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Abstract—Without any prior about the target, the appearance
is usually the only cue available in visual tracking. However, in
general, the appearances are often nonstationary which may ruin
the predefined visual measurements and often lead to tracking
failure in practice. Thus, a natural solution is to adapt the obser-
vation model to the nonstationary appearances. However, this idea
is threatened by the risk of adaptation drift that originates in its
ill-posed nature, unless good data-driven constraints are imposed.
Different from most existing adaptation schemes, we enforce
three novel constraints for the optimal adaptation: 1) negative
data, 2) bottom-up pair-wise data constraints, and 3) adaptation
dynamics. Substantializing the general adaptation problem as a
subspace adaptation problem, this paper presents a closed-form
solution as well as a practical iterative algorithm for subspace
tracking. Extensive experiments have demonstrated that the pro-
posed approach can largely alleviate adaptation drift and achieve
better tracking results for a large variety of nonstationary scenes.

Index Terms—Appearance model adaptation, subspace
tracking, visual tracking.

I. INTRODUCTION

V ISUAL tracking establishes the correspondences of the
target of interest between successive frames, which

is a fundamental research problem in video analysis and is
important for a large variety of applications including video
surveillance and human-computer interaction. In recent years,
video-based tracking experienced a steady advance in both
theory and practice, e.g., the sampling-based methods [1]–[3]
and the kernel-based methods [4]–[7]. Although many tracking
tasks can be successfully handled by using these techniques,
real situations in practice, such as long duration tracking in
unconstrained environments, still pose enormous challenges to
these techniques. One common challenge arisen from these real
situations is the nonstationary changes of the visual appearances
of the target due to the view changes, illumination variations [8]
and shape deformation [9]. Such appearance changes can ruin
the prespecified visual measurement (or observation) model
and lead to tracking failure.
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Generally speaking, two approaches can be taken to deal
with this challenge. One is to exploit the visual invariants [10],
[11] of the targets. However, in general, finding invariants itself
is very difficult, if not impossible, although learning methods
can be employed [12]–[16]. Another approach is to adapt the
tracker to the changes, for example, by updating the appear-
ance models [17]–[19], [2], [20], or selecting the best visual
features [21]–[25]. Unlike the invariants-based methods which
require off-line learning of the visual measurement models (the
appearance models) and sometimes are tantamount to detection
and recognition problems, the adaptation-based methods tend
to be more flexible, since the measurement models are adaptive
or the features used for tracking can be adaptively selected
[26]–[28].

In most existing adaptation-based methods, it is not un-
common to observe adaptation drift, i.e., the appearance
models adapt to other image regions rather than the target of
interest and lead to tracking failure. Many ad hoc remedies
have been proposed to alleviate the drift, e.g., by enforcing
the similarity to the initial model [18], [21] which confines
the range of possible adaptations. However, in general, such
a phenomenon of adaptation drift is not accidental but widely
exists in a large variety of adaptation schemes, and poses a
threat to adaptation-based visual trackers. Thus, it justifies
an in-depth investigation to facilitate careful designs of the
adaptation schemes.

In most existing adaptive tracking methods, the model at the
current time instant is updated by the new data that are closest
to the model at previous time step, with a hidden assumption
that the best model (or feature) up to time is also the best
for time . Unfortunately, this assumption may not universally
hold. As a result, when this assumption becomes invalid, the
data closest to the model at time may actually be far from
the right model at time , and thus deviating the adaptation and
failing the tracker.

The nature of the adaptive tracking problem lies in a chicken-
and-egg dilemma [29]: the right data at time are found by the
right model at time , while the right model can only be adapted
by using the right data at time . If no constraints are enforced,
any new data can lead to a valid and stable adaptation, since
the adapted model tends to best fit the new data. Therefore, in
order to make this problem well-posed, we need to introduce
good data-driven constraints from the image observations at the
current time instant, and they should be reasonable and allow a
wide range of adaptation.

In this paper, we substantialize the general adaptation
problem as a subspace adaptation problem in nonstationary
appearance tracking, where the target visual appearances for
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a short time interval are represented as a linear subspace. We
analyze the ill-posed adaptive tracking problem in this setting.
In our approach, we enforce three novel constraints for the
optimal adaptation: 1) negative data that are easily available,
2) pair-wise data constraints that are used to identify positive
data from bottom-up, and 3) adaptation dynamics that smooth
the updating process. Then, we give a closed-form solution to
this subspace tracking problem and also provide a practical
iterative algorithm. Our method not only estimates the motion
parameters of the target but also keeps track of the appearance
subspaces. Note our model adaptation strategy is fundamen-
tally different from the methods using on-line learning [23],
[25], where the appearance models at previous time frames are
directly utilized to supervise labelling the current image ob-
servations, and to determine the new information for updating
the model. In contrast, we mainly resort to the data-driven
constraints to select positive and negative data from current
image observations for the appearance model adaptation.

In the next section, we briefly review related tracking algo-
rithms in terms of different observation models, afterwards the
dilemma in the traditional adaptation schemes is investigated.
Our solution to the dilemma of the adaptation is elaborated in
Section III. In Section IV, we present the experiments results
and discussions. The concluding remarks are given in Section V.

II. RELATED WORK AND MOTIVATION

In tracking, the target is tracked or detected based on the
matching between the observed visual evidence (or measure-
ments) and the visual model. We generally call the model that
stipulates the matching as the observation model or the mea-
surement model. Without any prior of the targets, appearance-
based tracking approaches are more general than feature-based
methods. The visual appearances of an object may bear a man-
ifold in the high-dimensional image space. Depending on the
features used to describe the target and on the variances of the
appearances, such a manifold can be quite nonlinear and com-
plex. Therefore, the complexity in the appearances largely de-
termines the degrees of difficulty of the tracking task.

A. Visual Observation Models in Tracking

We can roughly categorize the observation models in various
tracking algorithms into three classes: 1) with fixed appearance
templates, 2) with known appearance manifolds, 3) with adap-
tive appearance manifolds on-the-fly.

In the observation models with fixed appearance templates,
the motion parameters to be estimated (denoted by ) are the
only variables that affect the appearance changes. We denote the
image observations as and the hypothesized one as . Then
the observation model needs to measure the similarity of and

, or the likelihood , assuming the mo-
tion parameter deterministically specifies the corresponding
hypothesis . If is a vector, i.e., , this class of ob-
servation models is concerned with the distance between two
vectors. The image observations can be edges [1], color his-
tograms [4], feature points [30], etc. Most tracking algorithms
employ this type of observation model.

The motion parameters of interest may not be the only con-
tribution to appearance changes, but there can be many other

factors. We denote the hypothesized observation by to
indicate the influences of other factors besides the target mo-
tion. For example, the illumination also affects the appearance
[14] (e.g., in tracking a face), or the nonrigidity of the target
changes the appearances (e.g., in tracking a pedestrian), but we
may not be interested in recovering too many delicate nonrigid
motion parameters. Thus, there are uncertainties in the appear-
ances model itself, and the observation model needs to integrate
all uncertainties, i.e.,

(1)

In other words, given a motion hypothesis , its hypothesized
observation is no longer a vector, but a manifold in ,
and the observation model needs to calculate the distance of the
evidence to this manifold. Depending on the free parameters

, such a manifold can be as simple as a linear subspace [13],
[14], or as complex as a highly nonlinear one [12], [15]. The
second class of observation models assumes a known manifold,
which can be learned from training data off-line in advance.

Although the appearance manifolds exist, in most cases, they
are quite complex, and the learning task itself is challenging
enough. In addition, in real applications, we may not have the
luxury of being able to learn the manifolds of arbitrary objects
for two reasons: we may not be able to collect enough training
data, and the applications may not allow the off-line processing.
Thus, we need to recover and update the appearance manifolds
online [2], [17], [19], [20], or the densities of certain appearance
features [31] during the tracking. In general, we make a reason-
able assumption that the manifold during a short time interval
is linear [18], [32]. The nonlinear manifold is approximated by
piece-wise linear subspace [33] or mapped to low-dimensional
manifold using nonlinear mapping [34], or the learned general
subspace could be updated to a specific one during the tracking
[35]. The method of online feature selection, e.g., in [21], can
also be categorized in this class, since the selected features span
a subspace. In these methods, model drift is one of the common
and fundamental challenges.

This paper studies the problem of adaptive appearance
models. The differences from the existing work include an
in-depth analysis of the adaptation drift, and a novel solution
that alleviates the drift by enforcing both bottom-up data-driven
and top-down constraints.

B. Chicken-and-Egg Dilemma

Although the appearance manifold of a target can be quite
complex and nonlinear, it is reasonable to assume the linearity
over a short time interval. In this paper, we assume the appear-
ances (or visual features) lie in a linear subspace
spanned by linearly independent columns of a linear trans-
form , i.e., is a linear combination of the columns
of . We write .

The projection of to the subspace is given by the least
square solution of , i.e.,

(2)
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where is the pseudo-inverse of . The
reconstruction of the projection in is given by

(3)

where is called the projection matrix. Un-
like the orthonormal basis, the projection matrix is unique for
a subspace. We can decompose the Hilbert space into two
orthogonal subspaces: a -dimensional subspace characterized
by and its -dimensional orthogonal complement char-
acterized by .

Therefore, the subspace delineated by a random vector
process is given by the following optimization problem:

(4)

where is the expectation over the random vector process
. It is easy to prove that the optimal subspace is spanned by

the principal components of the data covariance matrix. This
problem is well-posed since the samples from are given,
thus the covariance matrix is known.

However, in the tracking scenario, the problem becomes

(5)

where is the motion parameters to be tracked. In this setting,
we are facing a dilemma: if cannot be determined, then
neither can , and vice versa. Namely, given any tracking result,
good or bad, we can always find an optimal subspace that can
best explain this particular result.

Unlike some other chicken-and-egg problems, this problem is
even worse since no constraints on either or are imposed.
For arbitrary tracking result , there exists a projection ma-
trix to minimize (5), and vice versa. Therefore, this problem
is ill-posed and the formulation allows arbitrary subspace adap-
tations.

From the analysis above, it is clear that constraints need to be
added to make this problem well-posed. A commonly used con-
straint is the “smoothness” of the adaptation, i.e., the updated
model should not deviate much from the previous one, and most
existing methods [17], [18], [21], [32] solve this dilemma in the
following manner:

(6)

In this adaptation scheme, at time , the data that are the
closest to the subspace at the previous time instant are found
first, then they are used to update the subspace. This approach
is valid only if the following assumption holds: the optimal sub-
space at is also optimal for time . In reality, this assump-
tion may not necessarily be true, since a data point that is the
closest to the subspace may not be the closest to . Thus,
we often observe that the model adaptation cannot keep up with
the real changes and the model gradually drifts away. When the
data found based on in fact deviate from significantly,
the adaptation is catastrophic. Although this approach makes the

original ill-posed problem in (5) well-posed, it is prone to drift
and thus not robust.

III. OUR SOLUTION

From the analysis in Section II-B, it is clear that we need
more constraints than the adaptation dynamics constraint alone.
In the tracking problem, at time before the target is detected,
all the observation data are unlabelled data, i.e., we cannot tell
whether or not a certain observation should be associated (or
classified) to the target appearance subspace. The adaptation dy-
namics constraint is a top-down constraint, which does not pro-
vide much supervised information to the data at time . There-
fore, to make the adaptation more robust, we need to also iden-
tify and employ bottom-up data-driven constraints, besides the
smoothness constraint.

In this paper, we propose to integrate the following three con-
straints.

• Negative data constraints. At the current time , although
it is difficult to obtain the positive data (i.e., the visual ob-
servations that are truly produced by the target), negative
data are everywhere. In fact, positive data are very rare in
all the set of possible observation data. The negative data
may help to constrain the target appearance subspaces. We
denote the positive data at time by , and the negative
data by .

• Pair-wise data constraints. Given a pair of data points, it
is relatively easier to determine whether or not they belong
to the same class. Such pair-wise data constraints are also
widely available. A large number of pair-wise constraints
may lead to a rough clustering of the data. Based on the
smoothness constraints, we can determine a set of possible
positive data to constrain the subspace updating. The detail
is in Section III-E.

• Adaptation smoothness constraints. The smoothness con-
straints are essential for the tracking process, since the
process of the data at time should take advantage of the
subspace at time . There are many ways to represent
and use this type of constraints. The most common scheme
as indicated in Section II-B enforces a very strong smooth-
ness constraint. In our approach, we treat the constraint as
a penalty which can be balanced with other types of con-
straints. The penalty is proportional to the distance of two
subspaces, i.e., the Frobenius norm of the difference of the
two projection matrices .

A. Formulation

When processing the current frame , the following are as-
sumed to be known: 1) the projection matrix of the previous
appearance subspace , 2) a set of negative data collected
from the current image frame, , 3) a set of possible posi-
tive data identified based on the pair-wise constraints, , 4)
previous negative covariance matrix and positive covari-
ance matrix .

An optimal subspace should have the following properties:
The positive data should be close to their projections; the nega-
tive data should be far from their projections onto this subspace;
and this subspace should be close to the previous one. Therefore,
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we form an optimization problem to solve for the optimal sub-
space at current time

(7)

where is the projection matrix and is
a weighting factor. The three terms on the right-hand side of
(7) correspond to the aforementioned properties. The optimal
subspace strives to ensure close to their projections ,
the norms of negative data’s projections are small, and
the projection matrices and in consecutive frames are
close. We denote by , and .
It is easy to show (7) is equivalent to the following:

(8)

where denotes the trace of a matrix. In the regularization
term, is set to 0.2 in all our experiments.

B. Closed-Form Solution

Theorem 1: The solution to the problem in (8) is given by
, where is constituted by the eigenvectors that

corresponds to the smallest eigenvalues of a symmetric matrix

(9)

The proof of this theorem is given in the Appendix. Please note
that the solution to is not unique, but the projection matrix

is. If we require that is spanned by orthogonal vectors,
then . Please also note the eigenvalues of may be
negative.

By considering the data in previous time instants, we can use a
forgetting factor , which can down-weight the influence of
the data from previous times. This is equivalent to the use of an
exponentially-weighted sliding window over time to calculate
the covariance matrices. Thus, we can write

(10)

This way, we can update both and .

C. Iterative Algorithm

Section III-B gives a closed-form solution to the subspace, but
this solution involves the eigenvalue decomposition of a
matrix , where is the dimension of the visual observation
vectors and thus can be quite large. To achieve a less demanding
computation, we develop an iterative algorithm in this section,
by formulating another optimization problem according to (7)
as

(11)

where is constituted by orthonormal columns. The
gradient of is given by

(12)

To find the optimal solution of , we can use the gradient
descent iterations

(13)

during which the columns of need to be orthogonalized after
each update.

To speed up the iteration, we perform an approximation.
When the subspace is to be updated by the positive data ,
the PAST algorithm [36] is applied for fast updating, which
will be introduced in the next sub-section. When the updating
is directed by the negative data , we can use the gradient
decent method in (12).

D. Incrementally Updating by Past

In our approach we employ the Projection Approximation
Subspace Tracking (PAST) algorithm [36] to incrementally up-
date the subspace when new positive observations are arriving.
To make this paper self-contained, we briefly introduce the basic
idea of the PAST here. In PAST, the estimation of the subspace

delineated by a random vector process is formulated
as a scalar function optimization problem

(14)

with a matrix argument . Here we abuse the notation
a little bit, then we can see this matrix argument is the same as

the linear transform in the aforementioned formulation. We
can see (14) is essentially as the same as the first term of (11) if
we update the subspace only by the incoming positive data .

Yang [36] proved that the global minimum of is
achieved when spans the -dimensional subspace . There-
fore, updating the projection matrix of translates to solve
the optimization problem and calculate . Note that
there is no orthonormal constraint on and the eigenvectors
of are not necessarily contained in .

Replacing the expectation in (14) with the exponentially
weighted sum of steps, the optimization problem becomes

(15)

where is a forgetting factor. Equation (15) is a fourth-order
function of the elements in and hard to optimize. The key
point of the PAST algorithm is to approximate , the un-
known projection of onto , by

(16)
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The benefits of this approximation are on twofold, the optimal
is guaranteed by quadratic optimization, and the exponential

weighted least square matching in (16) is well studied in adap-
tive filtering and has the analytic solution as

(17)

where and are the correlation matrices at time
step . Thus, the updating can be efficiently implemented with
the incoming new observation .

E. Pair-Wise Constraints

Although the target cannot be detected directly, the low
level image features which distinguish the target object from
its neighborhood may give some hints about the target. The
observation is that if the appearances of two target hypotheses
are quite different, it is not possible that both are positive data.
To utilize this kinds of pair-wise constraints, here we employ
a graph cut algorithm [37] to roughly cluster some sample
appearances collected within the predicted target regions. Then
we may be able to find possible positive data and negative data
from bottom-up. In case we cannot find the good positive data,
i.e., no cluster has a small mean distance to the previous target
subspace, we can determine some sample windows are not
target at least.

Suppose the predicted region for the target is a rectangular
region centered at with width and height . We draw
uniform samples (i.e., 15 15 image patches) to cover a rec-
tangle region . For each sample patch, the kernel-
weighted [4] hue histogram with 64 bins is calculated. The
affinity matrix, obtained based on the similarity of all pairs of
these histograms, is

where

(18)

where is the Bhattacharya coefficient, is the mean of all
coefficients, is their standard deviation. These sample patches
can be grouped into 3–5 clusters by the eigenvalue decomposi-
tion of the affinity matrix and selection of the large eigenvalues.

It is not necessary to have a perfect clustering, as observed
in our experiments. The image region delineated by the cluster
with the minimum mean distance to the previous target
subspace indicates the possible locations that the target may
present. In practice, we can simply treat its geometric centroid
as the possible location of the target and the corresponding
appearance vector as the possible positive data . All the other
clusters are regarded as negative clusters.

F. Selecting Negative Data

The negative data should be selected carefully. Because if
the negative data are too far from the target, the data point may
already lie in the orthogonal complement of the target subspace,
then minimizing the projections of the negative data may not
help. In addition, if the negative data are too close to the target,
they may lie partly in the target subspace such that the estimated
target subspace is pushed away from its true place.

Our selection of negative data is heuristic based on the clus-
tering in Section III-E. After the positive cluster is selected as
in Section III-E, all the other clusters are regarded as negative
clusters. In the image regions spanned by all the negative clus-
ters, we find the locations whose appearances (or features) are
close to the previous target manifold, and treat these appearance
data as negative data in order to distinguish the target from
the negative clusters. This heuristic works better in our experi-
ments then some alternative schemes, e.g., selecting the means
or geometrical centers of the negative clusters as negative data.
The intrinsic idea of negative data is to push the target manifold
as far as possible away from the nearby nontargets.

G. Summary of the Tracking Algorithm

The entire procedure of the proposed algorithm is summa-
rized as follows.

• Initialization: At , the target is specified by the
user input.

• Iteration: For , perform the following 4 steps itera-
tively.

• Step 1: Generate the affinity matrix by computing the sim-
ilarities between the hue histograms of the 15 15 sample
patches within windows with the same size as the target.

• Step 2: Cluster the sample windows and select the feature
vector of the positive cluster’s geometry centroid as
and the feature vectors with minimum distances to
in every negative cluster as .

• Step 3: Update the subspace described by the projection
matrix according to the methods in Sections III-C and
III-D.

• Step 4: Draw samples of uniformly on the current
frame, the one that gives minimum distance to is the
output of the tracker.

IV. EXPERIMENTS

A. Setup and Comparison Baseline

In our experiments, we aim to recover the motion parameter
, where is the location of the target and

is its scale. The corresponding candidate region is normal-
ized to a 20 20 window and the grey-level pixel intensities
are rasterized to a feature vector . At Step 4 of the pro-
posed algorithm, we uniformly sample 100 locations on
a pixel grid (every two pixels) at three scales from 0.95, 1.0,
and 1.05, so the total number of samples is 300. The proposed
method is implemented using C++ and runs at about 2–5 frames
per second on a Pentium-IV 3-GHz desktop without code op-
timization. The computational intensive modules are the clus-
tering process to identify possible positive and negative data in
Section III-E and the iterative updating in Section III-C. Since
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Fig. 1. Comparison of the distances of the ground truth data to the updated subspaces given by three schemes. (a) Nearest Updating versus Nearest�Negative
Updating. (b) Nearest�Negative Updating versus our approach.

during tracking the target appearances may become totally dif-
ferent from what it is in the first frame, we do not apply the
conventional remedy of always including the initial appearance
in the model [21], [18].

For comparison, we implemented a subspace updating tracker
similar to the method in [18], where the nearest appearance ob-
servation to the previous target subspace is used to
update the orthonormal basis of the subspace by using Gram-
Schmidt and dropping the oldest basis. We refer to this method
as Nearest Updating. This scheme represents the essentials of
most of the online adaptation approaches. The method is re-
ferred to as when the positive data are col-
lected by the Nearest Updating scheme, and the negative data
are employed in updating the same way as in our approach. In
all these methods, the adaptation applies every 4 frames.

B. Impact of the Positive and Negative Data

In this quantitative study, we show that the use of negative
and possible positive data does help. We have manually anno-
tated a video with 300 frames, in which a head presents a 180
out-of-plane rotation, and collect the ground truth appearance
data for each frame (denoted by ). The comparison is based
on the distance of the ground truth data to the sub-
spaces estimated by various methods. A smaller distance im-
plies a better method.

As shown in Fig. 1(a), the distance curve for the
Nearest Negative scheme with the mean distance
is slightly lower than that for the Nearest Updating with

, showing negative data can help to keep the
adaptation away from the wrong subspaces. We also observed
in our experiments that the negative data themselves may not
be able to precisely drive the adaptation to the right places.

We compare the proposed method with the Nearest Negative
in Fig. 1(b), in which the curve of our approach is apparently
lower than that of the Nearest Updating. The mean distance
drops from 1035.7 to 849.1. This verifies that the bottom-up
positive data do help.

These two comparisons validate that the proposed approach
are more capable of following the changes of the nonstationary
appearances. Some sample frames are shown in Fig. 2, where
the top row is the results of the proposed method, the middle row
shows the locations of the possible positive cluster and the pos-
sible positive data is enlarged to 60 60 pixels and shown at the
top-left corner of each frame, and the bottom row shows the re-
sults of the Nearest Updating and the nearest data is shown at the
top-left corner as well. In this sequence, the proposed method
consistently follows the head due to more accurate positive data
selected to adapt the target appearance model. The details can
be viewed in the video sequence .1

C. Impact of the Clustering Procedure

In this experiment, we compare our method with the Nearest
Updating in the situation of partial occlusion. We need to track a
face, but the partial occlusion makes it difficult when the person
drinks and the face moves behind a computer.

When the face moves slowly behind the computer, the
Nearest Updating drifts and erroneously adapts to a more stable
appearance, i.e., a back portion of the computer. In Fig. 3, the
top row illustrates this drift process in detail.

The middle row in Fig. 3 presents six appearance data from
the possible positive cluster in our method at the 272th frame.
Obviously, some of them are not faces, since the clustering is
quite rough. But our heuristic of selecting the centroid of the
cluster does help and leads to a correct adaptation. Similarly,
the bottom row shows the situation of our method at the 284th
frame. As the person moves upward, our method correctly fol-
lows the face.

This also illustrates that a rough clustering is sufficient for
our method which is more robust than the Nearest Updating.
Some sample frames are shown in Fig. 4, where the top row is
our method and the bottom row is that of the Nearest Updating.
The details of this demo can be viewed in the sequence .

1All the test video sequences and the comparisons are available on-line at
http://www.ece.northwestern.edu/~mya671/VideoAdaptTIP.htm.
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Fig. 2. Tracking a head with 180 rotation ���������. (top) our method, (middle) the positive cluster, (bottom) Nearest Updating.

Fig. 3. Clustering performance in the video sequence ��	�: top row shows the
drift process of the Nearest Updating around frame 272; middle row lists six
positive data at frame 272 in our method; bottom row lists six positive data at
frame 284 in our method.

D. Tracking a Head With 360 Rotations

Fig. 5 shows the results of tracking a head presenting 360
out-of-plane rotation (The demo is in the sequence ).
The appearances of different views of the head are significantly
different, which makes the tracking difficult and also challenges
the adaptation. Our experiment shows that the Nearest Updating
tends to stick to the past appearances and thus reducing the like-
lihood of including new appearances. For example, when the
front face gradually disappears, this scheme is unable to adapt
to the hairs to track the back head. In all of our experiments,
this scheme loses track when the head fades away. In contrast,
since the bottom-up information (i.e., the negative and possible
positive data) hints the emerging appearances, our method can
successfully track the head, although the bottom-up processing
is quite rough.

E. Tracking a Watch With In-Plane Rotations

In general, 2-D in-plane rotation also induces significant
changes to the visual appearance of the target. In this experi-
ment, the black background is similar to the panel of the watch
such that the adaptation in the Nearest Updating deviates from
the true subspace and it drifts rapidly. In contrast, although the
proposed method is also distracted at frame 444, it is able to re-
cover quickly thanks to the help from the pair-wise constraints.

Sample frames are shown in Fig. 6 and details in the sequence
.

F. Tracking a Face With Large Illumination Changes

In video sequence in Fig. 7, we demonstrate the
performance of our algorithm for large illumination changes.
The Nearest Updating quickly loses the face after the sudden
lighting changes, since all observations are far from the target
subspace; thus, the samples used in the Nearest Updating to up-
date the subspace are kind of random. In contrast, in our method,
selecting the centroid of the positive cluster to update the model
ensures the samples used are consistent.

G. Tracking a Vehicle With Uneven Illumination Changes

Fig. 8 illustrates tracking a car undergoing uneven illumina-
tion changes in video sequence . When this car is going
through the shadow of the trees, the appearance changes sub-
stantially. The proposed method finds good positive samples
from the clustering procedure to update the subspace model and
keeps tracking the car quite robustly.

H. Tracking a Head in Real Environments

Fig. 9 shows the results of the experiment of tracking the head
of a person walking (in the sequence ) in a real envi-
ronment. The appearance of the head undergoes large changes,
and there are also scale changes. The Nearest Updating drifts
to the background when the appearance of the black hair that
the subspace has initially learned almost disappears. This hap-
pens when the person moves towards the camera. On the other
hand, the proposed method can work comfortably and stably in
the case. Further, in Fig. 10, we demonstrate the performance
of tracking a head undergoing both large appearance and scale
changes under a moving camera. The head rotates more than
180 degree while the scale changes are larger than 50% of the
initial size. The proposed method successfully updates the ap-
pearance subspace model to follow the target changes.

I. Tracking Multiple Persons With Large Scale Changes

We also test the performance of tracking multiple people in
surveillance videos using the CAVIAR video set [38], where
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Fig. 4. Tracking a target with partial occlusions ������. (top) our method, (middle) the positive cluster, (bottom) the Nearest Updating.

Fig. 5. Tracking a head with 360 out-of-plane rotation �������	�. (top) our method, (bottom) the positive cluster.

Fig. 6. Tracking a watch with in-plane rotations �
�����. (Top) our method; (bottom) the positive cluster.

the targets are subject to large scale changes but without ap-
pearance changes. As shown in Fig. 11, the proposed method
can well handle scale changes induced by the people walking
away from or towards the camera. In these cases, the Nearest
Updating method shows comparable performance since the ap-
pearance of the target doesn’t change too much.

J. Quantitative Experimental Results

We quantitatively evaluate the performance by comparing the
proposed approach with the Nearest Updating method in terms
of the relative position errors between the center of the tracking
result and that of the manually labelled ground truth. The rela-
tive position error is defined as
where is the labelled target location and scale.

This measurement enables comparing the accuracy of tracking
results for targets with different sizes. Perfect tracking perfor-
mance should have position error around 0. indicates
the tracker deviates away 10% of the true target size.

The results are summarized in Table I, where # of frm. in-
dicates the number of frames annotated, and the mean relative
position error and its standard deviation are denoted as and

for the proposed method, and (NU) and (NU) for the
Nearest Updating method, respectively. Both the mean relative
errors and the standard deviations of all sequences are consis-
tently smaller than that of the Nearest Updating method, which
indicates the proposed method is more accurate and stable (one
exception is the tracking results of the person in a red jacket in
the sequence , i.e., the top row in Fig. 11, where the
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Fig. 7. Tracking a face with large illumination changes ����������. (top) our method, (bottom) the positive cluster.

Fig. 8. Tracking a vehicle with uneven illumination changes ���	�. (Top) our method; (bottom) the positive cluster.

Fig. 9. Tracking a head in real environments �
�������. (Top) our method; (bottom) the positive cluster.

target has no appearance changes.). The frame-by-frame com-
parisons of the relative position errors are illustrated in Fig. 12.

K. Discussions

All the above experiments have validated the proposed ap-
proach. When the target experiences drastic changes, we can
explain the reason why the methods sharing the same nature
as the Nearest Updating deteriorate in two aspects. First, these
methods tend to adhere to the old model as much as possible and
are reluctant to include the changes. When the model changes
completely or the original features disappear, the updated model
will drift away from the true one eventually. Second, when the
drift starts, there is no mechanism in these methods to force them
back; thus, the drift is unstable and catastrophic.

In contrast, since our method utilizes the information from
bottom-up, it can be thought as feedbacks that guide the target
observation adaptation to be distinguishable from the nearby

environment. The combination of both bottom-up and top-down
information makes our method stable and avoids catastrophic
drift to a large extent. As a result, the proposed method can be
more robust and stable to cope with the adaptation drift.

The main limitation is the dependence on good bottom-up
low-level features with high discriminative power. For example,
in case camouflage objects are in the close vicinity of the target,
the color features employed may not yield good clustering
results; thus, the selection of positive and negative data may
not work well. One failure case is shown in Fig. 13 (tracking
the person in a black jacket on the right in the sequence of

, i.e., the top row in Fig. 11). When two people with
nearly identical appearances cross each other, the positive data
are hard to select; thus, the appearance subspace erroneously
adapts to the middle region of the two people.

V. CONCLUSION

We have investigated the adaptation problem in subspace
tracking. If no constraints are imposed, this problem is ill-posed.
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Fig. 10. Tracking a head with both appearance changes and scale changes ���������	�. (Top) our method; (bottom) the positive cluster.

Fig. 11. Tracking multiple people with large scale changes �
���
����. (Top) Three people walking away from the camera; (bottom) three people walking towards
the camera.

Fig. 12. Frame-by-frame comparisons of the relative position errors �.

TABLE I
SUMMARY OF THE QUANTITATIVE EXPERIMENTAL RESULTS

Instead of the commonly used nearest updating scheme, we pro-
pose to impose both top-down smoothness constraints and the
bottom-up data-driven constraints from current observances.

Fig. 13. Tracking a person with a camouflage object nearby �
���
����. (Top)
our method; (bottom) the positive cluster.

Our method balances three factors: 1) distance of positive data
to the subspace, 2) the projections of the negative data, and 3)

Authorized licensed use limited to: NEC Labs. Downloaded on June 12, 2009 at 14:21 from IEEE Xplore.  Restrictions apply.



YANG et al.: TRACKING NONSTATIONARY VISUAL APPEARANCES BY DATA-DRIVEN ADAPTATION 1643

the smoothness of two consecutive subspaces. The proposed
method can largely alleviate the risk of adaptation drift and
thus achieves better tracking performance.

Our further study will include the investigation of the situa-
tion when the smoothness constraint and bottom-up information
are contradicted, and the best way of balancing and fusing these
three types of constraints.

APPENDIX A

Lemma 1: The solution of the following problem:

(19)

where , and , is given by the
eigenvectors that corresponds to the smallest eigenvalues of

.
Proof: It is easy to figure it out. Actually this is the same

as the proof of PCA.
Based on the Lemma, the Proof of Theorem 1 is given by the

following: Performing SVD on , we have ,
where . It is easy to see:

. Then the optimization problem in (8) is equivalent
to

(20)

The Lagrangian is given by

(21)

Let , and we have

(22)

Thus, is an eigenvector of . The
minimization problem is solved by finding the eigenvectors
that correspond to the smallest eigenvalues of .
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