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Abstract—Capturing the human hand motion from video involves the estimation of the rigid global hand pose as well as the nonrigid

finger articulation. The complexity induced by the high degrees of freedom of the articulated hand challenges many visual tracking

techniques. For example, the particle filtering technique is plagued by the demanding requirement of a huge number of particles and

the phenomenon of particle degeneracy. This paper presents a novel approach to tracking the articulated hand in video by learning and

integrating natural hand motion priors. To cope with the finger articulation, this paper proposes a powerful sequential Monte Carlo

tracking algorithm based on importance sampling techniques, where the importance function is based on an initial manifold model of

the articulation configuration space learned from motion-captured data. In addition, this paper presents a divide-and-conquer strategy

that decouples the hand poses and finger articulations and integrates them in an iterative framework to reduce the complexity of the

problem. Our experiments show that this approach is effective and efficient for tracking the articulated hand. This approach can be

extended to track other articulated targets.

Index Terms—Motion, tracking, video analysis, statistical computing, probabilistic algorithms, face and gesture recognition.
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1 INTRODUCTION

THE use of hand gestures is a natural way for commu-
nications and it has attracted many research efforts

aiming at the development of intelligent human computer
interaction systems [24], [40], in which gesture commands
may be captured and recognized by computers, and
computers may even synthesize sign languages to interact
with humans. For example, in some virtual environment
applications, gesture interfaces may facilitate the use of bare
hands for direct manipulation of virtual objects [17], [23].

One technology bottleneck of gesture-based interfaces lies
in the difficulty of capturing and analyzing the articulated
handmotion.Althoughglove-baseddevicescanbeemployed
todirectlymeasurethefinger jointanglesandspatialpositions
of the hand by using a set of sensors (e.g., electromagnetic or
fiber-optical sensors), they are intrusive, cumbersome, and
expensive for natural interactions. Since the video sensors are
cost-effective and noninvasive, a promising alternative to
glove-based devices is to estimate the hand motion from
video. Most existing vision-based motion capturing systems
require reflectivemarkers tobeplacedon the target to ease the
motion tracking tasks; thus, they are not truly noninvasive.
This motivates our research of developing markerless
methods for tracking hand articulation.

Capturinghandand fingermotions invideo sequences is a
highly challenging task due to the large number of degrees of

freedom (DoF) of the hand kinematic structure. Fig. 1 shows
the skeleton of a hand and the names of the joints. Except for
the thumb, each finger has 4 DoF (2 for MCP, 1 for PIP and
DIP). The thumb has 5 DoF. Adding the rigid global hand
motion, the human hand has roughly 27 DoF. The high
dimensionality of this problemmakes the estimation of these
motion parameters from images prohibitive and formidable.
In addition, the rigid hand rotation may incur self-occlusion
that causes fingers to become invisible, introducing large
uncertainties to the estimation of the occluded parts.

Fortunately, the natural human motion is often highly
constrained and the motions among various joints are
closely correlated [18], [41]. Although the DoF of the hand is
large, the intrinsic and feasible hand motion seems to be
constrained within a subset in a lower-dimensional sub-
space (or the configuration space). Once the configuration
space is characterized, it can be utilized to dramatically
reduce the search space in capturing hand articulation.
While some simple and closed form constraints have been
found in biomechanics and applied to hand motion analysis
[6], [15], [16], [38], further investigations on the representa-
tions and utilizations of complex motion constraints and the
configuration space have not yet been conducted.

This paper presents a novel approach to capturing
articulated hand motion by learning and integrating natural
handmotionpriors. The approach consists of three important
components: 1) The divide-and-conquer strategy. Instead of
estimating the global rigid motion and the articulated finger
motion simultaneously, we decouple the hand poses and
finger articulations and integrate their estimations in an
iterative divide-and-conquer framework that greatly reduces
the complexity of this problem. 2)Capturing the nonrigid finger
articulation. We initiate the study of the hand articulation
configuration space and provide a manifold model to
characterize it. To utilize this model in tracking hand
articulation, we propose a powerful importance sampling-
based sequential Monte Carlo tracking algorithm that can
tolerate the inaccuracy of this learned manifold model.
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3) Determining the rigid hand pose. Although many matured
pose determination methods can be applied, we employ the
Iterative Closed Point (ICP) algorithm and the factorization
method for this purpose.

This work has three main contributions to the state-of-
the-art research: 1) By learning from training data, the hand
configuration space is modeled as the union of a set of
linear manifolds in a lower-dimensional space (IR7). This
manifold model provides an effective prior for very efficient
motion capturing. 2) Such a prior model is incorporated in
the tracking process by the importance sampling scheme
that redistributes the particles to more meaningful regions
in order to greatly enhance valid ratio of the particles, thus
leading to a very efficient computation. 3) The divide-and-
conquer framework that alternates the capturing of finger
articulation and the determination of the global rigid pose is
practically flexible and theoretically rigorous.

In addition to the advantages of the proposed system
validated in our experiments, we also discuss the limita-
tions of our current system. It requires user-specific hand
model calibration that measures the dimensions of the
fingers in order to calculate the image likelihoods. Cur-
rently, this process is manually done. In addition, because
of the limitation of our method for global pose estimation,
our current system cannot handle large out of plane
rotations and scale changes very well.

We briefly state the problem in Section 3. We describe
our algorithm for capturing finger articulation in Section 4,
our method for global pose determination in Section 5, and
the details of the divide-and-conquer scheme in Section 6.
We report our experiment results in Section 7 and conclude
the paper in Section 8.

2 RELATED WORK

Two general approaches have been explored to capture the
hand articulation. The first one is the 3D model-based
approach, which takes advantage of 3D hand models and
the second one is the appearance-based approach, whichdirectly
associates 2D image features with hand configurations.

The 3D model-based approach recovers the hand motion
parameters by aligning a projected 3D model and observed
image features, and minimizing the discrepancy between
them. This is a challenging optimization problem in a high-
dimensional space. To construct the correspondences be-
tween the model and the images, different image observa-
tions have been studied. For example, the fingertips [16], [29],
[38] canbeused to construct the correspondencesbetween the
model and the images.However, the robustness andaccuracy

largelydependon theperformance of fingertipdetection. The
use of line features was proposed in [25], [27] to enhance the
robustness. An exact hand shape model can be built by
splines [15] or truncated quadrics [30] and the hand states can
be recovered by minimizing the difference between the
silhouettes. Since the silhouettes may not change smoothly, a
Markov model can be learned in order to characterize the
allowable shapes [10]. A method for combining edge and
silhouette observations was reported recently for human
body tracking [7].

Besides the articulated models, deformable models can
also be employed to analyze hand motion. For example, one
approachmakes use of deformable hand shapemodels [9], in
which the hand shape deformation can be governed by
Newtonian dynamics or statistical training method such as
the Principal Component Analysis (PCA). However, it is
difficult to obtain accurate estimates of hand poses by these
methods. An elastic graph [36] can also be used to represent
hand postures. Another approach exploits a 3D deformable
model inwhich generalized forces can bederived to integrate
multiple cues including edge, optical flow, and shading
information [21].

The second approach to analyzing the hand articulation is
the appearance-based approach, which estimates hand states
directly from images after learning the mapping from the
image feature space to the hand configuration space. The
mapping is highly nonlinear due to the variation in the hand
appearances under different viewing angles. A discrete hand
configuration spacewas proposed in [39]. Other appearance-
based methods were also reported in [1], [26], [35] to recover
body postures. In addition, motion capture and graphics can
also be integrated in machine learning methods for human
tracking [3], [4], [11]. This approach generally involves a quite
difficult learning problem and it is not trivial to collect large
sets of training data. The 3D model-based approach and the
2D appearance-based approach can also be combined for
rapid and precise estimation [28].

3 THE PROBLEM

We denote by Z the feature (or image observation) and ~ZZ
the hypothesized image observation given the motion M ¼
ð����;GÞ that consists of the local finger articulation ����, and
the global motion G ¼ ðR; tÞ, where R denotes the rotation
and t the translation. The essence of capturing hand motion
is to find the best motion parameters that minimize the
discrepancy between Z and ~ZZ, i.e.,

ð�����;G�Þ ¼ argmin
ð����;GÞ

EðZ; ~ZZð����;GÞÞ; ð1Þ

where E is the error measure. When a video sequence is
given, we denote the history of the motion and the
observation by Mt ¼ fM1; . . . ;Mtg and Zt ¼ fZ1; . . . ;Ztg.
A Bayesian formulation of the tracking task is to recover the
posterior in a recursive fashion:

pðMtþ1jZtþ1Þ / pðZtþ1jMtþ1ÞpðMtþ1jZtÞ; ð2Þ

where

pðMtþ1jZtÞ ¼
Z
Mt

pðMtþ1jMtÞpðMtjZtÞdMt: ð3Þ

WU ET AL.: ANALYZING AND CAPTURING ARTICULATED HAND MOTION IN IMAGE SEQUENCES 1911

Fig. 1. Hand skeleton structure. The hand has roughly 27 DOFs.



The motion parametersMmay be estimated by gradient-
based nonlinear programming techniques [25] or a heuristic
greedy search [15]. However, these methods rely on good
starting points and are prone to local minima, due to the
high dimensionality and the complexity of the search space.
To enhance the robustness, particle filters [2], [12] are
suggested and widely used in many tracking tasks.

Particle filters represent the posteriori pðMtjZtÞ by a set
of N weighted particles fðsðnÞt ; �

ðnÞ
t ÞjNn¼1g, where s denotes

the sample and � denotes its weight. The recursive
estimation (in (2) and (3)) is reflected by the propagation
of the particle set. Specifically, the CONDENSATION

algorithm [2], [12] generates particles from the dynamic
prediction pðMtjZt�1Þ, and weights them by their mea-
surements, i.e., �

ðnÞ
t ¼ pðZtjMt ¼ s

ðnÞ
t Þ. In this algorithm,

the sampling, propagating, and reweighting process of the
particles strictly follow the probabilistic derivation of the
recursive estimation. It can achieve quite robust tracking
results for some applications.

However, this particle filtering technique is challenged
by the problem of tracking hand articulation, mainly
because of:

. Highdimensionality.This is inducedby the complex-
ity of themotion itself. Since the computational cost of
particle filters comesmainly from the imagemeasure-
ment processes, the number of samples directly
determines the accuracy and the speed of the tracker.
InCONDENSATION, thenumberof samplesneeded is,
in general, exponential to the dimensionality of the
motion. Thus, thismethod is fine for rigidmotionwith
6 DoF, but demands formidable computations for
articulated targets such as the hand with 27 DoF.

. Particle degeneracy. A more serious problem is
caused by the sampling process. CONDENSATION

uses stochastic integration to sample the prediction
prior pðMtjZt�1Þ. This is correct in theory, but often
leads to tracking failure, in practice, if the dynamics
model pðMtjMt�1Þused in tracking is not accurate. As
a result, most of the samples may receive negligible
weights and a large computation effort is wasted by
justmaintaining them.This is calledparticle degeneracy,
as also noticed in the study of statistics [8], [19], [20].

In the literature, there are several approaches alleviating
these challenges: For example, a semiparametric approach
was taken in [5]. It retains only the modes (or peaks) of the
probability density and models the local neighborhood
surrounding each mode with a Gaussian distribution.
Different sampling techniques were also investigated to
reduce the number of samples, such as partitioned sampling
scheme [22], annealedparticle filtering scheme [7], tree-based
filtering [31], [33], andnonparametric belief propagation [32].

Our approach is different from these methods. To
address the first difficulty, our method embeds two
mechanisms: a divide-and-conquer strategy and a dimen-
sion reduction procedure. Both the global rigid pose G and
the local finger articulation ���� contribute to the high
dimensionality of the motion, but they cannot be estimated
independently. In this paper, rather than solving G and ����
simultaneously, we propose a more feasible and more
efficient divide-and-conquer procedure that alternates the
estimation of G and ���� iteratively. As described later, this

iterative process leads to convergence. Since the pose
determination problem for rigid objects has received
extensive studies, this divide-and-conquer strategy provides
a framework to integrate these well-studied rigid pose
determination methods with the efficient approach to
articulated motion proposed in this paper.

In addition, since the motion of the finger phalanxes are
correlated and constrained, the actual dimensionality of the
finger articulation is less than its DoF. Thus, we apply a
dimension reduction technique to find the intrinsic dimen-
sion that reduces the searching space for motion capturing.

To address the second difficulty, we learn from motion-
captured data to obtain a prior of the finger articulation that
leads to a more efficient tracking method based on
importance sampling techniques. The learned motion prior
is not necessarily accurate, but it suffices to be used as the
importance function to redistribute the particles to more
meaningful regions while maintaining the true underlying
probability density represented by the particles. As a result,
we can use a much smaller number of particles for a more
efficient motion capturing.

4 CAPTURING FINGER ARTICULATION

This section presents our method to cope with the local
finger articulation based on the importance sampling
technique and a learned importance function of the hand
articulation. After briefly introducing sequential Monte
Carlo techniques in Section 4.1, we describe in Section 4.2
our method of characterizing the configuration space of the
natural hand articulation, which is used as the importance
function in the proposed sampling-based tracking algo-
rithm in Section 4.3. The calculation of the image likelihood
is described in Section 4.4.

4.1 Sequential Monte Carlo Techniques

Sampling techniques are widely used to approximate
a complex probability density. A set of weighted
random samples (or particles) fsðnÞ; �ðnÞjNn¼1g is properly
weighted with respect to the distribution fðXÞ if for any
integrable function h of the random vector X,

lim
N!1

PN
k¼1 hðsðkÞÞ�ðkÞPN

k¼1 �
ðkÞ

¼ EfðhðXÞÞ:

In this sense, the distribution is approximated by a set of
discrete random samples, sðkÞ with each having a prob-
ability proportional to its weight �ðkÞ.

These sampling techniques can also beused for simulating
dynamic systems as long as the particle sets are properly
weighted. They are called sequentialMonte Carlo techniques
in statistics [8], [19], [20]. The CONDENSATION algorithm [2],
[12] isanexample.DenotebyXt themotiontobe inferredfrom
estimating the posterior pðXtjZtÞ. CONDENSATION draws a
set of samples fsðnÞt jNn¼1g from the dynamics prediction prior
pðXtjZt�1Þ, and weights them by their measurements, i.e.,
�
ðnÞ
t ¼ pðZtjXt ¼ s

ðnÞ
t Þ. TheparticlesofpðXtjZt�1Þareobtained

through stochastic integration by propagating the particle set
that represents the posterior at time t� 1, i.e., pðXt�1jZt�1Þ. It
can be shown that such a particle set is properlyweighted.As
described inSection 3, thismethodencounters twochallenges
whenapplied to trackingarticulated targets: computationally
demanding and particle degeneracy.

1912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 12, DECEMBER 2005



In fact, to represent a distribution fðXÞ, it is not
necessary to draw samples from this distribution directly.
We may generate particles from a proposal density gðXÞ,
provided that we adjust or reweight the samples. This is the
basic idea of the importance sampling scheme. When particles
fsðnÞ; ~��ðnÞg are generated from gðXÞ, their weights are
compensated as

�ðnÞ ¼ fðsðnÞÞ
gðsðnÞÞ ~��

ðnÞ;

where ~��ðnÞ are the uncompensated weights associated
with the sampling of gðXÞ. It can be proven that the
sample set fðsðnÞ;�ðnÞÞjNn¼1g is still properly weighted with
respect to fðXÞ. This is illustrated in Fig. 2.

To employ the importance sampling technique in

dynamic systems, we let ftðXðnÞ
t Þ ¼ pðXt¼X

ðnÞ
t jZt�1Þ, where

ftð�Þ is the tracking prediction prior (as used in CON-

DENSATION). We can draw samples from a proposal

distribution gtðXtÞ (e.g., [13] used color-segmented regions

for tracking the positions of hand blobs as a simple case),

while compensating the weights by:

�
ðnÞ
t ¼ ftðXðnÞ

t Þ
gtðXðnÞ

t Þ
p ZtjXt ¼ X

ðnÞ
t

� �
: ð4Þ

To evaluate ftðXtÞ, we have:

ftðXðnÞ
t Þ ¼ p Xt ¼ X

ðnÞ
t jZt�1

� �

¼
XN
k¼1

�
ðkÞ
t�1p Xt ¼ X

ðnÞ
t jXt�1 ¼ X

ðkÞ
t�1

� �
:

In this importance sampling scheme, no matter what
importance function is used, the particle propagation always
exactly follows the probability deduction of the dynamic
systems. Thus, this sequential Monte Carlo method is
provably correct. At the same time, it provides a powerful
clue and a flexible way to overcome the challenges to
CONDENSATIONby constructing a proper proposal distribu-
tion (or the importance function) gtðXtÞ to minimize the risk
of particle degeneracy and reduce the number of particles
significantly. Because the importance function can be arbi-
trarily chosenwhat would be an appropriate one for tracking
the articulated hand motion? We propose a method in the
next section.

4.2 Learning the Importance Function for Sampling

Although the finger motion is highly articulated, its kine-
matics is constrained. Only certain hand configurations are
feasible and natural, which form a subspace of the entire
finger joint angle space. By natural, we mean, the configura-
tions that should not inducemuchmuscle tension. In general,

these set of natural motion can be covered by all the
combinations of extending and curling the five fingers, but
exclude finger crossing. Thus, the natural motions actually
include a large variety of gestures. Of course, people can
make arbitrary hand configurations, but only these natural
configurations need to be considered in most gesture inter-
face applications. Fortunately, the natural hand configura-
tions for most people are similar; therefore, having such
strong articulation priors can greatly improve the motion
estimation. However, these priors are very difficult to model
explicitly. Finding an effective representation of the feasible
hand configuration space (C-space) is not well addressed in
the literature. In this section,wepresent an initialmodel of the
natural hand configuration subspace including its dimen-
sionality and topology.

Feasible hand articulation does not span the entire joint
angle space � � IR20. We generally observe three types of
constraints. One type of constraints, usually referred to as the
static constraints in previous work, are the limits of the range
of finger motions as a result of the hand anatomy, such as
00 � �MCP � 900. The second typeof constraints describes the
correlations among different joints and, thus, reduces the
dimensionality of hand articulation. For example, the mo-
tions of the DIP and PIP joints are generally not independent
and they can be characterized by �DIP ¼ 2

3 �PIP from the study
of biomechanics [6]. Although this constraint can be in-
tentionallymade invalid, it has been shown to provide a good
approximation to natural finger motion [15], [16]. The third
class of constraints canbe called purposive constraints since it is
imposed by the naturalness of the common hand motions
which are subtle to describe. Unfortunately, not all of such
constraints can be quantified in closed forms. This motivates
us to model the constraints using other alternatives.

Instead of using the joint angle space� � IR20, we employ
the hand configuration space � to represent natural hand
articulations.Weareparticularly interested in thedimension-
alityof theconfigurationspace�andthebehaviorsof thehand
articulation in�. To investigate these problems,we propose a
learningapproachtomodelhandmotionconstraints in� from
a large set of handmotiondata collectedusing a right-handed
18-sensor CyberGlove. We have collected a set of more than
30,000 joint angle measurements f�k; k ¼ 1; . . . ; Ng by per-
forming various natural finger motions that include all
combinations of extending and curling the five fingers but
exclude crossing fingers. The correlations of different joints
are assumed to be well represented by such a data set. Since
only the finger articulation is of concern here in natural
motion, the global pose data are not used in learning. PCA is
applied to project the joint angle space to the configuration
space by eliminating the redundancy, i.e.,

X ¼ UT ð�� �0Þ; ð5Þ

where U is constructed by the eigenvectors corresponding
to large eigenvalues of the covariance matrix of the data set

and �0 ¼ 1
N

PN
k¼1 �k is the mean of the data set. The result

shows that we can project the original joint angle space into

a seven-dimensional subspace, while maintain 95 percent of
the variance. We plot the percentage of the variance

preserved with respect to the number of eigenvalues in

Fig. 3. Thus, X 2 � � IR7.
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Fig. 2. Importance sampling. To represent the desired distribution fðXÞ,
samples can be drawn from an importance function gðXÞ but with
compensated weights.



Since the natural hand articulation only covers a subset of

IR7, to characterize the configuration space �, we define

28 basis configurations B ¼ fb1; . . . ;bM : 8bk 2 �;M ¼ 28g.
Since the feasible fingermotions are bounded roughly by two

extremal states, fully extended or curled, the five fingers

together defines 32 states that roughly characterize the entire

naturalhandmotion.Consideringnoteveryoneisabletobend

the pinky without bending the ring finger, four unnatural

states are not included in our set of basis states. Similar

configurations areconsideredas the samestate. For eachbasis

state,we collect a set of joint angle data andproject itsmean to

IR7 as the basis configuration. All 28 bases are shown in Fig. 4.

Surprisingly, after examining the data in �, we found

that natural hand articulation lies largely in the set of linear

manifolds spanned by any two basis configurations. For

example, if the hand moves from a basis configuration bi to

another basis bj, the intermediate hand configuration lies

approximately on the linear manifold spanned by bi and

bj, i.e.,

X 2 Lij ¼ sbi þ ð1� sÞbj; 0 � s � 1: ð6Þ

Consequently, the hand articulation can be characterized
in � by:

� �
[
i;j

Lij;where Lij ¼ spanðbi;bjÞ: ð7Þ

Since it is impossible for us to visualize data in high-
dimensional space such as R7, we take a subset of the basis
states and the corresponding hand motion trajectories and
performed the same analysis as described earlier in order to
visualize the result. A lower-dimensional visualization of the
subset is shown in Fig. 5, inwhich each point represents a real
hand configuration in �.

In this example, the movements involving index, middle,
and ring fingers are chosen. The corresponding basis states
lie roughly at the corner of the cube whose edges are
formed by the collection of the motion trajectories between
the basis states. In this plot, the interior of the cube is shown
to be almost empty due to staged performance. In reality,
since the finger movements are largely covered by such
motion trajectories among the bases, the density inside the
convex hull is indeed very low. Thus, such an union of the

set of linear manifolds actually capture the high density

regions of the configuration space. As a result, it provides

an effective importance function for sampling.
We noticed that [9] proposed a PCA-based approach to

characterize the hand shape deformations that lie in the
space spanned by a set of eigen shapes. Our method is
different from theirs since our representation characterizes
hand articulation in more details. Besides describing a
subspace, our representation actually describes the struc-
ture of the articulation subset in the configuration space by
an union of linear manifolds. Also, our representation of
hand articulation is view-independent, since it is derived
from the joint angle space.

4.3 Importance Sampling for Hand Articulation

One important part of sequential Monte Carlo tracking is to

generate samples fðXðnÞ
tþ1; �

ðnÞ
tþ1Þj

N
n¼1g at time tþ 1 from the

samples fðXðnÞ
t ; �

ðnÞ
t ÞjNn¼1g at time t. Instead of directly

sampling from the prior pðXtþ1jZtÞ, we propose an impor-

tance sampling technique by taking the hand articulation

manifolds (in Section 4.2) as the importance function.

Each hand configuration X should be either around a

basis state bi; i ¼ 1; . . . ;M, or on a manifold Lij, where

i 6¼ j; i; j ¼ 1; . . . ;M. Suppose at time frame t, the hand
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Fig. 3. The plot of the percentage of energy (i.e., variance) preserved with

respect to the number of eigenvalues shows that the first 7D subspace

preserves 95 percent of the variance.

Fig. 4. The 28 basis configurations.

Fig. 5. A lower-dimensional visualization of a subset of the hand
articulation configuration space, which is characterized by a set of basis
configurations and linear manifolds. The basis states are located roughly
at the corner of the cube. Each data point collected with the data glove is
plotted as a “�.”



configuration isXt. We find the projection �XXt ofXt onto the

nearest manifold L�
ij, i.e.,

L�
ij ¼ argmin

Lij

DðXt;LijÞ

�XXt ¼ ProjðXt;L�
ijÞ

¼ bi þ
ðXt � biÞT ðbj � biÞ

jjðbj � biÞjj
ðbj � biÞ:

Accordingly,

st ¼ 1� ðXt � biÞT ðbj � biÞ
jjðbj � biÞjj

:

Random samples are drawn from the manifold Lij accord-
ing to the density pij, i.e.,

s
ðnÞ
tþ1 � pij ¼ Nðst; �0Þ; ð8Þ

�XX
ðnÞ
tþ1 ¼ s

ðnÞ
tþ1bi þ 1� s

ðnÞ
tþ1

� �
bj; ð9Þ

where �0 controls the changes of the gestures within two

consecutive frames. In our experiments, we set �0 ¼ 0:2.

Noticing 0 � s � 1, we forcefully project s
ðnÞ
tþ1 to ½0; 1	 by

minð1;maxð0; sðnÞtþ1ÞÞ. Then, perform random walk on �XX
ðnÞ
tþ1

to obtain hypothesis X
ðnÞ
tþ1, i.e.,

X
ðnÞ
tþ1 � N �XX

ðnÞ
tþ1;�1

� �
; ð10Þ

where �1 reflects the uncertainty of the linear manifolds,
thus controls the diffusion (or the deviation) of the particles
from the manifolds. We let �1 ¼ �2

1I and set �1 ¼ 0:5 in our
experiments. This process is illustrated in Fig. 6a. Although,
in principle, this covariance can be estimated from training
data, we found in our experiments that our treatment
performs better since the training data from the data glove
were very noisy and the outliers affect the estimation
accuracy. Based on this sampling process, the importance
function can be written as:

gtþ1 X
ðnÞ
tþ1

� �
¼ p s

ðnÞ
tþ1jst

� �
p X

ðnÞ
tþ1j �XX

ðnÞ
tþ1

� �

/ exp �
ðsðnÞtþ1 � stÞ2

2�2
0

�
jjðXðnÞ

tþ1 � �XX
ðnÞ
tþ1Þjj

2

2�2
1

( )
:

ð11Þ

If the previous hand configuration is close to one of the
basis configurations, say Xt ¼ bk, then it is reasonable to
assume that it takes any one of the manifolds of fLkj; j ¼
1; . . . ;Mgwith an equal probability, as shown in Fig. 6b.Once
a manifold is selected, the same steps shown in (8)-(10) are
performed.

Suppose at time t, the tracking posteriori pðXtjZtÞ
is approximated by a set of weighted random samples

or hypotheses fðXðnÞ
t ; �

ðnÞ
t ÞjNn¼1g. For a dynamic system,

the prior is pðXtþ1jZtÞ, and we have

ftþ1 X
ðnÞ
tþ1

� �
¼ p Xtþ1 ¼ X

ðnÞ
tþ1jZt

� �

¼
XN
k¼1

�
ðkÞ
t p Xtþ1 ¼ X

ðnÞ
tþ1jXt ¼ X

ðkÞ
t

� �
:

Let the dynamics model be

p X
ðnÞ
tþ1jX

ðkÞ
t

� �
¼ N CX

ðkÞ
t ;�2

� �
;

whereC is the state transition matrix of the dynamic system

and �2 is the uncertainty of the dynamics. For simplicity,

here we adopt a random walk model and set C to an

identity matrix. Higher order models such as the constant

acceleration model can also be used. In our experiments, we

let �2 ¼ �2
2I and set �2 ¼ 0:5. Instead of sampling directly

from the prior pðXtþ1jZtÞ, samples are drawn from the

proposal distribution gtðXtþ1Þ in (11) and the weight of each

sample is compensated by:

�
ðnÞ
tþ1 ¼

ftþ1ðXðnÞ
tþ1Þ

gtþ1ðXðnÞ
tþ1Þ

p Ztþ1jXtþ1 ¼ X
ðnÞ
tþ1

� �
: ð12Þ

4.4 Model Matching: pðZtjXtÞ
The likelihood of the image observation pðZtjXtÞ plays an
important role in reweighting the particles (4). To calculate
the likelihood, we use a cardboard model [14], in which each
finger is represented by a set of three connected planar
patches. The length and width of each patch should be
calibrated according to each individual person. The kinema-
tical chain of one finger is shown in Fig. 7a and the cardboard
model in Fig. 7b. Although it is a simplification of the real
hand, it offers a good approximation for motion capturing.

We measure the likelihood based on both edge and

silhouette observations. Since the hand is represented by a

cardboardmodel, it is expected to observe two edges for each

planar patch. In our algorithm, a particle encodes a specific

configuration of the fingers, thus determining the set of joint

angles for this configuration. The global pose and the

configuration of the hand determine the 3D depth of all the

planar patches of the cardboard model and their occlusion

relationship, based on which we compute the edges and

silhouette of themodel projection. As illustrated in Fig. 8, the

cardboardmodel is sampledat a set ofK points on the laterals

of the patches. For each such sample, edge detection is

performed on the points along the normal of this sample.

When we assume that m edge points fzi; 1 � i � mg are
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Fig. 6. Generating particles: (a) WhenX
ðnÞ
t 6¼ bi, the nearest manifold Lij

is chosen. The particle is generated by projecting to the manifold, random

walking along the manifold, and diffusing away from the manifold.

(b) When X
ðnÞ
t is close to bi, randomly take a manifold and generate

particle as (a).



observed and the clutter is a Poisson process with density �

[2], [37], then the edge likelihood is:

pekðzjxkÞ / 1þ 1ffiffiffiffiffiffi
2�

p
�eq�

Xm
i¼1

exp�ðzi � xkÞ2

2�2e
:

We noticed that edge points alone may not provide a good

likelihood estimation, because the nearby fingers generate

clutters. Therefore, we also consider the silhouette measure-

ment. The color segmented foreground regionAI are XORed

with the projected silhouette image AM and the likelihood is

computed as ps / exp� ðAI�AM Þ2
2�2s

. Thus, the total likelihood

can be written as:

pðZjXÞ / ps
YK
k¼1

pek: ð13Þ

4.5 Algorithm Summary

The algorithm for tracking the local finger articulation is
summarized in Fig. 9.

5 ESTIMATING THE GLOBAL POSES

We define the global rigid hand motion by the pose of the

palm. In this paper, we treat the palm as a rigid planar object.

The pose determination is formulated under scaled ortho-

graphic projection in Section 5.1 and the global motion is

computed via the Iterative Closed Point (ICP) approach in

Section 5.2.

5.1 Hand Pose Determination

In this section, we assume the correspondences have been

constructed for pose determination. The process of building

the correspondences will be presented in Section 5.2. Let a

point on the plane be xi ¼ ½xi; yi	T , and its image point be

mi ¼ ½ui; vi	T . Under the scaled orthographic projection, we

have

s
ui

vi
1

2
4

3
5 ¼

R11 R12 R13 t1
R21 R22 R23 t2
0 0 0 t3

2
4

3
5

xi

yi
0
1

2
664

3
775:

That is:

t3
ui

vi

� �
¼ R11 R12

R21 R22

� �
xi

yi

� �
þ t1

t2

� �
¼ Axi þ t;
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Fig. 7. (a) Kinematical chain of one finger. (b) Cardboard hand model.

Fig. 8. Shapemeasurements. A hypothesized cardboardmodel is projected and the edgemeasurements are collected along the laterals of the patches.

Fig. 9. Pseudocode of the sequential Monte Carlo-based tracking
algorithm.



where

A ¼ R11 R12

R21 R22

� �
; and t ¼ t1

t2

� �
:

By subtracting the centers of the projection points and
model points, i.e., m̂imi ¼ mi � �mm and x̂xi ¼ xi � �xx, and letting
B ¼ A=t3, we can write:

m̂mi ¼ Bx̂xi:

This is an affine transform. We denote by ½ûuk
i ; v̂v

k
i 	
T the

ith image point (centroid subtracted) at the kth frame. If
we have K corresponding frames, we can write:

W ¼

ûu1
1 ûu1

2 . . . ûu1
N

v̂v11 v̂v12 . . . v̂v1N
..
. ..

. ..
. ..

.

ûuK
1 ûuK

2 . . . ûuK
N

v̂vK1 v̂vK2 . . . v̂vKN

2
6666666664

3
7777777775
¼ MS; ð14Þ

where

M ¼
B1

..

.

BK

2
64

3
75 and S ¼ x̂x1 x̂x2 . . . x̂xN

ŷy1 ŷy2 . . . ŷyN

� �
:

Once the 3Dmodel is calibrated, i.e.,S is given, calculating the

motion M is straightforward (i.e., M¼WSy¼WSTðSST Þ�1,

where Sy is the pseudoinverse of S). If it is not calibrated, the
factorizationmethod [34] canbe taken to solveM and recover

S.OnceM is solved, it iseasyto figureout theposeRandt. For

simplicity,wecanuse the first framethat showsthe frontpalm

for calibration, and take the image points along the palm

contour as the model points.

5.2 Iterative Closed Points

The pose determination method presented in the previous
section assumes point correspondences. In this section, we
describe a method for establishing point correspondences by
adaptingthe ideaof theIterativeClosedPoint (ICP)algorithm.
A comprehensive description of ICP for free-form curve
registration can be found in [42]. The basic idea is to refine the
correspondences and the motion parameters iteratively.

Since we treat the palm as a rigid planar object, it can be
represented by its contour curve, which in turn can be
described by a set of chained points. Let xjð1 � j � NÞ be the
N chained points on the 3D curve model C and C0 be the edge
points observed in the image. The objective is to construct the
correspondences between the two curves, such that

eðR; tÞ ¼
XN
j¼1

D P Rxt
j þ t

� �
; C0

� �
wj ð15Þ

is minimized, where Dðx; C0Þ denotes the distance of the point
xand the curveC0,wj takesvalue1 if there is amatch forxj and
0 otherwise, and P is the projection matrix given by camera
calibration.

The ICP algorithm takes the image edge point that is
closest to the projected 3Dmodel point i.e.,PðRxt

k þ tÞ, as its
correspondence. When all image edge points are far enough

from the projection, the model point xk is considered to have
no matching point and wk is set to 0. Motion ðR; tÞ is
computed from such a temporary correspondence using the
pose determination method presented in Section 5.1. The
computedmotionwill result in anewmatching.By iteratively
applying this procedure, ICP continues to refine the pose
estimation. It should be pointed out that the ICP procedure
converges only to local minima, which means that we need a
fairly close initial start. Obviously, the ICP algorithm can be
easily extended to two-frame registration.

It is worth mentioning that there is a limitation of this
method for determining the global pose. Our method treats
theposeof thepalmas theposeof thehand (withoutusing the
fingers) anduse the edges of the palmas features. Although it
simplifies the pose estimation by assuming the palm to be a
rigid planar object, it induces errors in practice. One reason is
that the palm also undergoes substantial nonrigid motion in
certain gestures. In addition, the image edges are not true
edges of the palm but the projection edges when the palm is
not frontal. As a result, the correspondences will not be
accurate when the palm presents large out-of-plane rotation
and scaling and when the palm is partially occluded.
Although therehavebeenmanyposedeterminationmethods
for rigid objects, accurate pose estimation of nonrigid objects
such as the hand remains a quite difficult problem.

6 DIVIDE AND CONQUER

The divide-and-conquer method alternates two operations:

G ¼ Rð����Þ ¼ argmin
G

EðZ; ~ZZð����;GÞÞ;

and

���� ¼ AðGÞ ¼ argmin
����

EðZ; ~ZZð����;GÞÞ;

where the operation Rð����Þ estimates the global rigid
motion G given a fixed local motion ���� (e.g., using the
method in Section 5), and the operation AðGÞ estimates
the local articulation ���� given a fixed rigid global
motion G (e.g., using the method in Section 4).

The alternation between these two operations converges
to a stationary point (as proven in Appendix A). This
divide-and-conquer approach has the following advan-
tages: 1) the two decoupled estimation problems (i.e., the
rigid motion and nonrigid articulation estimation) are much
less difficult than the original problem and 2) many existing
methods for rigid pose determination can be adopted,
which makes our approach more flexible.

Sections 4 and 5 treat global rigid hand poses and local
finger articulations independently. The method for finger
articulation is based on global hand poses, because the
3D model projection depends on both the rigid pose and the
finger joint angles. Inaccurate global poses will cause the
method for local articulation estimation tomistakenly stretch
and bend finger models in order to match the image
observations.

Unfortunately, theposedeterminationmethod inSection5
may induce inaccuracies since the method assumes the
rigidity of the palm and matches the palm to the edges
observed in the images. The inaccuracy occurs especially
when the index or the little finger is straight, resulting in

WU ET AL.: ANALYZING AND CAPTURING ARTICULATED HAND MOTION IN IMAGE SEQUENCES 1917



wrong scaling and rotation. We do observe such a phenom-
enon in our experiments.

We propose to tackle this difficulty by introducing more
feature points for pose estimation in order to greatly reduce
ambiguities. Some of these points are selected when the
local finger motion is computed. For example, if we know
the MCP (refer to Fig. 7a) joint of the index or the pinky
finger is nonzero, we use the point at the MCP joint. If we
know any of the fingers is straight, its fingertip is used. The
principle is that those points lie on the same plane as the
palm (on or outside the palm region certainly). Generally,
these points provide bounds of the model for matching. Our
extensive experiments have verified the usefulness of these
extra points. Obviously, we can only find such extra points
after we compute the local finger articulation.

7 EXPERIMENTS

To validate and evaluate the proposed algorithms, we first
performed several validation experiments on synthesized
data (Section 7.1). Then, we applied our algorithm to real
image sequences (Section 7.2 and 7.3). This section reports
our experiments.

7.1 Validation

Since it is generally difficult to obtain the ground truth of

the articulated hand motion from real video sequences, we

have produced a synthetic sequence of 200 frames contain-

ing typical hand articulations. This synthetic sequence will

facilitate quantitative evaluations of our algorithm.
Some examples are shown in Fig. 10. Fig. 11 shows some of

the motion parameters for comparison. The solid curves are
our estimates and the dash curves are the ground truth. The
figure plots the x translation with an average error of
3.98 pixels, the rotationwith an average error of 3.42 degrees,
the PIP joint of the index finger with an average error of
8.46 degrees, the MCP flexion of the middle finger with an
average error of 4.96 degrees, the PIP joint of the ring finger
with an average error of 5.79 degrees, and theMCPabduction
of the ring fingerwithanaverageerrorof 1.52degrees.Wecan
see from this figure that our method performs quite well.

7.2 Real Sequences: Pure Finger Articulation

In all of our experiments with real sequences, the gesturing
speed is faster than what a regular camera can crisply
handle. (The dataglove captures data at about 100sets/sec
which is fast enough for hand gestures, but the camera can
not achieve such a high rate.) Thus, when we recorded the
testing video sequences, we intentionally reduced the
gesturing speed of the hand in order to minimize the

motion blurs produced in the recorded video. This is
equivalent to using a high-speed camera.

In this set of experiments, we assume the hand has very
little global motion, and allow translations in a small range.
Thus, the hand motion is ðdt;XtÞ, where dt is global
2D translation andXt is finger articulation.

We have compared three different methods for both joint
angle space IR20 and the configuration space� � IR7. The first
one is a random search algorithm, which generates articula-
tion hypotheses based on the previous estimate and a fixed
Gaussian distributionwithout considering any constraints in
the joint angle space. The secondmethod is theCondensation
algorithm. The third one is our proposed method based on
learned articulation priors and importance sampling.

Some experiment results are shown in Fig. 12. Fig. 12a
shows the results of random search in IR20. We treat each
dimension independently with a standard deviation of
5 degrees, and produce 5,000 hypotheses at each frame.
However, it hardly succeeds due to the high dimensionality.
When we perform random search in the reduced space IR7

and again with 5,000 hypotheses, it loses track after several
frames. The results are shown in Fig. 12b.

Fig. 12c shows some frames of the CONDENSATION

algorithm in IR20, in which 5,000 samples are used. The
results show that it is still difficult to handle such a high
dimensionality. When performing CONDENSATION in the
reduced space IR7, the algorithm can track up to 200 frames
using 3,000 samples, which is shown in Fig. 12d, but cannot
handle long sequences. In addition, since thousands of
particles are used in both random search method and the
CONDENSATION algorithm, they are computationally ex-
pensive and, thus, quite inefficient.

Finally, in our proposed algorithm, we use only 100 sam-
ples, and the algorithm is able to track hand articulations
throughout the entire sequence, which is shown in Fig. 12e.1

The joints plotted in black indicates they are bent down (i.e.,
showing the other side of the finger.) Our algorithm is robust
and efficient since the learned articulation priors provide a
strong guidance to the search and tracking process and
largely reduce the search complexity. The importance
sampling step in our algorithm produces particles with large
weights and enhances the valid ratio of the particles. On the
other hand, most of the particles will not survive the
weighting process that evaluates the image measurements
in both random search method and the CONDENSATION

algorithm. We implemented our algorithm on a Pentium
2GHz PC and have obtained a real-time performance (about
15Hz) without code optimization.

7.3 Real Sequences: With Global Motion

We have also performed our motion capturing algorithm on
real sequences with global motions. We again compared
different schemes for local motion capturing. Sample results
are shown in Fig. 13. The first one is a random search scheme
in the IR7 space. Our experiment used 5,000 random samples.
Since this scheme does not consider the finger motion
constraints, it performed poorly for local motion estimation,
and it even ruined the global pose determination. The second
scheme is the CONDENSATION with 3,000 samples in IR7. It
performed better than the first method, but it was not robust.
We found that 3,000 samples is still not enough for this task,
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1. The demo sequences of our algorithm can be obtained from http://
www.ece.northwestern.edu/~yingwu/research.

Fig. 10. Sample of our results on synthetic sequences. (a) A synthetic

image. (b) The image with model aligned.



noticing the failuremode of the fifth one in Fig. 13b. The third
scheme is our proposed method, which worked accurately
and robustly. The articulationmodel makes the computation
more efficient and the local motion estimation enhances the
accuracy of hand pose determination.

7.4 Real Sequences: Using a 3D Quadric Model

Besides the cardboard model, we have also tested the
proposed method with a 3D quadric model. In the testing
video sequence, the fingers bend and extend while the hand
moves simultaneously (Fig. 14). In addition to the super-
imposedmodel projection, a reconstructed 3Dquadricmodel
is shown below each corresponding image for better
visualizations. The experiment results show that our algo-
rithm is robust and successful in tracking complex hand
motions in a cluttered environment. However, using this
3D quadric model induces much more computational cost
thanusing the cardboardmodel.Our current implementation
takes about 2-3s to process a frame on a Pentium 2GHz PC.

8 CONCLUSIONS

Capturing both global hand poses and local finger articula-
tions in video sequences is a quite challenging task because of
the high DoF of the articulate hand. This paper presents a
divide-and-conquer approach to this problem by decoupling
handposesandfingerarticulationsandintegrating theminan
iterative framework.We treat thepalmas a rigidplanar object
and use a 3D cardboard hand model to determine the hand
pose based on the ICP algorithm. Since the finger articulation
is also highly constrained, we propose an articulation prior
model that reduces the dimensionality of the joint angle
space and characterizes the articulation manifold in the

lower-dimensional configuration space. To effectively incor-
porate this articulation prior into the tracking process, we
proposeasequentialMonteCarlo trackingalgorithmbyusing
the important sampling technique.Thealterationbetween the
estimationsofglobalhandposeand thatof local fingermotion
results in accurate motion capturing and the proof of
convergence is also given in this paper.

Our current technique assumes that the hand region can
be segmented based on color from the background, which
can help the image observation process. The use of a
cardboard model largely simplifies the image measurement
process, with the cost of sacrificing the accuracy when
processing more cluttered backgrounds. We shall extend
our current method to handle more clutter backgrounds. It
is worth mentioning that our current global pose determi-
nation method can not handle large out-of-plane rotations
and scaling very well. We will employ a better 3D model for
this problem in our future work. In addition, our current
system requires an user-specific calibration of the hand
model which is manually done. Recently, we have devel-
oped an automatic method for tracking initialization [17] by
detecting the palm and the fingers. Based on the structure
from motion techniques, we shall utilize this automatic
tracking initialization for automatic model calibration.

APPENDIX A

PROOF OF CONVERGENCE

Proof. Since ����2k ¼ ����2k�1, apply the operation R to estimate
global motion at the 2kth iteration.

G2k ¼ R ����2k�1
� �

¼ argmin
G

E Z; ~ZZ G;����2k�1
� �� �

: ð16Þ
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Fig. 11. The comparison of our results and the ground truth on a synthetic sequence. The dash curves are the ground truth and the solid curves are

our estimates.



The error of the 2kth iteration is:

E2k ¼ E Z; ~ZZ G2k;����2k�1
� �� �

¼ min
G

E Z; ~ZZ G;����2k�1
� �� �

:

Obviously, E2k � E2k�1. Then, the operation A is applied
to estimate local motion at the ð2kþ 1Þth iteration:

����2kþ1 ¼ A G2k
� �

¼ argmin
����

E Z; ~ZZ G2k;����
� �� �

: ð17Þ

Since we keep the global motion G2kþ1 ¼ G2k, the error
of the ð2kþ 1Þth iteration is:

E2kþ1 ¼ E Z; ~ZZ G2k;����2kþ1
� �� �

¼ min
�

E Z; ~ZZ G2k;����
� �� �

:

Obviously, E2kþ1 � E2k. Thus, we have:

0�E2kþ1�E2k�E2k�1; 8k: ð18Þ

Since the error measurement cannot be negative, the

lower bound occurs. Because the error sequence is

nonincreasing and bounded below, this two-step itera-

tive algorithm should converge to a limit point.

Furthermore, it can be shown that the algorithm

converges to a stationary point. tu
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Fig. 12. Comparison of different methods. The projections of the hand model are drawn on the images. When the fingers bend and their backsides
appear, the corresponding pieces are drawn in black, otherwise in white. (a) Random search 5,000 points in IR20. It quickly losses track due to the high
dimensionality of search space. (b) Random search 5,000 points in IR7. Although dimension is reduced, the performance is still poor.
(c) CONDENSATION with 5,000 samples in IR20. It does not work well due to the high dimensionality of search space. (d) CONDENSATION with
3,000 samples in IR7. It works fairly well without considering natural motion constraints. (e) Our approach with only 100 particles. Using our model, it
can track hand articulations in a long sequence.
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