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Abstract—The large shape variability and partial occlusions challenge most object detection and tracking methods for nonrigid targets

such as pedestrians. This paper presents a new approach based on a two-layer statistical field model that characterizes the prior of the

complex shape variations as a Boltzmann distribution and embeds this prior and the complex image likelihood into a Markov field. A

probabilistic variational analysis of this model reveals a set of fixed-point equations characterizing the equilibrium of the field. It leads to

computationally efficient methods for calculating the image likelihood and for training the model. Based on that, effective algorithms for

detecting nonrigid objects are developed. This new approach has several advantages. First, it is intrinsically suitable for capturing local

nonrigidity. In addition, due to the distributed likelihood, this approach is robust to partial occlusions. Moreover, the two-layer structure

provides large flexibility of modeling the image observations, which makes the new method robust to clutters. Extensive experiments

demonstrate its effectiveness.

Index Terms—Object detection, shape, Markov random fields, image models, machine learning, statistical computing, probabilistic

algorithms.
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1 INTRODUCTION

THE research into human detection and tracking has
received more and more attention in recent years, due

to the drive from many emerging applications, such as
perceptual interfaces, ubiquitous computing, and smart
video surveillance [4], [10], [26], [27]. Different applications
are concerned with different image resolutions of the
subjects, thus requiring different techniques. For example,
in perceptual interfaces, the motions of the human body
parts need to be determined for action recognition; thus,
these applications require fairly high resolution for analyz-
ing the articulated motion of the body parts. In contrast, in
many video surveillance applications, since the human
typically is associated with small image regions, the human
needs to be treated as a nonrigid entity for detection and
tracking, while the detailed motion of the body parts is no
longer the major focus here. This paper addresses the
detection and tracking problem in the latter context.

A critical issue in object detection and tracking is to
calculate the likelihood pðZjyÞ of the image measurements Z
given the rigid motion parameters y (such as the location, the
orientation, and the scale) of the target. If the target presents
apparent visual invariants (or features), calculating the
image likelihood is straightforward. For example, despite
the uncertainty in the visual appearances, frontal faces have
a similar image pattern that allows the use of the Harr
features for face detection [35]. On the other hand, if
apparent invariants are not available, the image likelihood
pðZjyÞ needs to be broken into a set of conditionals pðZjy;XÞ
and integrate them, where X, for example, can be the

nonrigid motion of the target. If X is complicated, calculating
such an integration can be very difficult, leading to the
nontrivial nature of detection and tracking in this scenario.
Unfortunately, this is the case when treating the human as a
nonrigid entity.

Although the research of object detection has greatly
moved forward with the success of face detection, these face
detection methods may not apply to human detection. The
visual appearances of the human present tremendous
variability while lacking apparent visual invariants, as the
diversified clothing and the body articulation may sig-
nificantly change the image of a person. In addition,
handling partial occlusion is more concerned in detecting
humans because in practice the detector should be robust to
the missing body parts, but this challenges most existing
methods. Therefore, it is desirable to investigate new
human detection methods that cope with the large un-
certainty of the visual appearances and are robust to partial
occlusions. This paper addresses these two difficulties.

Because the human-like shapes are more or less unique in
the real world, they may provide a powerful clue for human
detection and tracking [8], [11], [34], [38]. The difficulty of
analyzing human shapes lies in the fact that the local shape
nonrigidity has a large number of degrees of freedom thus
having very complicated uncertainties, which makes rule-
based methods unsuitable. Thus, learning-based methods are
generally adopted for learning the shape distributions from
training data. If the uncertainty is simple, parametric
methods such as Gaussian models or Gaussian mixture
models can do a good job, e.g., in face shape [5]. Unfortu-
nately, because of the local nonrigidity, the uncertainty in
human shapes is too complex to be sufficiently modeled by
reasonable Gaussian mixture models. On the other hand,
nonparametric methods, e.g., by using exemplars [11], can be
quite flexible. However, a huge set of exemplars is needed to
represent the concept of the human-like shapes in order to
accommodate the possible variations. As a trade-off, because
the Gibbs distribution is flexible to capture a large variety of
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densities, it can naturally be employed for this task. This idea
has been exploited for modeling the face deformations [20],
where the face is represented as a random vector and an
inhomogeneous Gibbs distribution can be learned from
training data. Although this model is complicated and needs
quite complex training, its excellent performance suggests
that the Gibbs distribution is useful for characterizing the
large and complex variability of the human-like shapes.

Unfortunately, it is difficult for the above learning-based

methods to handle partial occlusions because it is not

practical, if not impossible, to have the training data that

cover all possible situations of partial occlusions. Actually,

this difficulty lies in the fact that these methods represent a

pattern as a centralized random feature vector. Thus, the

missing elements due to occlusion will greatly change the

feature vector, thus affecting the classification dramatically.

Different from such vectorized methods, the component-

based methods [22], [29] divide the entity into parts and

take advantage of the structures or correlations of the parts.

Their excellent performances on detecting partial occluded

targets suggest the needs beyond the vectorized models.

The contribution of this paper is a new nonvectorized

method based on a two-layer field model for detecting and

tracking complex targets such as the human. This new

method stands out because of its robustness to partial

occlusions, which is difficult for the vectorized methods.

Different from most existing methods, this new approach

embeds the complicated nonrigid shape prior into a statistical

field and distributes the complex image likelihood to the local

sites of the field. This new model has two layers. The hidden

layer is a hidden Markov field that captures the shape prior.

Every node of this Markov field is associated with an

observation node describing the conditional likelihood of

image observations of this hidden node, thus constituting the

observation layer of this field model. The proposed method

models the prior of the nonrigid human shapes as a

Boltzmann distribution. Although it is a special Gibbs

distribution, our method is different from [20] because the

proposed method does not characterize the Boltzmann

distribution directly in a vector space, but distribute it into

the Markov field. This treatment results in quite simple

inference and learning algorithms in both theory and

practice. Although the structure of this field model is similar

to that in [9], the difference is apparent, as our method

employs probabilistic variational analysis that leads to

rigorous and elegant analytical approximations [15], [17].

Another theoretical benefit is that the image likelihood

estimates are lower bounded. This new approach enables

effective and efficient detection and tracking algorithms for

many nonrigid objects such as pedestrians.

This new approach has a number of advantages over many

existing methods. First, since this model employs a field

rather than a vector to describe a shape, it can sufficiently

capture the local variability of the shape by the local network

structure, thus enabling accurate modeling of the complex

shape prior. Second, since the model captures shape varia-

bility and performs image measurements in a distributed

fashion, it is more robust against occlusion than the vector-

based global approaches (such as PCA) in which image

measurements have to be performed in a centralized fashion,

i.e., conditioned on all shape parameters. In addition, having

an observation layer leads to more flexibility and robustness

for handling cluttered backgrounds. Third, the variational

approximation provides a computationally efficient way to

compute the likelihood of image observations, to infer the

hidden states of the model, and to facilitate fast learning. Last

but not least, it integrates the top-down and bottom-up

methodologies for tracking nonrigid objects. The top-down

approaches involve evaluating a large number of hypotheses,

and the bottom-up approaches require large efforts in

grouping and detection. Given the huge variability in the

nonrigid human shapes, neither approach would be satisfac-

tory because the number of hypotheses would be tremen-

dously large and grouping a nonrigid object is very difficult.

The proposed tracking method is able to balance these two

methodologies and to combine the advantages of both: The

global variability is handled in a top-down fashion by particle

filtering [2], [14], while the local nonrigidity is coped with by a

bottom-up approach by directly evaluating the likelihood of

image measurements.

The paper is organized as follows: After a brief description

of the related work in Section 2, this paper presents the two-

layer field model in Section 3. The probabilistic variational

analysis of this model is given in Section 4, and the learning

algorithm is presented in Section 5. Section 6 describes our

methods for pedestrian detection and tracking, and our

extensive results are reported in Section 7. The paper

concludes in Section 8.

2 RELATED WORK

In the past few decades, many methods have been proposed
for object detection, mainly for the human face and cars.
They are based on different classification schemes. Neural
network have been employed for detecting faces [31] by
classifying the candidate image patches into face or nonface
classes. A learned histogram model for wavelet coefficients
can be used for face/car detection [32] because the
histograms approximate the distributions of object features
for discrimination. In addition, combined with the Harr
features, the AdaBoost classifier has been very successful
for frontal face detection [35] and has been extended for
pedestrian detection [36] with the help of motion informa-
tion. Support vector machines are also widely used in the
detection tasks [7], [23], [25].

But, most existing approaches seem not to be suitable for

detecting targets with large shape variations, such as the

pedestrian. For example, methods based on raw pixel

features, such as [24], [31], cannot handle large variability in

the appearance of pedestrians. It turns out that the shape

features of these deformable targets need to be used. It is

suggested that both local and global cues should be

combined for such a challenging task [19].

The research on nonrigid shape analysis has a long

history, and various approaches have been proposed and

investigated. For all these methods, three important

common issues should be addressed, i.e., the shape

representation X, the shape prior pðXÞ, and the conditional
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likelihood of image observation pðZjXÞ. (Here, the rigid

motion y is dropped for clarity.)
Different shape representations can be categorized into

either parametric or nonparametric models. Examples of
parametric representations includes Fourier descriptors,
B splines [2], [18], the deformable template [39], etc., where
shape deformation is controlled by the shape parameters and
smoothness constraints. A typical nonparametric representa-
tion is the point distribution model [5] where a shape is
described by an ordered and labeled set of landmark points,
and the shape deforms when the points change. Although it
provides great flexibility, registration of landmark points is
not a trivial task. An even more radical approach is to use a
2D mask [11], [16], [34], where the shape deforms when
multiplied by a sparse permutation matrix [16], or by
selecting different exemplars [11], [34]. In all these represen-
tations, a deformable shape is mapped to a point in a vector
space (i.e., the shape space), although the dimensionality
varies for different approaches. These vectorized models are
global since the image observations are conditioned on all the
shape parameters. Thus, these global methods are generally
not likely to be able to cope with partial occlusions, unless the
training data have incorporated all possible occlusion
situations. In this paper, rather than using a global repre-
sentation, a field representation is proposed, with which the
complex variability of the nonrigid shape and the occlusion
difficulties can be handled easily.

Obviously, in reality, a shape cannot be allowed to
deform arbitrarily; thus, the allowable shape space needs to
be characterized by having a shape deformation prior
model pðXÞ. A possible approach is to reduce the correla-
tions among different shape parameters and model the
variance of deformation by a multivariate Gaussian dis-
tribution in a lower-dimensional subspace. This is the spirit
of the principal component analysis (PCA) and has been
widely adopted for learning deformation priors [2], [5].
Since PCA identifies a linear subspace and catches linear
correlations, it is powerful to capture and decorrelate
certain global deformations, but insufficient for the local
nonrigidity. Thus, it motivated the methods that use
mixture distributions [16] or exemplar databases [11], [34].
Although mixture distributions can represent arbitrarily
complicated densities in theory, it becomes unrealistic
when the number of mixtures increases tremendously. To
alleviate this difficulty, an inhomogeneous Gibbs model has
been proposed and applied successfully to face deformation
[20], although the model needs expensive training. The
approach proposed in this paper also models the shape
deformation prior, but instead of modeling the prior in a
global fashion, our approach is based on the field
representation and the prior, i.e., a Boltzmann distribution
(a specific Gibbs distribution), is distributed into a Markov
field, and a variational analysis is employed for analytical
results (details in Sections 3 and 4). The new approach
stands out from the existing methods by this new
representation.

Different approaches have been investigated to fit a
shape model to image observations. This can be done
through minimizing an energy function [18], or based on
the Bayesian framework where it is important to character-
ize the conditional likelihood of image observation pðZjXÞ.

Analytical forms can be obtained by assuming the inde-
pendence among a set of discrete points on shape contours
[2], [21]. To bypass the independence assumption which
may be invalid in reality, the conditional likelihood can be
modeled as a metric exponential density obtained from the
Chamfer distance based on exemplars [34]. When separat-
ing global motion from local nonrigidity, the likelihood
conditioned on only global motion can be obtained by the
mixture (integral) of all exemplar components in the metric
mixture model [34]. The proposed approach in this paper
also provides tractable ways to calculate the likelihood only
conditioned on global motion, but the differences from [34]
are: 1) In our model, pðZjXÞ factorizes by independent
components and 2) pðZÞ is an integral over almost infinite
number of X instead of a finite set of exemplars, and our
method obtains a lower bound of pðZÞ.

There have been many excellent works on nonrigid
shape matching [1], [3], [6], [30], [33]. These methods are
more concerned with the matching of extracted shapes for
shape registration, where the nonrigid motion needs to be
explicitly estimated, while this paper is more concerned
with integrating out the variability of the nonrigid motion.
In addition, since this paper is based on field model, it is
also related to Markov random fields (MRF) that have been
widely used for image restoration [13], texture analysis [40],
surface reconstruction [12], etc. This paper extends MRF to
a two-layer model that consists of a random field and an
image observation layer. It is more like the Markov network
[9], [37] and the detailed differences will be presented in
later sections. More importantly, this paper deals with the
nonrigid target detection and tracking problem that has not
been addressed by the above methods.

3 THE FIELD REPRESENTATION

Global methods such as PCA are suitable for capturing the
global deformation with a set of uncorrelated deformation
bases. But, they tend to ignore the detailed local variations
induced by the nonrigidity and they are generally vulner-
able to partial occlusion. Therefore, it is desirable to have a
model that can handle the large number of degrees of
freedom of the local nonrigidity and is robust to occlusion.
In this paper, a two-layer field model is proposed as the
representation. This is not a vectorized and centralized
model but a field and distributed model, as shown in Fig. 1.

This field model consists of two layers. The hidden layer
is a hidden random field that represents the shape, modeled
as an undirected graph Gx ¼ fV ;Eg, where each vertex (or
node, or site) represents the hidden shape scene xk to be
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inferred. In this model, xk takes binary values, i.e.,

xk 2 f0; 1g, where xk ¼ 1 means that node k is on the

object’s contour. Each hidden node is connected to its

neighborhood nodes NðkÞ, thus forming a field.
This hidden random field captures the priors of the shape

and needs to be inferred from image observations. The

feasible shape changes are described by the joint probability

of all hidden nodes, i.e., X ¼ fx1; . . . ; xng. By assuming pðXÞ
to be a Gibbs distribution, it can be embedded in the random

field and be equivalently factorized as:

pðXÞ ¼ 1

Zc

Y
ði;jÞ2E

 ijðxi; xjÞ
Y
i2V

 iðxiÞ; ð1Þ

where  i and  ij are the potential functions associated with

site i 2 V and the link ði; jÞ 2 E, and Zc is a normalization

term or the partition function. Specifically, because xi is

binary in our setting for modeling the shape, pðXÞ becomes

a Boltzmann distribution, i.e.,

pðXÞ ¼ 1

Zc

Y
ði;jÞ2E

e�ijxixj
Y
i2V

e�ixi ; ð2Þ

where f�ij; �i : 8ði; jÞ 2 E; i 2 V g are parameters which can

be learned from training data (see Section 5).
The other layer is the observation layer, through which the

shape is associated with its image measurements. As shown

in Fig. 1, each hidden node xk is associated with an

observation node zk representing the image observation

produced by xk, which is characterized by the conditional

probability pðzkjxkÞ. The observation of the shape is the

collection of the image observations for all sites, i.e.,

ZðyÞ ¼ fz1; . . . ; zng, where y is the global motion. This is a

distributed likelihood model. Without causing confusion,

ZðyÞ is denoted as Z for short in later sections. We have:

pðZjXÞ ¼
Yn
k¼1

pkðzkjxkÞ: ð3Þ

Thus, the model in Fig. 1 is fully characterized by

f�ij; �i; pig, where pi ¼ piðzijxiÞ, and the model is denoted

as � ¼ f�ij; �i; pig.
This two-layer field model is suitable for describing local

nonrigidity and is robust to occlusion because of the

following reasons: 1) Since the neighborhood sites of the

shape are generally correlated, this model captures the

correlations and constraints among neighboring sites rather

than simply treating them independently, thus resulting in

more accurate modeling. 2) The Boltzmann distribution can

capture complex distributions which cannot be represented

by Gaussian or mixture of Gaussian, thus providing more

powerful priors. 3) Because the observation model pðZjXÞ is

distributed over the field (i.e., the shape), wrong estimates

on some part of the field may not ruin the other parts of the

shape, thus leading to the robustness to partial occlusion.
Within this model, two key problems need to be solved:

1. Calculating the likelihood pðZj�Þ. This is not a trivial
problem, since it involves the integral of all possible
configurations of X, i.e.,

pðZj�Þ ¼
Z

X2X

Yn
i¼1

piðzijxiÞpðXÞdX: ð4Þ

The key to solve this problem is to design an
effective inference algorithm that estimates the
posterior pðXjZ; �Þ and its marginals pðxijZ; �Þ.

2. Learning model parameters �. These parameters need to
be estimated from training data. Without causing any
confusion, we usually denote pð�j�Þ by pð�Þ for short.

The learning problem is closely related to the likelihood
problem because the solution to the learning problem relies
on the inference of the model (i.e., the estimation of
pðXjZ; �Þ). Therefore, this paper presents an analytical
approximation to the likelihood in Section 4, and the
solution to the learning problem in Section 5.

4 VARIATIONAL INFERENCE

The field model introduced in Section 3 is a high-dimensional
stochastic system because it consists of a large number of
random variables (or nodes). Thus, solving the observation
likelihood pðZj�Þ and the posterior pðXjZ; �Þ involves
computationally intensive multidimensional integral over
pðX;Zj�Þ. Although the Markovian property of the structure
of pðXj�Þ simplifies the problem, the exact analysis for such a
model is still prohibitive due to the loopy structures of this
field model.

Thus, approximated but computationally efficient ana-
lysis methods are of special interest. Probabilistic variational
approximation is one of these methods. Here, the general
approach of the variational analysis for the field model is
given in Section 4.1, and the deduced Boltzmann field for
nonrigid shapes is presented in Section 4.2.

4.1 Probabilistic Variational Analysis

The core idea of probabilistic variational analysis is to find

an analytical and simple variational distribution QðXÞ from

a variational family to approximate the complicated poster-

ior probability pðXjZÞ, such that the Kullback-Leibler (KL)

divergence of these two distributions is minimized.
To see this clearly, we follow Jaakkola [15] and formulate

an optimization problem to solve pðZÞ and pðXjZÞ simulta-
neously. An objective function can be written as:

JðQÞ ¼ log pðZÞ �KLðQðXÞjjpðXjZÞÞ

¼ log pðZÞ �
Z
x

QðXÞ log
QðXÞ
pðXjZÞ

¼ �
Z
x

QðXÞ logQðXÞ þ
Z
x

QðXÞ log pðX;ZÞ

¼ HðQÞ þ EQ½log pðX;ZÞ�;

ð5Þ

where HðQÞ is the entropy of QðXÞ and EQ½�� denotes the
expectation with regard to QðXÞ. It is easy to see that
log pðZÞ is lower bounded by JðQÞ since the KL divergence
is nonnegative. By maximizing the lower bound JðQÞ with
regard to Q, an optimal approximation of pðXjZÞ can be
obtained by Q�, and a closest value of log pðZÞ by JðQ�Þ.

The spirit of this variational approach is to find the best
approximation of pðXjZÞ within a given variational family
QðXÞ. When such a variational family has good analytical
properties, such as having independent components, or
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sparse correlations, or factorized forms, analytical approx-
imation can generally be expected. Although the selection
of the variational family QðXÞ can be arbitrary, an
appropriate QðXÞ will make a big difference on analysis.
Here, a fully factorized form is adopted:

QðXÞ ¼
Yn
i

QiðxiÞ; ð6Þ

where QiðxiÞ is an independent distribution of the hidden
node xi. Then, the entropy of the variational distribution
can be written as:

HðQÞ ¼
X
i

HðQiÞ:

Such a fully factorized variation leads to the mean field
approximation. To see this clearly, we minimize the
KL divergence with respect to QðXÞ. It can be easily shown
(see the Appendix) that the optimal approximation is made
of a set of interrelated Gibbs distributions:

QiðxiÞ ¼
1

Zi
eEQ½log pðX;ZÞjxi�; i ¼ f1; . . . ;Mg; ð7Þ

whereZi is a normalization constant, andEQ½log pðX;ZÞjxi� is
the conditional expectation givenxi. The set of equations in (7)
are fixed point equations. The iterative updating ofQiðxiÞwill
monotonically increase JðQÞ and eventually reach an equili-
brium. These equations can be called as mean field equations.

Equation (7) gives a general solution with a very general
form of QðXÞ. Furthermore, when taking advantage of the
special factorization property of pðXÞ in (2) and pðZjXÞ in
(3), a further simplification can be easily obtained. Given the
structure of this field model, it is easy to shown that:

QiðxiÞ �
1

Z0i
piðzijxiÞ iðxiÞMiðxiÞ;

where

MiðxiÞ ¼ exp
X
k2NðiÞ

Z
xk

QkðxkÞ log ikðxi; xkÞ

8<
:

9=
;; ð8Þ

where Z0i is a normalization constant, and NðiÞ is the

neighborhood of the site i. The iterative updating of QiðxiÞ
based on these mean field equations will monotonically

increase JðQÞ as well and eventually reach an equilibrium.

From (8), it is interesting to notice that the variational belief of

a hidden node xi is determined by three factors: The local

conditional likelihood piðzijxiÞ, the local prior  iðxiÞ and the

neighborhood prior MiðxiÞ from the constraints of the

neighborhood nodes xNðiÞ. This can be treated as a general-

ized Bayesian rule for the field model.
Thus, the term piðzijxiÞ iðxiÞ can be treated as the local

belief of xi, and treat the term MiðxiÞ as the “message”

propagated through the nearby nodes of xi. This method is

actually different from the belief propagation algorithm [9],

due to its use of variational analysis and to the different

contents in the “messages.” In our method, the computation

of MiðxiÞ is easier than belief propagation because of the

factorization in the variational distribution. In addition, it is

clear from this equation that the computation is signifi-

cantly reduced by avoiding multidimensional integrals,

noticing (8) involves only one-dimensional integral.

4.2 Boltzmann Field

The derivation described above was only based on the
factorization properties ofQðXÞ, pðXÞ, and pðZjXÞ. Thus, the
result is quite general. When using the field model for
nonrigid shapes, since xi are binary random variables (i.e.,
xi 2 f0; 1g), a Boltzmann distribution for pðXÞ can be
employed, as introduced in Section 3 and (2). Since xi is
binary, we can choose a specific variational distribution here:

QðXÞ ¼
Yn
i

�xii ð1� �iÞ
ð1�xiÞ; ð9Þ

where f�ig are variational parameters to be estimated.
Under this variational distribution, the mean field equations
(8) can be further simplified as:

�i ¼
piðzijxi ¼ 1Þmi

piðzijxi ¼ 0Þ þ piðzijxi ¼ 1Þmi
; ð10Þ

where

mi ¼ exp
X
j2NðiÞ

�ij�j þ �i

8<
:

9=
;:

It can be called a Boltzmann field. This set of mean field
equations in (10) are much simpler than (8) since they only
involve a finite set of variational parameters, rather than a set
of Gibbs distributions. As a result, the computation is quite
straightforward. Similar results have also been obtained by
Jordan et al. [17] and Peterson and Anderson [28].

Then, based on this particular variational setting and the
result above, (5) becomes:

JðQÞ ¼
X
i

HðQiÞ þ
X
ði;jÞ2E

�ij�i�j þ
X
k2V

�k�k

þ
X
k2V
ð1� �kÞ log pkðzkjxk ¼ 0Þ

þ
X
k2V

�k log pkðzkjxk ¼ 1Þ � logZc:

ð11Þ

We admit that JðQÞ cannot be fully computed, because

of the complexity of calculating logZc. Instead, it is simple

to compute eJJðQÞ ¼ JðQÞ þ logZc in practice. Fortunately, it

is not necessary to calculate logZc, because once an optimal

mean field Boltzmann approximation (denoted by Q�) can

be found based on (9) and (10), we readily have:

pðZÞ / eeJJðQ�Þ;
which is enough for our application of detection and
tracking in Section 6.

5 LEARNING

This section discusses the problem of learning model
parameters � ¼ f�ij; �i; pig from training data. The solution
of this model-learning problem is in the expectation-
maximization (EM) framework, where the core of the
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expectation step is the inference of the hidden field described

in Section 4. In our method, the training of f�ij; �ig and fpig
can be separated. Considering the difficulty of collecting the

training data with the known hidden variables (i.e., the

annotated training data), this paper proposes a method of

using both annotated and un-annotated training data in a

semisupervised fashion. The proposed learning method is

based on the Gibbs sampling technique and the Expectation-

Maximization iterations.
The initial model is constructed by the following way:

1. Collecting a set of annotated training examples,
L ¼ fXk;ZkgK1

k¼1, where Xk and Zk denote the
kth annotated training sample. For each sample,
the ith hidden node of the field model takes binary
values xi 2 f0; 1g, and the observation of this hidden
node zi is the average edge direction over a small
image patch associated with xi in our nonrigid shape
applications. zi is quantized and its distribution is
modeled as a histogram. If the target shape is very
small, zi simply takes binary value to indicate if it is a
detected edge point or not.

2. Learning piðzijxiÞ for each xi. Due to the factorization
of pðZjXÞ, i.e., (3), each individual piðzijxiÞ can be
learned independently. Each piðzijxiÞ is represented
by a histogram in our experiments.

3. Learning f�ij; �ig by the following steps:

a. calculating sufficient statistics Sij ¼ Ep½xixj� and
Si ¼ Ep½xi� from the annotated training data
fXkgK1

k¼1;
b. initialize a model �0

b ¼ f�0
ij; �

0
i g;

c. producing synthesized samples of fXk
gg

N
k¼1 by

Gibbs sampling of pðXj�bÞ;
d. calculating sufficient statistics Gij ¼ E�b ½xixj�

and Gi ¼ E�b ½xi� from the synthesized data

fXk
gg

N
k¼1;

e. adjusting the parameters by:

��ij / ðGij � SijÞ; ð12Þ

��i / ðGi � SiÞ; ð13Þ

f. go to Step 3c.

In our experiments, we select

�0
ij ¼ log

Sij
1� Sij

and �0
i ¼ log

Si
1� Si

as the initialization. This can be explained by noticing the

fact that both sufficient statistics Sij ¼ Ep½xixj� and Si ¼
Ep½xi� are in ½0; 1�. We choose logistic functions: Sij ¼ 1

1þe��ij
and Si ¼ 1

1þe��i . This leads to the above initial guess for

training �ij and �i. In all of our experiments, we observed

the convergence in less than 50 iterations.

Once the model is initialized, the model can be finely

tuned by using a large set of un-annotated training

examples U ¼ fZkgK2

k¼1 which are cheaply available. The

process is an EM iteration:

. E-step: 8Zk 2 U, infer the posterior pðxki jZk; �tÞ based

on variational mean field approximation in (8), i.e., the

set of variational parameters ff�igkgK2

k¼1 is obtained.
. M-step: estimate the model parameters �tþ1 ¼ f�tþ1

ij ;

�tþ1
i ; ptþ1

i g, given a fixed ff�igkgK2

k¼1 by a stochastic

gradient descent:

��ij /
@JðQÞ
@�ij

� �i�j � EQ½xixj�; ð14Þ

��i /
@JðQÞ
@�i

� �i �EQ½xi�; ð15Þ

where EQ½xixj� and EQ½xi� are sufficient statistics
calculated with regard to the variational distribu-
tions. The method of estimating pi is the same as in
Step 2 in the above supervised training.

6 PEDESTRIAN DETECTION AND TRACKING

A suitable representation for the nonrigidity of a pedestrian
is critical for detection and tracking. In this section, we
approach these tasks using the proposed field model.

6.1 Pedestrian Detection

Pedestrian detection involves two mean field models: �0

corresponds to the negative hypothesisH0, i.e., no pedestrian
presence, and�1 to the positive hypothesisH1, i.e., pedestrian
presence. The detection algorithm scans different extrinsic
shape poses, including locationsu, orientations�, andscaless,
denoted by y ¼ fu; �; sg. For different scales, we keep the
dimension and the number of hidden nodes of the field model
the same, but use different sizes of image patches for the
observation nodes. In our experiment, we scan all image
locations and over five scales.

For each extrinsic shape pose y, we collect the edge map
of the corresponding image patch and treat it as the image
observation Z ¼ IðyÞ of the hidden Markov field. Like-
lihood ratio detection is performed on each given y to
determine the pedestrian presence on this particular y:

log pðZjy; �1Þ � log pðZjy; �0Þ > �o � 0: ð16Þ

Since it is unrealistic to calculate pðZjy; �Þ (in (4)), the
variational analysis in Section 4 nicely provides a mean field
solution as an approximation, i.e.,

log pðZjy; �Þ � JðQ�ðXjy; �ÞÞ;

where Q�ðXjy; �Þ is the optimal mean field approximation
of the posterior pðXjZ;y; �Þ. Thus, the detection rule for
each given y becomes:

eJJðQ�ðXjy; �1ÞÞ � eJJðQ�ðXjy; �0ÞÞ > �; ð17Þ

where eJJðQ�ðXjy; �kÞÞ; k ¼ f0; 1g can be obtained according
to (5) once the mean field iteration converges at Q�ðXjy; �kÞ
according to (8).

There are two factors affecting the threshold � : 1) JðQ�j�kÞ
only provides an optimal lower bound of log pðZj�kÞ and
2) we generally only calculate JðQ�j�kÞ up to a constant
difference, i.e., logZk

c (see (11)). Thus, we do not simply set
� ¼ 0, but train this threshold from supervised examples to
reduce the rate of false alarm and missed detection.
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6.2 Pedestrian Tracking

Different from detection, only the pedestrian model �1 is
involved in tracking, where the task is to estimate the
posterior density of pðytjIt; �1Þ, where yt ¼ fut; �t; stg is the
same as in the detection problem, and It ¼ fI1; . . . ; Itg.
According to Bayesian rule, we have:

pðytjIt; �1Þ / pðItjyt; �1Þ
Z
yt�1

pðytjyt�1Þpðyt�1jIt�1; �1Þ: ð18Þ

The dynamic process can be represented as a dynamic
Bayesian network in Fig. 2.

Clearly, the hidden factor Xt of local nonrigidity has
been integrated out in the observation process. This is
powerful for tracking since it leaves no extra motion
parameters to be estimated.

It is clear that the visual dynamics is governed by
the dynamics model pðytjyt�1Þ and the observation
model pðItjyt; �1Þ. Since we have

pðItjyt; �1Þ ¼ pðZðytÞj�1Þ / e
eJJðQ�ðXtjy;�1ÞÞ;

the local nonrigidity has been absorbed in the calculation of
data likelihood which is based on the mean field inference. In
our experiments, the dynamics model is characterized as a
constant acceleration model and the parameters are learned
from an annotated training sequence. Once the MAP solution

y�t ¼ arg max pðytjIt; �1Þ

is obtained, the local nonrigidity can be revealed by

pðXtjIt;y�t ; �1Þ � Q�ðXtjy�t ; �1Þ:

Because the image likelihood pðItjyt; �1Þ can be calculated,
the tracking algorithm can be easily implemented using
particle filtering [2], [14], where each particle represents a
sample of yt. Detailed results will be reported in Section 7.

7 EXPERIMENTS

In order to validate the proposed approach and demonstrate
the applicability of this field model, we performed experi-
ments on pedestrian detection and tracking and compared
the proposed detection method with the AdaBoost detector.

7.1 Training and Model Validation

Two models were trained, one for the human �1 and the
other for the background �0. In our experiments, the size of
the field was set to 12� 6 and each of the node covers an
image patch, whose size depends on scale. The experiments

used 16� 16 patches for the finest scale, and coarser scales
correspond to smaller patches. Five scales were used, where
the coarsest scale takes 5� 5 patches. Neighborhood image
patches overlap.

To train �1, the training data of various people were
collected and their contours were extracted. Then, we resized
and aligned all the contours by compensating for their
extrinsic poses. Using the extracted contours and the
corresponding image observations, we obtained a set of
3,000 annotated training data. All training images are aligned
to the center of mass. Some examples are shown in upper
row of Fig. 3. Training �0 is easier than �1, since the alignment
step is not needed, and a set of 10,000 training data were
collected randomly from the training sequences to train �0.
Some of them are shown in the bottom row of Fig. 3. In
addition to these annotated training data, 30,000 unannotated
data to tune the model were also used, based on the method
described in Section 5.

It is important to know if the trained Boltzmann field
model really captures the true shape prior pðXÞ. Although
there is no quantitative means to validate that, a plausible
way for a rough validation is to sample the learned prior
Boltzmann distribution pðXÞ and the learned image like-
lihood distribution pðZjXÞ, and then perform a subjective
evaluation. To synthesize an image, a sample of X ¼
fx1; . . . ; xng is first drawn by Gibbs sampling from pðXÞ in
(2), then for each xi, a sample of zi is drawn from piðzijxiÞ.
Putting together zi produces a synthesized image. Through
our subjective evaluations, the trained models were able to
synthesize reasonably good data. Some synthesized data
based on �1 and �0 are shown in Fig. 4.
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Fig. 2. The dynamic process for tracking a nonrigid target.

Fig. 3. The upper row are examples of annotated training data for

human �1 and the bottom row for nonhuman �0.

Fig. 4. Examples of synthesized data. The left ones are samples from �1

and the right ones from �0.



7.2 Pedestrian Detection

We performed extensive experiments and quantitative

evaluation of the proposed approach to pedestrian detec-

tion and we are particularly interested in the investigation

of the capacity of this field model of capturing the

tremendous shape variations and its performance and

robustness to partial occlusions.

7.2.1 Performance Evaluation

To provide quantitative evaluation of the proposed
approach, we constructed a testing database which contains
1,000 images collected from various occasions. We manu-
ally annotated the ground truth detection for each image.
The ROC curve is shown in Fig. 5. This curve shows that at
80 percent detection rate, the detector has a false positive
rate of about 1/200,000 which corresponds to about one
false alarm per frame for 320� 240 images. This is
comparable to the most recent method reported in [36].

Our extensive experiments show that the proposed field
model is capable of capturing the nonrigidity caused by the
view changes of the pedestrian. In our test data, there is a
large volume of images where the pedestrians present
various profiles. Some of the detection examples are shown
in Fig. 6. The algorithm can also easily detect multiple
targets. In the bottom right image, a false alarm was
observed. In these results, the algorithm did not detect the
sitting persons and the cyclist. This is reasonable, because
the upper body of these examples are largely inclined and
our training set did not contain such cases.

In addition, this field model is also able to detect the
target from various environments. Some of the results are
shown in Fig. 7. The robustness comes from the observation
models of �1 and �0. We did observe the case where in a
region the edge map is pervasive and it is impossible to tell
from the edge map where the person is.
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Fig. 5. ROC curve of the proposed pedestrian detector.

Fig. 6. Pedestrian detection under various views.



Besides detection, a question of great interest is to reveal
the value of hidden field. For each detected region, when
displaying the corresponding mean field f�ig, a clear
pedestrian contour can be seen. Some examples are shown
in Fig. 8.

In addition, the proposed detection algorithm is efficient.

Currently, our unoptimized C++ implementation runs at

about two frames/second on a Pentium IV 2GHz PC for

320� 240 images. We believe there is much room for

improving the implementation. Beyond most existing

methods, the proposed field model enables parallel

computing, since the mean field updating on the set of

sites is intrinsically parallel. In addition, when building real

systems, the proposed detection method can be easily

combined with background subtraction, motion detection,

or other remedies to further reduce the false alarm rate

while not decreasing the detection rate. (We did not

perform these postprocessing in our experiments, in order

to provide a true ROC of the new model.)

7.2.2 Evaluation on Partial Occlusion

More interestingly, the proposed field model works well

even when the target is partially occluded. Sample results

on the detection under occlusion are shown in Fig. 9. This

feature is unique, since the robustness to partial occlusion is

an intrinsic benefit of the proposed field model. This is truly

owing to the properties of the field model because it is not

necessary for the proposed method to deliberately include

the occlusion cases in training data. On the contrary,

vectorized shape models, such as active shape models [5],

cannot cope with this problem since it is generally infeasible

to include all possible occlusion situations in training.

To perform a quantitative study on the robustness of our

method, another test database was created, consisting of

three subsets, each of which contains 100 images under a

certain rough percentage of occlusion (less than 20 percent,

between 20 percent and 40 percent, and over 40 percent,

respectively). The ROC curves for these occlusion cases

were obtained and are shown in Fig. 10.

These ROC curves show that the performance of the

proposed method does not degrade much when the

percentage of occlusion is under 40 percent, since 80 percent

detection rate can be achieved with comparable false positive

rate as the case without occlusions. But, when the occlusion is

over 40 percent, the detection rate drops a lot. Although such

quantitative measures are rough, they do verify the robust-

ness of the proposed approach to partial occlusions.

7.2.3 Comparison with the AdaBoost Detector

We compare the performance of the proposed method with

the AdaBoost detector [35], which is by far one of the best

for face detection and is widely used for various object

detection tasks. To have a comprehensive comparison, six

different data sets were used:

. Data set A is a set of 1,000 images including both

nonocclusion and occlusion cases.
. Data set B is a set of 1,000 images of nonocclusion

cases only.
. Data set C is a set of 300 images of various occlusion

cases.
. Data set D is a set of 100 images, each of which

presents over 40 percent occlusion.
. Data set E is a set of 100 images, each of which

presents 20 percent to 40 percent occlusion.
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Fig. 7. Pedestrian detection in various environments.

Fig. 8. The mean field inference of the hidden Markov field. The right
column shows the estimated mean field f�ig of the detected regions on
the left column.



. Data set F is a set of 100 images, each of which

presents less than 20 percent occlusion.

The ROCs on these data sets are shown in Fig. 11 and

Fig. 12.

Fig. 11a shows the two ROCs on data set A that contains a

mixture of nonocclusion and occlusion cases, and Fig. 11b on

data set B of all nonocclusion cases. These ROCs show that

our method has overall 5-10 percent higher detection rate

than the AdaBoost detector. With high false alarm rates, both

methods have high detection rates (over 90 percent).

Fig. 12a shows the ROCs on data set C, and gives the

comparison of the two methods on general occlusions. It is

apparent from this figure that our method significantly

outperforms the AdaBoost detector. With high false alarm

rates, our method can obtain over 80 percent detection while

Adaboost is merely 70 percent. Figs. 12b, 12c, and 12d show

the ROCs on various degrees of occlusions. If the target

present with over 40 percent occlusion, AdaBoost detector

hardly works, while our method has over 60 percent

detection. When the target has a moderate occlusion (between

20 and 40 percent), our method also significantly outperforms

AdaBoost. When the occlusion is less than 20 percent, the two

methods are comparable, but our method is slightly better.

7.3 Pedestrian Tracking

Tracking nonrigid objects is a challenging problem, especially

when the camera is not fixed and the target presents large

shape variances, as in the demonstration of this section. Since

the mean field approximation also gives the data likelihood

(given a global motion) by integrating out all possible local

nonrigidity, this is powerful and ideal for tracking nonrigid

targets, as described in Section 6.2. We did extensive

experiments and verified this idea. In our experiments, a

particle filter was applied to track the targets, i.e., to estimate

the extrinsic pose parameters y ¼ fu; �; sg through the video.

Four hundred particles were used in the experiments.

Some sample frames are shown below in Fig. 13. Actually,

this is a difficult sequence for many tracking schemes. One

difficulty is that the camera is not static and tracking methods

based on background subtraction cannot be applied. In

addition, when the pedestrian walks and rotates, the visual

appearances change dramatically and present nonstationary

characteristics, which is a very difficult problem for visual

tracking in general. This example shows the effectiveness of

the proposed field model. Our method can handle such a

difficult scenario because the image likelihoods have inte-

grated all the shape deformations. The C++ implementation

of the proposed tracking algorithm runs at over 15 frames/

second on a Pentium IV 2GHz PC.

8 DISCUSSION AND CONCLUSIONS

Characterizing priors of nonrigid shapes is critical for

analyzing nonrigid objects. Global or vectorized approaches

such as PCA prove to be effective in capturing global

deformation by reducing global correlations. However, these

vectorized models are neither suitable for handling local

nonrigidity nor robust to partial occlusion, which are both

important for many real-world applications such as pedes-

trian detection and tracking. This paper proposed a new

statistical method to capture the local nonrigidity based on a

two-layer field model, where a Boltzmann distribution was

762 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 5, MAY 2006

Fig. 10. ROC curves on the three testing subsets under different
occlusion percentages.

Fig. 9. Sample results of pedestrian detection under partial occlusions.



employed to characterize the complicated prior for local

variability and a variational mean field approximation was

presented for computationally efficient inference, likelihood

calculation and model training. Due to the distributed

likelihood model, this new field method is robust to

occlusion. Based on the framework of this field model, the

detection and tracking problems were also investigated and

results presented. The success of applying the proposed

method to pedestrian detection and tracking showed its

effectiveness and general applicability.
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Fig. 11. ROC curves on Data set A and B. (a) ROC on Data set A. (b) ROC on Data set B.

Fig. 12. ROC curves on Data set C, D, E, and F. (a) ROC on Data set C. (b) ROC on Data set D. (c) ROC on Data set E. (d) ROC on Data set F.



Aligning training data in the proposed approach is easier

than labeling landmark data in the active shape model [5],

but it does leave a problem: How sensitive is the trained

model to the alignment errors? We leave this for further

studies. In addition, in our future work, we plan to

investigate the capacity of the proposed Boltzmann field

model, i.e., to what extent the model can capture local

nonrigidity. Moreover, better image observation models

will be studied to reduce the false alarm rate.

APPENDIX

This appendix gives the derivation of the mean field

approximation of (7). Based on (5) and (6), we have:

JðQiÞ ¼ HðQiÞ þ
X
k6¼i

HðQkÞ

þ
Z
xi

QiEQ½log pðX;ZÞjxi�:

Since Qi is a distribution, we can construct a Lagrangian:

LðQiÞ ¼ JðQiÞ þ �

Z
xi

Qi � 1

� �
:

Then, the derivative of LðQiÞ with regard to Qi gives:

@LðQiÞ
@Qi

¼ � logQi � 1�EQ½log pðX;ZÞjxi� þ �:

Once we set the derivative to zero, we obtain:

Qi ¼ e�1þ�þEQ½log pðX;ZÞjxi� ¼ 1

Zi
eEQ½log pðX;ZÞjxi�:

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation (NSF) Grant IIS-0308222, IIS-0347877 (CAREER),

Northwestern startup funds, and the Murphy Fellowships.

The authors also greatly thank the reviewers for the

constructive comments and suggestions.

REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, pp. 509-522, 2002.

[2] A. Blake and M. Isard, Active Contours. Springer-Verlag, 1998.
[3] H. Chui and A. Rangarajan, “A New Algorithm for Nonrigid

Point Matching,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 44-51, June 2000.

[4] R. Collins, A. Lipton, and T. Kanade, “Special Issue on Video
Surveillance and Monitoring,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, pp. 745-746, 2000.

[5] T.F. Cootes, C.J. Taylor, and J. Graham, “Active Shape Models
—Their Training and Application,” Computer Vision and Image
Understanding, vol. 61, pp. 38-59, Jan. 1995.

[6] J. Coughlan and S. Ferreira, “Finding Deformable Shapes Using
Loopy Belief Propagation,” Proc. European Conf. Computer Vision,
vol. 3, pp. 453-468, 2002.

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 886-893, June 2005.

[8] L. Davis, I. Haritaouglu, and D. Harwood, “Ghost: A Human
Body Part Labeling System Using Silhouettes,” Proc. Int’l Conf.
Pattern Recognition, vol. 1, pp. 77-82, 1998.

[9] W. Freeman, E. Pasztor, and O. Carmichael, “Learning Low-Level
Vision,” Int’l J. Computer Vision, vol. 40, pp. 25-47, 2000.

[10] D.M. Gavrila, “The Visual Analysis of Human Movement: A
Survey,” Computer Vision and Image Understanding, vol. 73, pp. 82-
98, Jan. 1999.

[11] D.M. Gavrila and V. Philomin, “Real-Time Object Detection for
‘Smart’ Vehicles,” Proc. IEEE Int’l Conf. Computer Vision, pp. 87-93,
Sept. 1999.

[12] D. Geiger and F. Girosi, “Parallel and Determinstic Algorithms
from MRFs: Surface Reconstruction,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, pp. 401-412, 1991.

[13] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.

[14] M. Isard and A. Blake, “Contour Tracking by Stochastic Propaga-
tion of Conditional Density,” Proc. European Conf. Computer Vision,
pp. 343-356, 1996.

[15] T.S. Jaakkola, “Tutorial on Variational Approximation Methods,”
technical report, MIT Artificial Intelligence Lab., 2000.

[16] N. Jojic, N. Petrovic, B. Frey, and T.S. Huang, “Transformed
Hidden Markov Models: Estimating Mixture Models and Infer-
ring Spatial Transformations in Video Sequences,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 26-33,
June 2000.

[17] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An
Introduction to Variational Methods for Graphical Models,”
Machine Learning, vol. 37, pp. 183-233, 2000.

[18] M. Kass, A. Witkin, and D. Terzopoulos, “Snake: Active Contour
Models,” Proc. Int’l Conf. Computer Vision, pp. 259-268, 1987.

[19] B. Leibe, E. Seemann, and B. Schiele, “Pedestrian Detection in
Crowded Scenes,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 878-885, June 2005.

764 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 5, MAY 2006

Fig. 13. Tracking a nonrigid target based on the mean field Boltzmann model.



[20] C. Liu, S.C. Zhu, and H.-Y. Shum, “Learning Inhomogeneous
Gibbs Model of Faces by Minimax Entropy,” Proc. IEEE Int’l Conf.
Computer Vision, vol. 1, pp. 281-287, July 2001.

[21] J. MacCormick and A. Blake, “A Probabilistic Exclusion Principle
for Tracking Multiple Objects,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 572-578, 1999.

[22] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-Based
Object Detection in Images by Components,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, Apr.
2001.

[23] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio,
“Pedestrian Detection Using Wavelet Templates,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 193-199, 1997.

[24] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector
Machines: An Application to Face Detection,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 130-136, 1997.

[25] C. Papageorgiou and T. Poggio, “A Trainable System for Object
Detection,” Int’l J. Computer Vision, vol. 38, pp. 15-33, 2000.

[26] V. Pavlovi�cc, R. Sharma, and T.S. Huang, “Visual Interpretation of
Hand Gestures for Human Computer Interaction: A Review,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 677-695, July 1997.

[27] A. Pentland, “Looking at People: Sensing for Ubiquitous and
Wearable Computing,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 107-119, Jan. 2000.

[28] C. Peterson and J. anderson, “A Mean Field Theory Learning
Algorithm for Neural Networks,” Complex Systems, pp. 995-1019,
1987.

[29] D. Ramanan and D. forsyth, “Finding and Tracking People from
the Bottom Up,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 467-474, June 2003.

[30] A. Rangarajan, J. Coughlan, and A. Yuille, “A Bayesian Network
Framework for Relational Shape Matching,” Proc. IEEE Int’l Conf.
Computer Vision, vol. 1, pp. 671-678, Oct. 2003.

[31] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face
Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, no. 1, pp. 23-38, Jan. 1998.

[32] H. Schneiderman and T. Kanade, “A Statistical Method for 3D
Object Detection Applied to Faces and Cars,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 746-751, 2000.

[33] S. Sclaroff and A. Pentland, “Modal Matching for Correspondence
and Recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 17, pp. 545-561, 1995.

[34] K. Toyama and A. Blake, “Probabilistic Tracking in a Metric
Space,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2, pp. 50-57, July
2001.

[35] P. Viola and M. Jones, “Rapid Object Detection Using A Boosted
Cascade of Simple Features,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 511-518, Dec. 2001.

[36] P. Viola, M. Jones, and D. Snow, “Detecting Pedestrians Using
Patterns of Motion and Appearance,” Proc. IEEE Int’l Conf.
Computer Vision, pp. 734-741, Oct. 2003.

[37] Y. Weiss, “Correctness of Local Probability Propagation in
Graphical Models with Loops,” Neural Computation, vol. 12,
pp. 1-41, 2000.

[38] Y. Wu, T. Yu, and G. Hua, “A Statistical Field Model for
Pedestrian Detection,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 1023-1030, June 2005.

[39] A. Yuille, “Deformable Templates for Face Recognition,”
J. Cognitive Neuroscience, vol. 3, pp. 59-70, 1991.

[40] S.C. Zhu, Y.N. Wu, and D.B. Mumford, “FRAME: Filters, Random
Field and Maximum Entropy—Towards a Unified Theory for
Texture Modeling,” Int’l J. Computer Vision, vol. 27, pp. 1-20, 1998.

Ying Wu received the BS degree from Huaz-
hong University of Science and Technology,
Wuhan, China, in 1994, the MS degree from
Tsinghua University, Beijing, China, in 1997, and
the PhD degree in electrical and computer
engineering from the University of Illinois at
Urbana-Champaign (UIUC), Urbana, Illinois, in
2001. From 1997 to 2001, he was a research
assistant at the Beckman Institute for Advanced
Science and Technology at UIUC. During the

summers of 1999 and 2000, he was a research intern with Microsoft
Research, Redmond, Washington. Since 2001, he has been an
assistant professor in the Department of Electrical and Computer
Engineering at Northwestern University, Evanston, Illinois. His current
research interests include computer vision, computer graphics, machine
learning, multimedia, and human-computer interaction. He serves as an
associate editor of the SPIE Journal of Electronic Imaging. He received
the Robert T. Chien Award at UIUC in 2001, and is a recipient of the US
National Science Foundation CAREER award. He is a member of the
IEEE and the IEEE Computer Society.

Ting Yu received the BS and MS degrees from
the Department of Automation, Tsinghua Uni-
versity, Beijing, China, in 2000 and 2002. He is
currently a PhD candidate in the Department of
Electrical and Computer Engineering at North-
western University, Evanston, Illinois. During the
summers of 2004 and 2005, he was a research
intern with the NEC Labs America, Cupertino,
California, and Microsoft Research, Redmond,
Washington, respectively. His research interests

include computer vision, image/video processing and analysis, statistical
learning, and data mining. He received the Walter P. Murphy Fellowship
at Northwestern in 2002, and the Motorola Graduate Scholarship and
Excellent Student Scholarships at Tsinghua in 2001, 1999, and 1997.
He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WU AND YU: A FIELD MODEL FOR HUMAN DETECTION AND TRACKING 765



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


