conclude in Section 8.

2. Related work

There is a substantial literature on articulated motion
analysis, and many different approaches have been investi-
gated. For all these methods, three important issues should
be addressed: the representations for articulated objects,
the computational paradigms, and the means of reducing
the computation for the optimal solution.

There can be two typical representations for articulated
objects. One employs the joint angles [9,22,14,23], which is
in nature a centralized model. While the other uses the col-
lection of the motion of all the limbs, e.g., the cardboard
person [24], the decentralized probabilistic model based
on Markov network [18,21] which is also used in this paper,
the loose-limbed model [25,26], and tree structured model
[27,11], to list a few.

Of course, the centralized joint angle representation is
non-redundant and reflects the degrees of freedom of the
articulated motion directly, while the second one is highly
redundant. The centralized representation usually results
in a very high dimensional parameterization. Since there
are complex motion constraints, it may be possible to learn
a lower dimensional manifold to characterize the articu-
lated motion [23,28]. However, the intrinsic dimensionality
of the learned manifold may still be quite high. In this case,
the motion analysis problem can be posed as an uncon-
strained optimization in a high dimensional space. On the
other hand, if the articulated motion is redundantly
described by the individual motion of the subparts, each
subpart may be solved individually, and then projected to
the constrained space which reinforces the spatial coher-
ence among them. Thus, it corresponds to a constrained
optimization problem. By taking advantage of the struc-
ture of the configuration space resulted from such a redun-
dant representation, efficient solutions can be found as in
this paper.

There are mainly two different computational paradigms
for articulated motion analysis: the deterministic approach
usually formulates the problem as a parameter estimation
problem [29,24,22], and the solution is usually provided
by some non-linear optimization methods. While the prob-
abilistic approach formulates it as a Bayesian inference
problem [12,18,26], and the solution is provided by recov-
ering the motion posterior sequentially at each time
instant. Due to the non-Gaussian densities which com-
monly exist in a probabilistic formulation [30,31], closed-
form implementation of the Bayesian inference is usually
intractable and thus it is performed by Monte Carlo simu-
lation. However, both approaches are confronted by the
high dimensionality. More specifically, for the deterministic
approach, the optimization needs to be performed in a very
high dimensional parametric space which is confronted by
the numerous local optima. As for the probabilistic
approach, the computational cost of a Monte Carlo algo-
rithm may increase exponentially with the dimensionality
[32]. Moreover, obtaining the MAP estimate of the motion
is also confronted by the same local optima problem as that
in the deterministic approach.

Numerous techniques have been proposed to improve
the efficiency for the probabilistic approach. For example,
a multiple hypothesis tracking algorithm was proposed,
which only keeps the salient modes of the motion posteri-
ors for more efficient Monte Carlo simulation [9]. Parti-
tioned sampling is in the spirit of coordinate descent and
preforms the sampling in a hierarchical fashion [13,14].
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Low dimensional manifold could be learned from the nat-
ural hand motion to reduce the dimensionality [23]. In
[25,26], the non-parametric belief propagation algorithm
[33,34] were applied on the loose-limbed model to achieve
the Bayesian inference of the articulated body motion.

It is generally difficult to achieve the optimal MAP esti-
mate since it involves global optimization. It was proven
that stochastic simulated annealing (SA) [35-37] methods
converge in probability to the global optimum [36]. How-
ever, SA algorithms are inherently slow due to the random-
ized local search strategy. On the other hand, deterministic
annealing (DA) [38] utilizes the idea of annealing but it is
based on deterministic optimization schemes. This greatly
relieves the inefficiency of SA while retaining the benefit
of the annealing process. Although global optimality may
not be guaranteed by DA, many empirical studies have
shown that DA is very likely to achieve global or near glo-
bal optimal estimate [38].

Different with the previous methods, this paper presents
a mean field Monte Carlo (MFMC) algorithm in which a
set of low dimensional particle filters interact with one
another to collaboratively solve a high dimensional Bayes-
ian inference problem. Moreover, based on a theorem pro-
ven in [21], by constraining the variational distribution to
be a Gaussian, we could further incorporate a DA scheme
into a Gaussian mean field fixed point iterations to pursue
the optimal solution.

3. Decentralized probabilistic representation

We denote the motion of each limb by x;, e.g., it can be
the parameters of an affine motion. The motion of an artic-
ulated body is the concatenation X = {xy, ...,X,,}. Cer-
tainly, it is highly redundant. The image observation
associated with x; is denoted by z,, which could be the
detected edges of the shape contour of the limbs. The col-
lective image observations of the entire articulated body is
Z = {z,,...,2,}. An important task is to infer the poster-
ior p(X|Z).

As shown in Fig. 1, a mixture of undirected and directed
graphical model can be used to characterize the generative
process. The latent layer is an undirected graph

' V v
2] [Z2] [Zs] [Z4][ 2

Fig. 1. The Markov network for an articulated body.

G, = {V,E}, representing the spatial coherence among dif-
ferent articulated parts. Obviously, different parts are not
independent, and each individual part must be spatially
coherent with its neighborhood parts. We denote the neigh-
borhood parts of i by N (i). Clearly, it is a Markov net-
work. In addition, each individual part is associated with
its observation and the conditional likelihood p(z;x;) is
represented by a directed link.

Given the undirected graph of X, p(X) can be modelled
as a Gibbs distribution and can be factorized as:

p(X) =5 TTw.(x0) (1

¢ ceC

where c is a clique in the set of cliques C of the undirected
graph, X, is the set of hidden nodes associated with the cli-
que and (X,) is the probability of this clique, and Z,. is a
normalization term or the partition function. Although Z.
is difficult to compute, we do not compute it directly. In-
stead a Monte Carlo method will be used as shown in later
sections. The model accommodates two types of cliques:
the first order clique, i.e., i € C' = v, and the second order
clique, i.e., (i,j) € C* = E, where C = C'|JC*. The associ-
ated y is denoted by y; and y;;, respectively. Thus, Eq.
(1) can also be written as:

pX) =TT wy05) [T ) ©)
A

" (ij)ec? iec!

where /(x;) provides a local prior for x;, and ;(x;, X;) pre-
sents the spatial coherent constraints between the neigh-
borhood nodes x; and x;. As a specific example, the
second order potential y;(x;,X;) can be defined as:

(x5, )) ox @ A0 (3)

where D(x;X;) = u(x;) —u(x;), and ufx;) and uyx;) are
shown in Fig. 2. Here, we must emphasize that this zero
mean Gaussian prior is a very weak prior, which only cap-
tures the connectivity of the neighborhood limbs. The rea-
son we adopt it is that our goal is to analyze arbitrary
articulated body motion instead of specific ones. More
complex spatial coherence potential functions may be
learned for more specific stylized articulated motions.

Given a x,, its local observation z; is independent of the
other articulated parts, i.e.,

p(IX) = [ el @)

X| - XJ

D(x;, X,)

Fig. 2. The spatial coherence constraints of two articulated parts.
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Then the problem becomes to infer the posterior p(x;|Z).
An intuition is that the posterior of x; should be affected
by three factors: its local prior y,, its local evidence z,,
and the constraints reinforced by its neighborhood through
;. This intuition will become clearer in Section 4. Since
the exact analysis of such a model is complicated and in-
volves heavy computation, it is more plausible to have an
approximate but efficient solution.

4. Mean field approximation

Variational analysis provides a principled method for
approximate Bayesian inference [39-42]. The core idea of
variational approximation is to find a variational distribu-
tion Q(X) to approximate the posterior distribution p(X|Z),
such that the Kullback-Leibler (KL) divergence of these
two distributions is minimized, i.e.,

0 (X) :angmiH KL(O(X)llp(X|Z)) (5)
= arngin /x 0(X) logp%((xz)) (6)

Selecting a good class of variational distributions Q would
largely ease the difficulties, but it requires substantial crea-
tivity [39]. Here, we adopt a fully factorized form for
simplicity:

ox) =[] o(x) ™

where Qfx;) only relies on x;. Then, H(Q) =>_; H(Q)),
where H(Q) is the entropy of Q(X), and H(Q;) is the entro-
py of O(x;). For each Q,, the KL-divergence can be written
as:

KL(Q) = — ZH(Qk) +logp(Z) — H(Q;)

I
- / 0,(x,)Ellog p(X, Z)x) (8)

where Eg[-|x;] is the conditional expectation given Xx; w.r.t.
0(X), and logp(Z) is the data likelihood, which is a con-
stant. To search for a set of Q; to minimize Eq. (8), since
each Q; is constrained to be a valid p.d.f., we should con-
struct a Lagrangian for each Q;:

10) = KL(@) +4( [o- 1) o)

Setting the variation of L(Q;) w.r.t. Q; and the derivative of
L(Q;) w.r.t. . to zeros, we have
{ —log O;(x;) — 1 + Eg[log P(X,Z)|x;] + 4, =0

fx, O0,(x;)dx; =1 =0 (10)

It is easy to solve the equation set and the solution is a set
of fixed point equations, i.e., for each 1 < i< M,

1
0i(x;) = 7

i

oEollogp(XZ)xi] (11)

where Z; is the partition function for normalization. The
iterative updating of Q,(x;) will monotonically decrease
the KL divergence, and eventually reach an equilibrium.
These fixed-point equations are called mean field equations.

Moreover, the factorization of p(X) in Eq. (2) and
p(Z|X) in Eq. (4) enables further simplification of the mean
field equations in Eq. (11). It is easy to show that:

0i(x;) = %pi(zf|xf)lpi(xi)Mi(Xi) (12)

where

Mi(x;) = exp{ Z / Qk(xk)loglﬁ,-k(xhxk)} (13)
keN (i) v Xk

where Z; is a constant, and N (i) is the neighborhood of the
subpart i. From Eq. (12), the intuition stated at the end of
Section 3 is more pronounced, i.e., the variational belief of
a limb x; is determined by three factors: the local condi-
tional likelihood p{z,;]x;), the local prior y{x;), and the be-
liefs from the neighborhood limb X (we call it
neighborhood prior). This is illustrated in Fig. 3.

Thus,we can treat the term pfz;]x,)¥(x;) as an analogue
to the local belief, and treat the term M,(x;) as an analogue
to the “message” propagated through the nearby subpart
of x; in the belief propagation algorithm [43], but the com-
putation of Mjx;) here is easier. In addition, we can clearly
see from these equations that the computation is signifi-
cantly reduced by avoiding multi-dimensional integrals,
since Eq. (12) involves only single integral.

5. Monte Carlo implementation
5.1. Mean field Monte Carlo (MFMC)

When all the distributions in the Markov network are
Gaussian, then we may obtain a closed-form implementa-
tion of the fixed point equations. But in visual tracking,
the likelihood function p(zjx;) is usually non-Gaussian
[31] due to the background clutter. This results in that
the analytical solution is usually intractable. In this section,
we propose a Monte Carlo method to implement the mean

neighborhood prior

local prior

local likelihood

Fig. 3. Three factors affect the updating of Q(xy).
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field iteration as discussed in Section 4. We call it mean field
Monte Carlo MFMC).

Once the mean field iterations converge, then the set of
optimal variational distributions Q4(x;), where i=1,

., M, is obtained and can be treated as the optimal
approximation to the posterior density p(x;|Z).

To make the presentation clear, here we present the
mean field updating on one node x;,, We use i and
j € N(i) to index the node we want to update and the
linked neighboring nodes, respectively. In addition, we
use k to index the mean field iteration. At the k — 1th iter-
ation, for each subpart, a set of particle is maintained to
represent the variational distribution, i.e.,

{Qf (i) ~ {s)" (k= 1), 2" (k= 1)}, (14
Q) (x) ~ {5 (k= 1), (k= 1)}y, € N(D)

where s and © denote the sample and the weight, respec-
tively. Then at the next iteration, we perform the following
steps according to Eq. (12):

(1) Sampling the local prior w (x;) for {s (k)L };V 0
(2) calculating the “message” from j:

Zn

(k=1)),j € N()
(15)

(3) Performing observation for each particle s\ (k),

w" = plals” (k) (16)
(4) Re-weighting the particles by:

" (k) = w!" exp{ > mf } (17)

JEN (i)

k— 1) log (s (k). s

and normalize to produce {s\" (k), =" (k)}.

(5) Performing the same steps for all the nodes in the
Markov network according to Eq. (12). Then
increasing k for next mean field updating.

Since x; describes the motion of one limb, its image
observation z; should be a function of x;, i.e., p(z;]x;) is in
fact p(z(x,)|x;). Since p(z;|x;) will be used to re-weight the
belief (or the posterior density) of x;, the locations of the
particles {sl(-")} will affect the faith of approximating the
belief by the set of particles, if the ratio of valid particles
is not satisfactory (meaning that a small portion of the par-
ticles dominates the re-weighting). To enhance the ratio of
valid particles, we use importance sampling technique [44]
to place the particles to “better” locations.

The only modification on the above mean field Monte
Carlo (MFMC) algorithm is on the first step: instead of
sampling the local prior (x;) directly to produce
(s AN we draw samples {s\", 11" from an impor-
tance density g(x;). After weight compensation, the set of
re-weighted particle is still a properly weighted set for the
density y(x;), i.e.,

ONE
b(x;) ~ {si"%‘b(sf >)} (18)
g(sin ) n=1
The selection of importance density can be flexible, as
long as it can provides beneficial information. Here, we
give an specific example by using a two-link (where i and
j are connected limbs). To generate samples for y(x;), we
find the means 5; and 5; from the two particle sets. After
identifying the point U, on 5; and the median axis L of 5,
(see Fig. 4), we sample u " from Gu; : 1, %,), andL from
G(L; : Li,X;), where G represents a Gaus51an distribution.

Then the sample s." " is produced by ( 2 E )) and the
importance density is:
gj(x,-) = g(u, . ljlj72u)g(Ll . Eh ZL) (19)

For limbs which are linked to multiple limbs, we can build
one such a Gaussian from each of its neighbors. Then a
Gaussian mixture with equal weights for each of the Gauss-
ian components can be constructed to form the importance
function, i.e.,

gx) =5 Y glx)

JEN (i)

(20)

where K is the total number of neighbors of x,. The use of
importance sampling techniques greatly enhances the
robustness of the mean field Monte Carlo algorithms.

5.2. Dynamic Markov network and sequential mean field
Monte Carlo

Sections 4 and 5.1 describe the mean field approxima-
tion and mean field Monte Carlo at one time instance.
They can be easily extended for tracking. When consider-
ing multiple time instances, the model becomes a dynamic
Markov network, as shown in Fig. 5. Denote the collection
of observations by Z, =1{Z,, ... ,Z,}.

Tracking algorithms aim at inferring p(X,|Z,) by know-
ing p(X,_1|Z;_1). Since X, consists of a number of articu-
lated limbs, the increase of dimensionality will incur
exponential increase of computation. The advantage of
mean field approximation is that it decouples different
parts, and transforms the problem of exponential complex-
ity to a simpler problem with close to linear complexity.
The constraint reinforcement needs some computation as
a cost, but it is not significant.

Fig. 4. Importance density.
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Fig. 5. Dynamic Markov network.

At time instance ¢, mean field approximation finds a var-
iational distribution Q;(x;,) to approximate p(x;,|Z,) for
the ith subpart. The mean field equation can be written as:

1
Qiﬁt(xi,t) Zzp,-(li,tkm) X /p(xz}t‘xi,tfl)Qi,tf](Xi,t71>dxi,t71

X €Xp { Z / O (k) log lnbik(xlltvxkl)} (21)
) Xkt

keN (i

Comparing Eq. (21) to Eq. (12), we clearly see that the
predication density f P(Xis | Xir-1)0; 1 (Xi4—1)dX; -1 in Eq.
(21) of a dynamic Markov network plays the same role
as Y (x;) in Eq. (12). Thus, at time instance ¢, the variational
belief of the ith subpart is also determined by three factors:
the local evidence, the prediction prior from previous time
frame, and the belief of the neighborhood subparts.

Therefore, the sequential mean field Monte Carlo can be
obtained by modifying the mean field Monte Carlo algo-
rithm in Section 5.1. At the first step, instead of sampling
from {x;), we should sample the prediction prior instead.
Suppose at t — 1, Q;,1(x,) is represented by:

n n N
Qiﬁt—l(xi) ~ {Sg,t)—lang,t)—l n=1" (22)

Then, we can use the following steps to replace the first step
in the mean field Monte Carlo algorithm in Section 5.1:

(1a) Re-sampling from Q;, ((x;) for {El(",)_l, l}iv:l.
(1b) V5"

1> sampling ng) from p(x;[xi;-1 = 5\ )-

ijt—1

We have a rough comparison on the computational
complexity of the proposed approach with the original
CONDENSATION algorithm with joint angle representation.
Assume the articulated body consists of M limbs, each of
which contributes one DoF, and assume a number of T
particles are needed for tracking one limb. In addition,
we assume when one more DoF is added, CONDENSATION
needs P x T particles to work. Through our experiments,
10 is reasonable for P. In our mean field Monte Carlo,
we denote the number of mean field iteration by K, which
is 5 in our experiments. In both methods, the most inten-
sive computation is on calculating image observation, while

the extra computation induced by M(x;) in Eq. (12) is neg-
ligible. Thus, the complexity of our method is O(TKM),
while cONDENSATION has O(TPM~') which is much larger
than the proposed mean field Monte Carlo algorithm when
the dimension increases.

In addition, the proposed mean field Monte Carlo
(MFMC) algorithm is also different from the partitioned
sampling method, although both methods reduce the
exponential complexity to close linear complexity. Parti-
tioned sampling takes a hierarchical search strategy
which is uni-directional (it may be revised to run back
and forth, though), while MFMC is collaborative and
iterative, since the fixed point is achieved by the bi-direc-
tional interactions among a set of low dimensional parti-
cle sets.

6. Variational maximum a posteriori estimation

Since the motion posteriors are usually multi-mode,
using the mean estimate may significantly deviate from
the MAP estimate and thus could not indicate the true
motion. In [21], an annealed variational method called var-
iational MAP, is proposed to approach to the maximum a
posteriori estimate. For self-completeness, we briefly sum-
marize the variational MAP algorithm and its theoretical
foundations in this section.

We first present a theorem proven in [21], which is about
the KL divergence between a Gaussian distribution ¢(x)
and another p.d.f p(x), i.c.,

Theorem 1. Let p(Xx), x is a random vector in R", be a
bounded, continuous and everywhere positive p.d.f. with the
properties:

o There exists a unique X" €R" such that
p(X7) = supyerp(X)
e p(x) is proper, i.e., p(x) > 0 as X > oo
o The following integrability condition holds
T
/ exp { XZX} log p(x)dx| < +o0 (23)

Suppose q(x) ~ N (x]0,Z,) is a Gaussian distribution
with zero mean and identity covariance matrix I,, then
denote g"(x) ~ N (x|ii,6°Z,),x € R" as the Gaussian dis-
tribution with mean @i and diagonal covariance 6°Z,.
Assume [y is such  that  KL(¢%(x)||p(x)) =
inf KL (gZ(x)||p(x)), then

lim i, = x* (24)

Please refer to [21] for the detailed proof of this theorem.
This theorem provides the theoretical foundation for pur-
suing the optimal MAP estimate of the articulated motion.
As first revealed in [21], we further constrain the Q(X) to be
multi-variate independent Gaussian, i.e.,

C [y, i) diagle®Z,, ... 0" T,))  (25)
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where 7 is the dimensionality of each x; and Z, is the n X n
identity matrix. First, let 6’ be a constant, based on the
mean field fixed point equations Eq. (12), which minimizes
the KL value in Eq. (8), and following the same strategy of
gradient projection [45], we can project the solution to the
functional space of the set of Gaussian distributions with
fixed covariance 6°Z, [21], i.e.,

1
=3 / X))
X exp (Z / g(xjﬁﬁaZzn)logw,,(x,-,xj)) (26)
iEN (i) VX

where Z; is again a normalization constant. Then, we can
iteratively achieve the optimization over a Gaussian family
with fixed covariance by Eq. (26), which we call Gaussian
mean field fixed point equations.

According to Theorem 1, we then nicely incorporate a
DA scheme to pursue the global maximum of P(X|Z)
[21]. This could be achieved by taking 6 as the temperature
T for annealing. We present the variational MAP algo-
rithm [21] as follows:

(1) Initialization: m=0; Ty and Ty, are very
large and very small real positive value, respectively;
and p;o, i=1,..., M are the initialization mean
vectors.

(2) Annealing: m=m+1, T= %, then X, =Tx Z,;
B = Py, i=1,... ,M; if T> Ty, goto Step 3,
else goto Step 4.

(3) Mean field iteration: Update #;, for every
i=1,...,M according to Eq. (26). Iterate this step
until convergence. Then jump back to Step 2.

(4) Result: fii = fijm, i=1,...,M, are the MAP esti-
mation of P(X|Z).

Note that when 7 is large, the optimization of the KL is
a convex optimization problem [38,21], the iteration of Eq.
(26) will surely find the only optimal point. Since the initial-
ization of the fixed point iteration at each T is from the
optimization result from the previous annealing step, this
DA scheme will guide the whole searching process to the
optimal or near optimal point of the real posteriors, as
assured by Theorem 1. More detailed discussions can be
found in [21].

It is straightforward to extend the variational MAP
algorithm to the dynamic Markov network [46], we simply
need to replace Eq. (26) with the following equation, i.e.,

. 1
Wit :Z_pi(zi,llxl}t) X /Xi,tp(xi,z|xi,t—l)Qi‘t7] (Xz‘,t—l)dxi,t—l

1

X €Xp { Z / g(xk,t TR o'ZIn) log ‘//ik(XLm Xk,t)}
Xt

keN (i)
(27)
which can be derived directly from Eq. (21).

7. Experiments

We performed extensive experiments® on articulated
body with different DoFs. Impressive results were obtained
as reported in this section.

7.1. Experimental setup

Our experiments mainly concern about analyzing the 2D
motions. Thus, we adopt a cardboard model where each
limb in the articulated body is represented by a planar
object, and thus the state of x; is the parameters of a 2D
affine transform. The motion model p(x;,|x;, 1) is a stan-
dard second order constant acceleration model for each
limb, which are estimated online based on the estimated
motion at each time instant.

The observation model p(z;|x;) is also an important fac-
tor in tracking. We use two types of visual cues: edge and
intensity. We adopt the same method in CONDENSATION
[31,30] for edge observation, where a set of independent
measurement lines were used to measure the likelihood of
detected edge points. In addition, since the articulated tar-
gets are human body parts and the skin or clothes on the
limbs may be similar, we also use the intensity cue and
assume that the distribution of the intensity of each limb
be a Gaussian distribution. The mean and variance of the
Gaussian density is estimated for each individual limb from
the manual initialization in the first frame.

7.2. Results of MFMC iteration

To demonstrate that the mean field iterations do con-
verge and are functioning as expected, we collect the inter-
mediate results on the MFMC iterations. The first row and
second row of Fig. 6 show that the MFMC iterations at a
specific time instant on a 2-part arm and a 3-part finger
video sequence, respectively. In both cases, the mean esti-
mates of the motion posteriors at the first five iterations
are shown. Before the iteration, the initial status is quite
unpleasant. But after a couple of mean field iterations,
the estimates settle down on the correct positions as
expected. From our experiments, most iterations converge
in less than five times. In Section 7.3, we will present the
experimental results of exploiting the MFMC algorithm
to track various articulated objects. In Section 7.4, we will
present the experimental results of articulated body track-
ing using the variational MAP algorithm.

7.3. Tracking various articulated objects by MFMC

To demonstrate the effectiveness, efficiency and scalabil-
ity of the MFMC algorithm, we perform experiments on
various articulated objects of difference DoFs, including a

2 The video sequences of all the reported experimental results can be
provided upon request.
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Fig. 6. From left to right, the first five iterations of MFMC at a specific time instant on the (2-part) arm sequence (first row) and (3-part) finger sequence

(second row).

2-part arm, 3-part finger, 6-part upper body and 10-part
full body. The first test sequence is a 2-part arm, which
consists of two limbs: upper arm and lower arm. The
sequence consists of 441 frames. The lower arm presents
larger motion than upper arm in the testing sequence.
The MFMC algorithm perform excellently due to the rein-
forcement of the spatial coherence constraints. Sample
frames are shown in the first row of Fig. 7. We compare
the results from MFMC with multiple independent track-
ers (MiT). Sample result images from MiT are presented
in the second row of Fig. 7. Although there are only two
limbs, MiT does not produce satisfactory results, since
either one has the risks to lose track and there are no other
means to get it back except the image observations, and
MiT hardly produce plausible results satisfying the spatial
coherence constraints.

The second test sequence is on a 3-part finger and con-
sists of 182 frames. As expected, MFMC produce very

7 (a) #8 (b) #47

(c) #58

robust and stable result. Sample frames are shown in
Fig. 8.

The third test sequence is on a 6-part upper body, where
complex arm motions as well as global movement of the
torso and head are presented. The sequence consists of 834
frames. Although the articulation is quite complicated, it
does not fail MFMC. Sample frames are shown in Fig. 9.
The fourth test sequence is on a 10-part full body, which
has 767 frames in total. Arms and legs are the most articu-
lated body parts, and they present significant motion. None
of our run of MiT succeeds. Sample results of MiT are shown
in the second row of Fig. 10. When MFMC is applied, the
tracking result is still very stable unlike MiT. Using the mean
estimate, the MFMC algorithm can track the 10-part full
body articulation to frame 368. It then loses track because
of the heavy multi-modality existed in the motion posteriors
where the mean estimate could hardly indicate the true
motion. Sample frames are shown in the first row of Fig. 10.

(e) #221

(d) #175 (e) #221

Fig. 7. Tracking 2-part arm: first row, tracking results by MFMC. Second row, tracking results by MiT. Frame numbers are indicated in the bottom of the

result image.

(a) #8

(b) #88

g ke |

(c) #92

| A&

(d) #1-28 (e) #145

Fig. 8. Mean field Monte Carlo (MFMC): tracking 3-part finger. Frame numbers are indicated in the bottom of the result image.
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(a) #88 (b) #198

(c) 4308

(d) #528 (e) #666

Fig. 9. Mean field Monte Carlo (MFMC): tracking 6-part upper body. Frame numbers are indicated in the bottom of the result image.

(a) #48

(b) #£128

(c) #£178

(d) #258

(e) #308

Fig. 10. Tracking 10-part full body: first row, tracking results by MFMC. Second row, tracking results by MiT. Frame numbers are indicated in the

bottom of the result image.

7.4. Optimal motion estimate by variational M AP

Although we have obtained satisfactory experimental
results using the mean estimate from the MFMC algorithm
in Section 7.3, the MAP estimate of the motion posteriors
may provide us with better tracking results. In [21], it was
shown that on the 10-parts full body sequence presented in
Fig. 10, the variational MAP algorithm successfully
tracked the articulated body across all the 767 frames.
The reason for the better results is that the variational
MAP algorithm obtains more accurate MAP estimate of

(2) #38

(b) #38

(c) #108

() #58

(c) #98

the articulated motion at each time instant. That enables
more accurate online estimate of the dynamic model for
each limb, which in turn greatly helps to achieve more
robust tracking. Please refer to [21] for detailed comparison
results. Here, we present some more tracking results on
three video sequences, in which a person performs three
actions such as “clap”, “swing” and ‘““toss”. The video
sequences have 186, 216, and 335 frames, respectively.
These video sequences are more challenging due to the self
occlusion between the limbs and torso. The variational
MAP algorithm (a Monte Carlo version) [21] obtained

(d) #208 (e) #268

Fig. 11. Tracking 10-part full body by variational MAP: first row, clap sequence; second row, swing sequence; third row, toss sequence. Frame numbers

are indicated in the bottom of the result image.
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=
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(a) #10

(f) #106

(g) #145

(h) #168

(i) #184 (j) #203

Fig. 12. Tracking 10-part full body. The background present significant clutter. Frame numbers are indicated in the bottom of the result image.

robust results and sample result images are presented in
Fig. 11. For clarity, we only overlay the skeleton of the
quadrangle shapes of the recovered articulated motion on
the sample images.

The last video sequence we have tested is a full-body
video sequence of 212 frames, where the background is
more cluttered. We presents sample result images in
Fig. 12. As we can observe, the background wall behind
the moving person is quite cluttered. Although the varia-
tional MAP algorithm successfully recovers the motion
from the video, the results are less smooth than the results
obtained when the background is clean. The reason is that
in our current implementation, the motion prior encoded
in the hidden layer of the Markov network is a zero mean
Gaussian to reinforce the spatial coherence constraints. As
we have discussed, this prior is a weak one. Therefore, the
image likelihood functions must be reasonable good for
the proposed approach to obtain good results. Although
we build the image likelihood functions from both edge
and intensity cues to make it more robust, the cluttered
background may still degrade the quality of the adopted
image likelihood function, and thus degrade the quality
of the tracking results. Solution to this degradation issue
due to clutter may be building better image likelihood
functions. For example, when the background is static,
we can perform background subtraction first to remove
the background clutters. We must emphasize here that
none of the experimental results reported here used any
background subtraction techniques. When the back-
ground is not static, we may build more discriminative
image likelihood functions using more image cues such
as textures and color distributions. We defer that to our
future work.

All the experiments are run on a single processor PC of
2.0 GHz. We do not perform any code optimization. For
all these experiments of the MFMC algorithm, the number
of mean field iteration is set to 5. For the variational MAP
algorithm, we design 6 annealing steps and in the first step
of the annealing, we iterate the fixed point equations for 6
times and in the following annealing steps, we iterate the
fixed point equations for 3 times. We also design different
annealing schemes for different components of the affine

Table 1
A comparison of the computation of different articulated objects with the
MFMC algorithm and the variational MAP algorithm

MFMC

Experiments 2-part  3-part 6-part 10-part 10-part
Particles/part 200 200 200 200 200
Frame/second 2.02 1.28 0.94 0.56 0.23

Algorithm Variational MAP

state vector since they have different ranges. To be more
specific, for the translation components, the annealing
starts at T,,.x; = 8 and for the scaling components, it starts
at Tpaxo = 0.6. It is obvious that applying the variational
MAP algorithm will increase the computational cost, but
the increase is linear compared with the MFMC algorithm.
Thus the variational MAP algorithm also achieves close to
linear complexity w.r.t the number of limbs.

7.5. Computation efficiency

To demonstrate the efficiency the MFMC algorithm and
the variational MAP algorithm, we present the number of
particles for each part and the processing frame rates of
both algorithms in Table 1.

As we can observe in the table, with 200 samples for
each limb, the processing frame rate decreases almost line-
arly with the increase of the number of limbs. This indi-
cates that the problem of the exponential increase of
computational cost w.r.t the dimensionality has been over-
come by the proposed MFMC algorithm. Moreover, we
can also observe that the variational MAP algorithm could
achieve better results at the expense of more computational
cost. But it still achieves linear complexity w.r.t. the num-
ber of limbs.

8. Conclusion remarks

Tracking articulated objects is a challenging problem,
since the increase of the number of limbs and the physical
connection constraints of them would potentially incur
high dimensionality, and fail tracking algorithms devel-
oped for single target. Thus, algorithms with close to linear
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complexity would have much better scalability. In this
paper, we propose a decentralized collaborative approach
to achieve such a goal. Instead of using the centralized joint
angle representation which is irreducible, we adopt a highly
redundant representation for articulated body. We repre-
sent individual limb by its own motion parameters, but
reinforce the spatial coherence constraints among them
by a Markov network. Variational analysis is performed
for the Bayesian inference on this graphical model. Inter-
estingly, a set of fixed point equations (i.e., the mean field
equations) is found, which suggests a collaborative solution
to the problem through the iterative interaction among
neighboring limbs.

Then a mean field Monte Carlo (MFMC) algorithm is
designed to achieve effective computation and a variational
MAP algorithm is further adopted to pursue the optimal
solution. Extensive experiments demonstrate the effective-
ness and scalability of the proposed methods. We also
show that the added annealing steps in the variational
MAP algorithm does enhance the performance compared
with the MFMC algorithm, but that is at the expense of
more computation. Nevertheless, we also demonstrate that
the computation increase is still linear w.r.t. the number of
body parts for the variational MAP algorithm.

Since self-occlusion seems a severe issue for articulated
motion, one possible future work is to design collaborative
algorithms for solving the occlusion problem. Moreover,
since a centralized joint angle representation may facilitate
the incorporation of high-order motion constraints,
another possible future work would be to design algo-
rithms which combine centralized and decentralized repre-
sentation together to achieve more efficient and more
accurate tracking of the articulated body.
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