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Abstract

In this paper, we propose a novel variational energy fortiaridor image segmentation. Traditional
variational energy formulation for image segmentatiore ltkat in [1] only incorporates local region
potentials with a Gaussian distribution on each region. Weethat for segmentation of natural objects,
Gaussian mixture model (GMM) needs to be adopted to caperappearance variation of the objects.
Moreover, we introduce a global image data likelihood pt&tmo address the problem that each local
region usually contains a portion of incorrectly classifigidels during the iterations. By combining
it with local region potentials, we obtain more robust andusate estimation of the foreground and
background distributions. The minimization of the propbszcal-global energy functional is achieved
in two steps: the evolution of the foreground and backgrobodndary curve by level set; and the
robust estimation of the foreground and background moddixXeg-point iteration, called quasi-semi-
supervised EM, which is particularly suited for the leagnproblem where some unknown portion of the
data are labeled incorrectly. Extensive experimentalli@gucluding both business card extraction, road
sign extraction and general object-of-interest segmiamatemonstrate the robustness, effectiveness,

and efficiency of the proposed approach.

Index Terms

Variational energy, Level set, Fixed-point iteration, Mb@stimation, Semi-supervised learning

. INTRODUCTION

Automatic extraction of objects of interest (OOI) from Isithages is an important problem
of early vision with applications in object recognition, age painting, video content analysis,
visual surveillance, etc. Given an arbitrary image, theeobgf interest is usually subjective, but
it should be at the focus of attention. When one takes a gicitian OOI, one normally tries to
put it roughly at the center. With this weak assumption, we able to build a fully automatic
system to extract the OOIs. Notice that this assumption doesell us where the boundary of
the OOl is.

In order to extract the OOI, it is desirable to have the favegd and background models. The
extraction of the OOI and the estimation of foreground anckeound models is intrinsically
a chicken-and-eggroblem. If we have thea priori knowledge of the OOl model, we can
directly separate the OOI from the background like what isedm the geodesic active region

approach [2]. On the other hand, if we have already extrattedDOIl from the image, we can
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easily estimate the OOI and the background models from thmeeted image data. Problems
like this are usually solved in an iterative way. At eachatam, the current estimates of the
OOl and background models are fixed first, and the segmentetiperformed. Based on the
segmentation, the OOl and background models are thenimatdst. These two steps can be
formulated as an energy minimization problem such as themegompetition approach [1]

and the GrabCut system [3]. Both the region competition dred GrabCut techniques model
coherent image regions in a probabilistic way. The regiompmetition algorithm models each
coherent image region as a Gaussian distribution on thd jitensities. The GrabCut models
both the foreground and background as Gaussian mixture Ismodethe RGB channels of the
pixels. Both algorithms iteratively minimize an energy étion whose unknowns include the
segmentation results and the subregion model parameters.

One problem with the iteration process is that at each iterahe model estimation for each
subregion is based on inaccurately labeled image pixetedime initial partition is usually not
perfect. The incorrectly labeled pixels will affect the acacy of the model parameters which in
turn will affect the subsequent segmentation. How to redheenegative effect of the incorrectly
labeled pixels is the central focus of this paper.

We propose a novel variational energy formulation for thebpgm of the OOI extraction,
which combines different image cues including gradientipicdistribution, and spatial coherence
of the image pixels. Our energy formulation differentiafiesn previous works ( [1], [3]) in that
we incorporate a potential function that represents thbajlmmage data likelihood. The intuition
of incorporating this term is that instead of just fitting tmedels locally for each subregion on
the inaccurately labeled image pixels, we also want to seek fjlobal description of the whole
image data in the energy minimization process.

The minimization of the proposed energy functional invslieo steps: the optimization of
the OOI and background boundary curve by level set with thdehdistributions fixed; and the
robust estimation of the OOI and background models by a fpadt iteration with the boundary
curve fixed. The robustness of the model estimation resudta fncorporating the global image
likelihood potential. What is more interesting is that theel-point iteration reveals a robust
computational paradigm of model estimation for Gaussiaxtumés when some unknown portion
of the data are labeled incorrectly. This is different froemé-supervised learning because in

semi-supervised learning, the labels are assumed to bectofio the best of our knowledge, we
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are the first to propose such a machine learning techniquehwié call quasi-semi-supervised
EM.

The remainder of the paper is organized as follows: the eélatork will be summarized
and discussed in Section Il; the detailed discussion of amiational energy formulation with
the global image likelihood potential is presented in Serctill; in Section IV, we describe
the details of the iterative minimization algorithm incing the optimization of the boundary
curve by level set, and the detailed derivation of the qeas#-supervised EM algorithm for
the robust estimation of the OOI and background models; oii@eV, extensive experimental
results on business card scanning, road signs extractigemeral OOI extraction are presented

and discussed; finally we conclude and discuss future wofgeiction VI.

I[l. RELATED WORK

Image segmentation and foreground/background sepaiateofundamental yet difficult prob-
lem in computer vision. There has been a lot of work in thisaa@nd it is formidable to
enumerate all of them. We will only mention a few that are nretdted to our work.

One popular approach is to formulate the segmentation @nolsls an energy minimization
problem. This approach can be roughly categorized as twasttaams: variational energy
minimization which usually involves solving a partial difential equation (PDE), and graph
energy minimization which minimizes an energy function ggah-cut.

The research of image segmentation by variational energynmzation can be traced back
to the active contour I®AKES [4]. Later work include the Mumford-Shah model [5], the aeti
contour with balloon forces [6], the region competitionaithm [1], the geodesic active con-
tours [7], the active contour without edges [8], the geadesitive region [2], etc. The energy
functionals constructed in this track are usually formedaon the region boundary curves [4],
[6], [7] and/or over the regions partitioned by the boundewves [1], [8], [2]. In practice,
energy functionals based purely on image gradient infaondike what was proposed in [4],
[6], [7] are easy to get stuck in a local optima especially whigere are many spurious edges
in the image. On the other hand, using the intensity, color temture distributions [1], [8], [2]
of the image pixels over the regions to formulate the enetmctional can largely overcome
this problem. In principle, we can obtain a better energynidation by combining the edge

information and the feature distribution of the image @X&]. The minimization of this type of
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variational energy has evolved from the traditional finitedence method (FDM) [4], [1] and
the finite element method (FEM) [6] to the more advanced Isgemethod [9], [10], [7], [8], [2]-
There are a lot of work on the implementation of the level sethod to reduce the computation
involved during the evolution of the implicit level set sacg, such as the narrow-band level
set method [11], the level set without re-initializatior2]land the fast level set implementation
without solving PDEs [13]. In fact, all these efficient lewst algorithms take advantage of the
property of the signed distance function [14], which is disuadopted as the implicit level set
surface [2], [12], [13].

Formulating the problem of image segmentation as an eneigiynmzation (or a posterior
distribution maximization) to be solved by graph cut can bstified by the theory of Markov
random field (MRF) [15], [16]. A lot of successful results alveen proposed in recent years
such as the interactive object extraction [17], [18], [L8H&he iterative Grab-cut system [3],
where an efficient min-cut/max-flow algorithm proposed i®][2s adopted to minimize the
energy function. This min-cut/max-flow algorithm is guaesed to find the global optimal for
certain types of energy functions which satisfy the propénat they are functions of binary
variables, submodular, and can be written as the sum of tewotszing at most three variables
at a time [21]. For energy functions with multi-label vailed approximate solution can be
obtained by using the algorithm proposed in [22] which méila sequence of binary moves such
as alpha-expansion, alpha-beta swap and k-jumps, ettioddh there are efficient polynomial
time min-cut/max-flow algorithms [20], the types of energmétions it can minimize are still
limited [21]. A more general but less efficient algorithm, iefh can sample from arbitrary
posterior distributions and thus can minimize a more gdnsgt of energy functions, is the
Swendsen-Wang cut [23], [24] and the generalized m-way 8s&m\Wang cut [25].

Both the variational energy minimization approach and theply energy minimization ap-
proach share the same methodology: formulating an enemgtifun and solving the resulting
optimization problem. What make them different are theeddht optimization strategies being
used. The variational energy minimization can be convetteal PDE and solved by FDM [4],
[1], FEM [6] and level set [2], while the graph energy minimion could be solved by min-
cut/max-flow algorithms such as the one in [20] and the Swamd8ang cut [23], [24], [25].
What kind of optimization scheme is more suited is usualliedrined by the type of objective

function. The objective function is also a main factor deti@ing the quality of the segmentation
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results. Therefore, it is misleading to only ask questiamith method, graph cut or level set,

produces better image segmentation resufisce it all depends on the objective function. While
it is extremely important to study various optimization sgtes, this paper mainly focuses on a
better and justifiable energy function formulation.

We propose a novel local-global variational energy funwiofor the problem of extracting
the foreground OOI from static images. The novelty comemftbe incorporation of a global
image data likelihood potential that seeks for a global deson of all the pixels in the image.
This addresses the problem that during the iterations theMGibdel for each region (e.g.
foreground or background) is estimated locally from theefsn the currently estimated region
which is in general different from the true region. Basigadh one hand the estimated region
may contain only a portion of the pixels that belong to thestragion, and on the other hand
it may contain pixels that do not belong to the true regionteNihat the proposed variational
energy functional can not be optimized by a graph-cut tepinibecause it is not clear how to
incorporate the curve energy term into a graph-cut optittimascheme. We choose to use a level

set approach and a novel quasi-semi-supervised EM algotithcarry out the optimization.

IIl. ROBUST VARIATIONAL FORMULATION

The definition of “homogeneity” is critical for any image segntation algorithm. It is natural
to model the homogeneity of an image region using a prolsaigildistribution. For example, a
Gaussian distribution on the pixel intensity was adoptefl]nand a learned Gaussian mixture
model for each texture region was adopted in [2].

Our goal is to extract a foreground object from the backgdouins not realistic to assume the
foreground object or the background region is a single Gansdistribution. We instead model
the feature distributions of both the foreground and thé&gamund regions as Gaussian mixtures.
Denote the foreground image &5 the background image &% the image datd = FU B and

u(zx,y) as the feature vector at image coordinatey), we have

Pr(u(e.y) = P(u(x,y>|<x,y>ef>=§wﬁv< ()l 5F)

Ps(u(z,y)) = P(u(z,y)|(z ZWBN u(z, y)|is, 57), (1)
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where 7;, [i; and X; are, respectively, the mixture weight, the mean and the rawee of
the corresponding Gaussian components, aAndand Kz represent the number of Gaussian
components in each of the Gaussian mixtures.

Assuming the image pixels are drawnd. from the two Gaussian mixtures, the image data

likelihood is simply a mixture model of the foreground anctkground distributions, that is,
Pr(u(z,y)) = wrPr(u(z,y)) + wpPs(u(z,y)), st., wr+wp=1, (2)

wherewr = P((z,y) € F) andwg = P((z,y) € B) are the prior probabilities that a pixel is

drawn from the foreground and background, respectively.

A. Local region potential

Denote Ar and Az as the estimated foreground and background regions résggct et
7 denote the whole image data, that S—= Ar U Ag. The quality of the estimation can be
evaluated by the joint likelihood probabilities of he foregnd and background pixels, i.e.,

Ey = ] Py @y eF) ][ Py, (zy)€B)

(m7y)€"4]‘— (xvy)E'AB

= I wrPr(u(z,y) II wsPs(u(z,y)), (3)

(‘Tvy)e-A]: (ZE,y)EAB
Taking the logarithm on both sides of Equation 3, we obtaélttal region likelihood potential

as

E, = /( e {log Pr(u(z,y)) + logws} + {log Ps(u(z,y)) +logws}.  (4)

(z,y)€AR
Our local region potential energy in Equation 4 is more gahigran the energy function adopted
in [1], [2] since we have incorporated the prior probalektiof the foreground and background.
In the case where we have no prior knowledge aboutand wsz and set them both té, the

local region potential in Equation 4 boils down to what isdise [1], [2].

B. Global image data likelihood potential

The maximization oE; with respect to the regiond » and.4;5 and the probability distribution
is achicken-and-eggroblem. If we knowwr, wz, P and P, we can easily identify the optimal
Ar and Ap, and vice versa. In practice, the regions and the probglphrameters are solved

alternatively. At each iterationd» and Az are fixed first while the probability parameters are
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solved to maximizeE,. Then the probability parameters are fixed while the regioesome
unknowns to solve for.

Notice that Equation 4 only independently evaluates theeggnof the estimated foreground
and background region. When the estimated foreground aokigbzund regions are close to
the ground truth, Equation 4 gives the maximum likelihootinestion for the probability model
which makes perfect sense. But in practick; and Az are usually quite different from the
ground truth during the iteration process. In other wotdg, may not contain all the pixels in
the foreground, and furthermore, it may contain pixels Whoelong to the background. The same
problem exists with4z. This affects the accuracy of the probability model paramsetwhich in
turn affects the subsequent segmentation. To addressrtibtep, we propose to incorporate a
global image data likelihood that seeks for a global desonpof the entire image data.

Since the image pixels can be regarded.ied. samples drawn fronPz(u(z,y)), the global

image data likelihood is the following:

Ei= [[  Pru(ey)= [] wrPr(u(e.y))+wsPs(u(z,y)). ®)
(z,y)EAFUAg (z,y)eT
By taking the logarithm, the global image data likelihoodgrdial is finally obtained as
B = /(m,y)ez log Pr(u(z,y)) = /(:c,y)ez log{wrPr(u(z,y)) + wsPs(u(z,y))}. (6)

C. Boundary potential

Image edges provide strong cues for segmentation. Therddms a significant literature
which incorporate edge information into a variational gyeiunction such as theN\KEsS [4],
the active contour model with balloons [6] and the geodestiv@ contour [26], to list a few.

Since the geodesic active contour overcomes some of thegiattimitations of SIAKES, we
adopt a similar formulation to obtain the optimal boundaxy) : ¢ € [0,1] — (z,y) € R?,
which is a closed curve between the regidr and the regionds such thatl'(c) = Az N Ag.

The energy term corresponding to edge information is
1 1 . 1 .
P()lde= [ GETE)EElde @)

E(T(¢) = |
whereg, and g, are the image gradient at the image coordinatey), andT'(c) is the first

0 1+4[g:(I'(¢)] + [gy(I(c))]

order derivative of the boundary curve. Minimizifigy (I'(c)) will align the boundary curvé'(c)
to the image pixels with the maximum image gradient Whﬁ(e) will impose the first order

smoothness constraint on the boundary curve.
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D. Boundary, region and data likelihood synergism

There has been a lot of work that formulate the image segriiemtas a variational energy
minimization problem such as the region competition [1] #mel geodesic active region [2]. We

also use a variational energy minimization approach. Oergnfunctional is

EP(F(C)v PI) = aEe - ﬁEh - ’7E1
1 1
‘“Aummwwgmm

— B( [, {og Pr(w +logus} + [, {log Pa(u) +loger})

- v o log{wzPr(u) + wgPs(u)}, (8)

|\f(0)|dc

E,
where «, § and v are positive numbers witlx + 5 + v = 1. They are intended to balance
different energy terms.

Compared with the formulation of the potential energy in teégion competition [1] and the
geodesic active region [2], the uniqueness of our formahais that none of their formulation
incorporated theglobal image data likelihood potentiaMoreover, the region competition ap-
proach [1] assumes a Gaussian distribution for each honoogeregion while we use Gaussian
mixtures to model the foreground and background. In the gsiadactive region approach [2],
the foreground and background distributions are pre-cwwhich renders the potential energy

to be only dependent on the boundary cui(e).

E. General machine learning problem behind the joint logklbal energy

The estimation of the image data model by minimizing thetjgiobal likelihood energy and
the local region energy indeed reveals a very interestinghma learning problem, i.e., learning
with inaccurately labeled data set. It can be stated mowaigsly as the following proposition.

Proposition 3.1:Let D = {d;|]1 = 1...n} be ai.i.d. data set drawn from a mixture data
model P(d|®) = w1 P;(d|®;) + wy P»(d|®3), wherew; + wy =1 and ® = {w;, ©;,i = 1,2}.
Assumel = {/;|l; € {1,2},7=1...n} be the unknown ground truth binary label set indicating

that eachd; is drawn from P, (d|®;,). Suppose we have an inaccurate label Zet {z;|z; €
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{1,2},i=1...n} where an unknown portiofi = {z;|z; # [;} are incorrectly labeled. Then the
problem is that giverD and Z, how could we robustly estimate,(d|®), or more concrete the
model parameter®?

In principle, this is a parameter estimation problem in kestw of purely supervised parameter
learning and purely unsupervised parameter learningesive do have labeled data set but the
labels are not accurate. Just considering the situatidnathéhe labels are correct, i.e£,= 0,
we can easily estimai® by the routine maximum likelihood estimation (MLE). Withdoss of
any generality, if oveb0% of the data points have been erroneously labeled, the |abklsot
provide any helpful information for the estimation of thegaeters since a random guess of the
label may do better than the labels provided. In this casep#drameters of the data model can
only be estimated by unsupervised learning algorithm sgcthea popular EM algorithm [27].

DenoteD; = {d;|z; = 1} and D, = {d;|z; = 2}, we haveD = D; U D,. Mathematically,
the purely supervised learning targets on maximizing theviang log likelihood function in
Equation 9.

log Pp,p, = DZ {logw; +log P (d|®,)} + DZ {log ws + log P,(d|®3)} . 9
1 >
It is easy to figure out that Equation 9 exactly correspondthé¢olocal region potential in our
variational energy forumlation in Equation 8 for the imaggmentation problem. On the other
hand, purely unsupervised learning aims at maximizing thewing joint data log likelihood

function in Equation 10.
lOg PD = Z {wlPl(d\@l) + CUQPQ((”@Q)} . (10)
D

It is also easy to figure out that Equation 10 exactly corredpao the global data likelihood
potential in Equation 8. For the problem stated in the prajwos3.1, if £ # () and there is a
significant part (e.g., over 60%) of the labels which havenbamrectly labeled, both the purely
supervised learning scheme and purely unsupervised tegpscheme are not suitable. Intuitively,
purely supervised learning scheme may result in a very 8iase@mation due to the erroneously
labeled data points. On the other hand, purely unsupenkseding scheme totally ignores the
useful information from the correctly labeled data pointeally, we should effectively utilize
the correctly labeled data and reduce the effects of theneously labeled data to the minimum

for the robust estimation of the model parameters. To aehileis, we propose to maximize the
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following combined log likelihood function, i.e.,
Fp = alogPp,p, + (1 —a)log Pp (11)

=&§HMM+WRMBM+Z@%WH%%@%H}

" <1—a){Z{mw@l)+w2P2<d|@2>}}, 12)

where(0 < a < 1 should be set to make a balancing between the supervisetingaand
unsupervised learning scheme based on our confidence dmuabtrectness of the labels. It
is intuitive to see that maximize this combined log likelebfunction will fit the data model
locally with the labeled data and at the same time seek forobhagjldescription of the whole
data to reduce the effects of those erroneously labeledtddtee minimum. We name this type

of problem as ajuasi-semi-supervisdéarning problem.

IV. ENERGY MINIMIZATION ALGORITHMS

Since we do not have a pre-specified image data mBglel), it is obvious that the variational
energy functional we formulated in Equation 8 relies on twts of functions, i.e., the boundary
curve I'(c), and the the image data mode}(u). Therefore, we propose a two step iterative
process to minimize the energy functional, i.e., at one,stgfh fixed Pr(u), we minimize the
energy with respect to thE(c). While at the other step, we minimize the energy functional
with respect toP7(u) with a fixed boundary’(c). Each step will guarantee to minimize the

variational energy, we present more details of the two ssspfollows.

A. Boundary optimization by level set

In the first step of our iterative minimization scheme, we fix(u), Ps(u), wr andws, and
minimize the functional with respect (c). This can be achieved by gradient decent, e.g., take

the variation ofE,(I'(c), Pr, Pz) with respect tol'(c), we have

oE, oz wrPr(u
aF(C) - ﬁl [WBPB ‘|
+ a[G(T(e)K(T(e) = VG (I (c)-n(T(e))] - 7i(I'(c)), (13)

whereri(-) represents the normal line pointing outwards from the bamndurvel'(c), () is

the curvature, and all the function values should be evatliah the boundary curvg(c). One
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interesting observation here is that the form of the pavaiation in Equation 13 is almost the
same as that in [2] except the mixture weights and wz. This means that the image data
likelihood potentialE; does not affect the partial variation of the energy funaiomith respect
to the curve. This is easy to understand becausdithe evaluated on the whole image, it does
not rely on the boundary curvé(c).

We propose to use level set to implement the above partialadime equations, i.e., at each
time instantt during the optimization of the curvé(c, t) is represented as the zero level set of
a 2 dimensional function or surface(x,y,t), i.e.,I'(c,t) := {(z,y)|¢(z,y,t) = 0}. Following

the literature [2], [26], we define(z,y,t) to be a signed distance function, i.e.,

d((z,y),T(e, 1)) (z,y) € Ar\T(c, 1)
o(r,y,t) = 0 ,(z,y) € T(c, ) (14)
—d((z,y),T(c,t))  (z,y) € A\ T'(c, )
whered(-) is the Euclidean distance from the poift, y) to I'(¢,t) which is defined as the

shortest possible distance frofm, y) to any points inl*(c,t). We have

&p(:c, Y, t) CU]:P]:(U_(:C, y))
G = s ) R0

+ o |6l - V6 T 1960 (15)

where , )
Koy = EEh 2ot o
(92 + ¢2)2

among whichyp, andy,, andy,,, ¢,, andy,, are the set of first order partial derivatives and

: (16)

the set of second order partial derivativesf:, y, t), respectively.

The evolution ofp(x,y,t) over timet is then implemented by replacing the derivatives by
discrete differences, i.e., the partial derivative witlspect tot is approximated by forward
differences and the partial derivative with respectztcand y are approximated by central

differences. In principle, the evolution of the surface valaated by

w]:P]:(ll(l‘,y))] |V(,0()|

oz, y,t+71) = p(r,y,t)+71- {ﬁlog lepB(u(x y))

+ Gl - Vo) ST weelf. an

wherer is the discrete time step. We haliéc,t + 7) = {(z,y)|¢(z,y,t +7) = 0}.
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B. Image data model estimation

In the second step of our iterative minimization scheme, wehié the boundary curvg(c)
and minimize the energy functional with respectRg(u), Pz(u), wr andwg at the same time.
In other words, by fixing4»- and Az, we minimize the functional with respect #8;(u). In
principle, this involves to minimize the variational engngith respect to all the paramete®
of Pr(u), i.e

© = {wr,wp, {nl, i, STHE (P, i, 2Py ) (18)

Take the derivative oE, with respect to each parameter@ we have

OB, Pr(u)
owr & Ar WF 7 /I wrPr(u) + wpPp(u) (19)
OE, 1 Ps(u)
8—‘*)[3 = F A WpB + ’y/I W}‘P]:(u) + WBPB(U) (20)
OE, wrN (ulff, 27) wrN (] EF)
ol b Ar  wrPr(u) " /IW]-‘PJ-'(U) + wpPp(u) (1)
0B, _ 4 wrm! N'(ul@], 57)(27) " (u — i)
oul Ar wrPr(u)
wrm] N(u|@] S7)(E7) " (u - a7)
* 7/I wrPr(u) + wgPs(u) (22)
OE, wrrl N (li?, SE)(SF) 7 [(w = i) (u — @) T(5) 1 = 1]
8Zf B ﬁ/ 2w;Pf(u)
wrmd N (al @, 55 (5F) 7 [(w = i) (w = @) T(5) 1 — 1
! 7/ 2lwrPr(u) + wpPs(u)] (23)
O, _ wpN (ulff, XF) wpN (u|GfEF)
87TF B ﬁ Ap wBPB(u) + /Iu);—P;—( )—i—wBPB( ) (24)
0By _ 4 wpmp N (ulff, BP)(5F) ! (a — i)
8uf N Ap wBPB(u)
wpmP N (u] g EF) (2F) " (u — fi)
* /ABUAB w7 Pr(1) + wsPa(u) (25)
OB, ¢ wstPN(uljif, S8 (ZE) 7 [(u—j)(u— i) (ZF) " ~ 1]
5)Y b /AB 2wpPs(u)
wsTEN (uljif, 2F) (28)7 [(u — ji)(u — p)T (25) ! — 1]
+ ’}// Q[waf(u) —+ wBPB(u)] ’ (26)

where I is the identity matrix. Set all the derivatives to zero antemasome mathematical
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manipulation, we easily come up with the following fixed4poequations, i.e.,

2wr Pr(u)
54 fAf L+7Jz wfpf(f)ﬁu:Ps(U)

wr = Pr(u) (27)
7]1 wz Pr(u)+wpPs(u)
2wr Pp(u)
. 54 IAB 1+ VfI wa;(f)-FBwBPB(u) 28
“s = I Pg(u) (28)
VT 7 Pr(u)+ws Pe(u)
]—'N UW}- Z]:)
Fr BIAF wr Pr(u) (29)
¢ ﬁf 2N u‘l’% ’ ) + f (u‘uz 72}_)
Ar w]:P]:(u) T wrPr(u)+wpPs(u)
N (ul@F ,=F uN (u|jif %)
ﬂ»l]-‘* _ g fAf wr Pr( u) + fI wfpf(u)-FwBPB(u) (30)

N(u|@fx N(|al xT)
BIA? wFPr( u) _'_ vz W]-'PF(U)"‘WBPB(U)

3/ (u—ii?)(u—%) TN (u|if =F) ), (u—ig ) (=) N (u|if ,=F)

Fx o .A u)]:P]:( ) WFPF(U)+WBPB( )
Xt = N T = O (31)
B [, LUELED |
Ar  wrPr(u) vz wr P, )JFWBPB(U)
Wf/\f(ului ] )
Bx BIAB wpPs(u) 32
= @By (32)
3 2N (ul B =8 + i N (u|@f xP)
Ag BPB(U) v IW]—'P]-'(U)"‘WBPB( )
uN (uE8 s uN (u|i? ,5F)
B ﬁfAB wpPa( ) +7f1 wr Pr(u)+wp Pg(u) (33)
Hi = g7, Ml ,E oy f, —ClaEED)
A wpPs(u T wrPr(u)+wpPg(u)
(u—iif)(u—g2)" N (u|if £F) (u—iB) (u—jiB)" N (u|iZ ,£F)
Y8 _ ﬁfAB wBPB(u) +t1)z WFPF(U)+WBPB(U) (34)
i ﬁf N (u|gB,xB ) f N (u|@? BF) ’
As “wpPaw) T VT S a) tws Petw)

which are also subject to the constraints that

Kr
wrtwp=1, Y =1 Y =1 (35)
1=1 i

Therefore, we must ensure that we normalize these weighdaddt iteration of the fixed-point
iterations.

This set of fixed-point equations can be interpreted as astofuasi-semi-supervised EM
algorithm for Gaussian mixture models, where we have inateuabels of the data in a 2-class
classification problem, and each class can be representad3aussian mixture model. It turns
out that the robust estimation of the data distribution, #tng the probabilistic distribution for
each of the class could be achieved by fixed-point iterationla to that in Equation 27 to
Equation 34. This is just a specific result on Gaussian mextaodels on the general machine

learning problem we have discussed in Section IlI-E.
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Here the foreground and background image pixels are the tasses we would want to
discriminate, and4 and. 45 can be regarded as the inaccurate labeling of the foregrandd
background pixels. The fixed-point equations we have derixgeto make a balancing between
the estimation from the labeled data and the unsupervisihasn. The erroneous labeled
data will be given less weight during the fixed-point itepati This can be easily observed in
Equation 30, the first integral of the numerator ovéf is in fact the estimation from the
inaccurately labeled data, and the second integrationeohtimerator ove?Z = A- U Az is a
soft classification of the image pixels by the current estiomaof the data likelihood model.
Those image pixels which have been labeled to beljn and which have also been classified
with high confidence as foreground pixels will be given morgght. This will result in a more
robust estimation of the data distribution since the eff@ftthose erroneously labeled data will

be suppressed. This has also been demonstrated in ourregpé&siin Section V.

V. EXPERIMENTS EXTRACTING OBJECTS AT THE FOCUS OF ATTENTION

Although the formulation of the proposed method is very gehe handle image segmentation
in a general setting, we focus on a more specific applicatien,the extraction of object at the
focus of attention. The basic assumption is that when orestak image of an object of interest,
he will usually locate it in the center of the image. This weassumption does not affect our

formulation, but makes the fully automatic extraction poles

A. Validation of minimizing the local-global energy on nuroal example

We use a synthetic numerical example to demonstrate thetigfaess of minimizing the
local-global energy in the problem of model estimation wilaccurately labeled data. The

ground truth data model is
P(d‘@) = wlpl(d|®1) -+ w2P2(d‘@2)
= 0.5(0.4N(d]10,25) + 0.6 (d|30, 25))
+ 0.5(0.3N(d]50,25) + 0.7N(d|70, 25)) (36)

where N (d|u, 0?) represents a Gaussian distribution with meamnd variances?. Then ©
represents the set of parameters for all the Gaussian raixtadels. We then randomly draw

a setD of 20000 data samples from the data model and during the samplingepspave also
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(a) Ground truth (b) Local-global energy (c)Local energy

Fig. 1. Comparison of minimizing the local energy and jomtdl-global energy function. From left to right are the mestiion

results of the ground truth, the result of minimizing thedbglobal energy and the result of minimizing only the loeakrgy.

recorded the sef of ground-truth labels, which indicates whether a sampligas P, or P,
and we denot&; = {l; = 1} and£, = {l; = 2}. To simulate the situation of erroneous labeling,
we randomly exchangg0% of the labels betweef; and £,. We then denote the exchanged
label set asz; and Z; which are supposed to be the known condition.

We then compared the model estimation results of only maingithe local log likelihood (or
equivalently minimizing the local energy due to the negasign) in Equation 9 and the results
of maximizing the local-global log likelihood (or equivalidy minimizing the local-global energy
due to the negative sign) in Equation 10. Figure 1(b) showsibdel estimated by minimizing
the local-global energy function, Figure 1(c) shows the el@s$timated by only minimizing the
local energy function. Compared with the ground truth mqutekented in Figure 1(a), we can
easily see that the model estimated by local-global enerigynmization is far more close to the
real model than the model estimated by the local energy niaithon.

Since30% erroneous labels is significant, we setio be0.05 to balance more toward the global
energy function. In the experiments, the local-global gpeninimization is performed by fixed
point iteration similar to what has been derived in SectigB| namely quasi-semi-supervised
EM. The local energy minimization is performed by applyihg tlassical EM algorithm [27] to
fitting the two Gaussian mixtures independently on the twia dats induced by, and Z,. For
both algorithms, we randomly choogé different initializations and the best results on tte
runs are adopted for comparison. We have extensively ruraltp@ithm with different setting
of the ground truth data model parameters. We generallyrebsgmilar results as shown in

Figure 1.
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Fig. 2. Card segmentation results.

B. Automatic extraction of business card from images

We have constructed a fully automatic real-time system twwaek business card from still
images of unconstrained background. We can then rectifyskizgpe of the extracted business
card to be a rectangle with the correct physical aspect katiasing techniques similar to that
in [28]. We further enhance the rectified image, e.g., enbdhe contrast of the rectified image
by transforming it through a “S” shaped Hermite curve intdsped according the intensity
distribution of the image pixels.

In summary, the whole system is composed of three sub-sgsteamely the segmentation
subsystem, the shape rectification subsystem and the inmg@@eement subsystem.

1) Business card segmentatiofihe segmentation of the business card in the image is achieve
by the proposed algorithm. The output of the sub-system ieck-avise chain code of the image
coordinates of the closed boundary of the business cardiredentified, along with the labeling
of whether a pixel belongs to the business card or backgroB8othe implementation details

and explanation are as follows:

September 29, 2005 DRAFT



SUMBMISSION TO TPAMI: OOI EXTRACTION BY LOCAL-GLOBAL ENERGY MINIMIZATION 18

« INPUT: The input is a color image, and the image feature vecioadopted is a five
dimensional vecto{ L,U,V,z,y}, where L, U and V' are the color pixel values in the
LUV color space and: andy are the coordinates of the pixels in the image. We adopt
the LUV color space because it was specially designed to best appte perceptually
uniform color spaces [29]. That will facilitate to obtain aeamningful segmentation as the
perceived color difference in theUV space is very coherent to be an Euclidean metric.

« MODEL: The foreground object modé?r is a 2-component mixture of Gaussian, which
models the bright sheet and dark characters of most of th@edssscard. The background
model Pz is a 8-component mixture of Gaussian, which should covertrabshe pixels
located in the boundary of the image coordinate.

« INITIALIZATION OF SURFACE: The initial level set surface is initialized by a signedtdisxe
transform with respect to a rectangle located in the centeh® image with length and
width of é of the image width and length.

o INITIALIZATION OF FOREGROUND MODEL Firstly, we sort the pixels inside the initial
rectangle according to their intensity valde Then we takeKr = 2 average values of
the 5-dimensional feature vectors of the lighté8% pixels and the darkest0% pixels
respectively as the seeds for the mean-shift mode seekinthereature space of the
whole image. The two modes obtained are then adopted as itfedization of 77 and
i3 . The mixture weightsry and#J are both initialized to b@.5. Each covariance matrix
7 is initialized as the same diagonal covariance matrix, tree variances of the spatial
components(z, y) are initialized as: of the image width and height, respectively. The
variances of the color componerts, U, '} are all initialized as 25. Note we do not make
much effort to tune these initialization parameters.

« INITIALIZATION OF BACKGROUND MODEL: The K5 = 8 average feature vectors of pixels
inside eight10 x 10 rectangles, which are circled around the margin of the image
adopted as the initialization of the mean-shift mode seglalgorithm in the full image
feature space. The eight recovered feature modes are tlogteddas the initialization of
each/i® of Pz(u). The covariance matrices?, i = 1,...,8 have the same initialization

7 ?

with those of the foreground modélx(u). All the 7°s are set to be.
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Fig. 3. Some failure cases of the variational energy fortirawithout the global image data likelihood energy.

e INITIALIZATION OF FOREGROUND/BACKGROUND MIXTURE WEIGHT: The mixture weights
wz andwg are initialized to be equal té.

. CONVERGENCE CRITERION Whenever the foreground region has less th#nchange in
two consecutive iterations, we consider the algorithm isveeged. However, this criterion
is very rough but it meets the requirement of the business estraction system. We also
set a maximum iteration number 8 in case thel% change criterion can not be achieved
within the processing time we can tolerate.

Note that these settings are applied to all the experimeeatfonned and reported in this
paper. We present some segmentation results of differesidmss card in various background in
Figure 2. The closed boundary of the business card is oestlayred. We can generally obtain
satisfactory segmentation results, i.e, we achieve 6%¥&r successful rate on ove00 images
tested. We regard a segmentation result to be successfusifiimost matched with the region
which would be segmented by human perception.

For comparison, we have also run the algorithm from the tianial energy formulation
without the global image data likelihood included. Now i ttep of estimating the distribution
Pr and Pz (wr and wg are not necessary any more), we apply classical EM algor[@ifh
to fit Pr and Pg independently on the current partitiof- and Az. Although the algorithm
works with some of the images, it generally performs lessisbthan the proposed local-global
energy minimization algorithm. Some of the typical failleeamples of the variational energy
formulation without the global energy term are shown in IFgg8. The reason for the failure is
that without seeking a global description of the image dp&form EM independently on the

inaccurately partitionedd» and Az may result in a biased estimation 6% and Pz, this will
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not ensure good segmentation results.

As pointed out in [30], estimating the Gaussian mixture n®de a purely unsupervised
fashion can hardly keep the identity of the Gaussian compookethe OOI (such as the hand
in their case). Thus they proposed a restricted EM algoritvinich fixes the mean of the OOI
Gaussian component throughout the EM iterations. It assuhe the initial estimation is good
enough which may be too strong in many practical situatiGigen that we assume more general
Gaussian mixture model for the OOI, the initially estimateddel is usually not accurate. Thus
we have to refine it during the fixed-point iterations. We dohmave the identity problem because
we combine the global energy with the local region energy.

2) Shape rectificationThe physical shape of a business card is usually rectangleeter,
in the image formation process, the rectangle shape wilalbsbe projected as a quadrangle
shape in the image. Thus the texts on the business card imingei will be skewed. It would
be nice to re-transform the quadrangle shape back to a rgetarnth the physical aspect ratio
of the business card so we can also rectify the skewed tekieatame time.

Since the business card is a planar object, it is well knowan ttis can be easily achieved by
a homography transform. It is also well known that only foairp of correspondence points are
needed to solve for a homography matrix. In fact, it is ndttoachoose the four corner points
of the quadrangle since they are direct correspondenceedbtir corner points of the physical
business card. To make the rectified text to look naturaleastiwe still need to estimate the
physical aspect ratio of the business card since we have paon@btain the physical size of the
business card from a single view image. Fortunately, by ntpkéasonable assumptions about
the camera model which are easy to satisfy, if we have theencagrdinates of the four corner
points of the quadrangle, it has been shown in [28] that thesiphl aspect ratio of the rectangle
can be robustly estimated given that the quadrangle is tbgion of a physical rectangle
shape.

Therefore, now the problem we need to address is to locatdotlvecorner points of the
guadrangle in the image. Since the segmentation subsystieims to us the clock-wise chain
code of the closed boundary of the business card, it greatyithte us to achieve this goal.
Note that the corner points may not necessary to be on thedaoyicurve we obtained because
it is common that one corner point be occluded by the fingeth®fpeople who is holding it,

e.g., see Figure 2(a), (b), (d), (9), (h), (i), (j), (k) andl fior a few examples. Our solution is
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Fig. 4. Results of Curve Simplification.

to fit four lines to find a best quadrangle based on the boundame points and business card
region. This can be achieved by the following steps.

« CURVE SIMPLIFICATION: The boundary chain code we have obtained is a dense polygon
representation of the segmented area, i.e., each vertakipan the3 x 3 neighborhood of
its neighboring vertex. This usually results in 0\2&0 vertex points. As we can easily see
from Figure 2, this is too redundant. Without losing muchuaacy, the curve simplification
procedure try to reduce the vertex 10 ~ 20. Denote the set oh vertex points we
obtained from the segmentation subsystenVas: {v, vy, vs,..., v, 1} with v, also be
the neighbor ofv,,_;, we perform the following two steps for curve simplificatjore.,

— Multi-scal e corner point detection: Denote(i),, = i mod m, for i =
0,...,n—1, check to see if
Vg =¥e) - Wiarin, ZV0| g5 — co(10°) (37)
1V(—gyn = Vill Vi), — Vill

are satisfied for alf = 1, ..., m (we usually choose: = 20). If yes, we keepv; in our

vertex set, otherwise we remove it from the vertex set. Ttap 1 principle removes
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Fig. 5. Quadrangle fitting of business card.

vertex points with too small transition over multiple scal¥V/e denote the reduced

vertex set asv = {¥Vo,V1,V2,...,V,_1} Wherev, andv,, ; are again neighboring
vertex.
— lterative mnimumerror vertex pruning:Fori=0,...,m—1, evaluate

d; = d(Vi,V(i—1),,V(i+1),) the Euclidean distance from; to the straight line formed
by its backward and forward neighbor verticeg_,),, and v(;;1,,. Supposev;, is
such thatd,, = min, {d;}, if d;, < €;, Wheree, is a pre-specified error tolerance (we
usually set it to be 1), we remove, from V. Repeat the same operations until no
more vertices could be removed from the set. This returnditia reduced vertices
setV = {Vo,..., Vi1 }.

o QUADRANGLE FITTING: We formulate the quadrangle fitting as an optimization f@ob
We first construct the set of all straight line candidatestifiér quadrangle boundary based
on the pruned vertices séf. We then seek the best combinations of four lines which
returns the highest score according to the criterions wedniced below to obtain the best
guadrangle.
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Fig. 6. Results of rectified business card.

— Boundary |ine candi date set: For eachi = 0,...,[, construct the ordered

candidate boundary line sét = {V;V(it11),, ..., ViV(iitny), } = {li1,- - -, lin,} Whereng
is an integer value which specifies how far we should look &damo form the line
candidates from one specific vertex. We generally set it td.B&e finally obtain the
ordered set of all the boundary line candidates: {L1, Lo, ..., L;} = {lo,l2, ..., 1, —
1}. Note that the order of the lines are also ordered accordintfpe ordering of the
vertices.

— Quadr angl e eval uat i on: DenoteQ);;; be the quadrangle spanned{dy, (;, i, [;}
wherei < j <k <1, {0,055, 0511, 0iri ) DE the four corner angles spanned by the
four lines. Let Np, Ny and N be the number of pixels identified as foreground
business card pixel, the number of pixels inside the quatiean,;,; and the number
of pixels in the intersection of the former two sets, respebt. Also, let N. be the
number of vertices point iV which are in thed. neighborhood of the four line
segments formed by the four lin€s, (;, ;. [;}. We usually taken,. to be 3 pixel. Also
note that there are vertices in the vertices s&f. Then the fithess of the quadrangle
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Fig. 7. An example of S-Shaped curve.

is evaluated by

Ne | < , Nrng ~ Nrng
So=—J][(1 - |cosb |)\/ + . (38)
n JHO MY\ Ng Np

The @, With the largestSy, is regarded as the best quadrangle. In principle the cost
function S¢ favors the quadrangle whose boundary and enclosed reginaid® with
the boundary and enclosed region of the segmentation sethidtmost. It also favors
quadrangle whose corner angles are rgarhis is based on the assumption that the
users usually try to face the frontal of the business carchéocamera. Moreover, a
post-processing could be performed by collecting the Sebigé points in the neighbor
of each boundary lines and then performing a weighted lepsare fitting to further
refine the position of each of the side lines of the quadrasigépe.

— Heuristics to reduce conputati on: The most computation intensive part
of the optimization process is the evaluation f\]]@—gQ + Nﬁ—;Q in S since we must
count the intersection of two region in the image. The follmyvheuristics have been
adopted to reduce the computation and they have been proves very effective:

« If the length of a line segment; vy, 1 < j < ny is less thank of the minimum
of the image width and length, then we do not put it in the b@aupdine candidate
set.

« If any of the corner points of the quadrandlg;;,; falls out of the image size, we
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Fig. 8. Results of enhanced business card image.

simply discard it without evaluating ths,, for it.
* If 2 < 0.5 for Qi;;, we simply discard it without evaluating the other termdyf.
 If [cos@;,| > 0.2 foranyi =0,...,3, the quadrangle is discarded without further

evaluation.

« RECTANGLE RECTIFICATION Once we have obtained the best quadrangle siipe for

the business card in the image, we can easily identify the douner points. Then by

W

utilizing the techniques in [28], we can easily estimate phgsical aspect ratid, = W

of the business card. To rectify the quadrangle, we needttordee the size of the rectangle
after rectification. Since we do not want to lose any imagermftion, i.e., each image
pixel inside the quadrangle in the image must have a direg¢t imahe rectified rectangle
image, we must set the length. and widthW, of the rectified rectangle to be suitable to
achieve this. We firstly identify the longest side of the qaagle whose length is denoted
as L,, and denote the longer length of the two neighbor sides oldhgest side asVv,.
Then, if R,2W, > L,, we set thel, = W, and L, = R,W,, otherwise we sel, = L,

and W, = }L%—;. We then have the four corner points of the rectified rectanglbe(0,0),

(L., 0), (L.,W,) and (0, W,.) and they are corresponding to the four corner points of the

quadrangle. A homography could be estimated from the fouis p& corresponding points,
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and we can easily re-warp the quadrangle shaped image mathk tectified rectangle by
reverse mapping with bi-linear color pixel interpolation.

We present the step by step results of each step of the shetfecagion subsystem through
Figure 4 to Figure 6.

Figure 4 presents the results of curve simplification basedhe segmentation results of
those images presented in Figure 2. The blue curve overlayezhch of the image is the
boundary curve from our segmentation algorithm and theembdints are the finally simplified
vertices of the boundary curve. As we can easily observectimee simplification algorithm
adopted significantly reduces the number of vertices of threecwhile the simplified curve still
represents the originally curve with high accuracy.

Figure 5 presents the results of quadrangle fitting from qiin@zation criterion. The green,
blue, red and yellow corner points correspond to the0), (L,,0), (L., W,) and (0, W,)
coordinate of the rectified rectangle respectively. We aiserlay the recovered quadrangle
shape with red lines in the image, we can easily notice howecibis fitted with the boundary
curve (blue lines) and region from our segmentation resaltso notice how the occluded corner
points (mostly occluded by fingers) are recovered througtdopangle fitting, it is not a problem
at all.

Figure 6 shows the results of the rectified business cardemagses the estimated quadrangle
shapes in Figure 5. Note how the skewed business card tesdatbes are rectified at the same
time with the shape rectification. Note the different aspatbs of the rectified business card
image represent very well the differences of the physicpketsratio of these business card.
For a quantitative study about the accuracy of the physsaéet ratio of the rectified rectangle
shape, we refer the readers to [28].

3) Card Image Enhancementio make the contrast of the text characters and the backdroun
in the rectified business card image more sharp, we simpgpeddently transform thg, G, B
pixel value of the rectified image through a “S” shape curvédeymite polynomial interpolation
on the average intensitg,; of the lightestl0% pixels and the average intensify; of the darkest
10% pixels. In principle, the curve should map the pixel valugéa or equal tol; and pixel
value less or equal t&, to near 255 and 0, respectively. Here we present in Figure 3"a “
shaped curve interpolated on the rectified business cargernmaFigure 6(m).

We present the contrast enhanced business card image e BgGompared with the original
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Fig. 9. Segmentation results for road sign images.

rectified business card image in Figure 6, the contrast ofctter pixels has been effectively
improved. However, it sometimes causes some negativeteféspecially when there are large
light variation on the business card, e.g., Figure 8(d) {ejfe some examples. In this case,

fitting a lighting plane like what has been utilized in [28]ght be of great help.

C. Segmentation of road sign images

We have also collected a set ®if road sign images from the internet, in which the road signs
are at the focus of attention. This set of road sign imagetaamroad signs of different shapes
and different poses under a large variety of backgroundsh@e subjectively evaluated the
quality of the extraction results of our algorithms by categing them into3 different groups,
namely “good”, “fair”, and “bad”. We havé& different people to vote for the extraction results of
each image, and the extraction result of one image is capegbto the group which it receives

the largest number of votes. Overall there aferesults being categorized as goddbeing
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(a). Fair (b). Fair  (c). Fair (d). Bad (e). Bad (f). Bad

Fig. 10. Fair and bad results of road sign segmentation.

categorized as fair andl being categorized as bad. We present some of the samplesstudce
results in Figure 9. As we can observe, the extraction resul quite accurate.

We also present some of the fair and bad results in Fig. 10. feasons may cause the
unsatisfactory results: (1). The OOls are too small or tao ih the image such as Fig. 10(e)
where the tree behind the road sign is classified as the fawadrobject. This is because the
initial OOI region contains large number of pixels of theetr€2). There are very strong spurious
edges surrounding the OOI while there is not enough difteaton between the foreground and
the background colors. Fig. 10(f) is such an example wheeectilor difference between the
tree and the characters on the road sign is not strong enaugkiercome the biased energy
force from the spurious edges. One possible solution mightiobreducen, but how to tune it
adaptively is an open issue. Note that these reasons al$p tapine unsatisfactory results for

extracting general OOIs in Section V-D.

D. Segmentation of other objects

To test the ability and robustness of the proposed algorithextract general object of interest
from static images, we have tested the proposed algorithma st of63 images, in which the
OOl is at the focus of attention, from the Berkley image dasab[31]. This set of images are
more challenging because the appearances of the OOIs and¢kground are more complex.
With the same subjective evaluate method as that for the sgadimage set, the extraction
results on31 images are categorized as godd,are categorized as fair arid are categorized
as bad. We present some typical successful extractionsesuthis image database in Figure 11.

With the same setting as the segmentation algorithm in @edfiB, we have also obtained
successful segmentation results in a variety animal imagek as dog, wolf, rabbit, squirrel,

zebra, raccoon and hawk downloaded from internet. We algairdnl successful results on
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(0) ) (@ ®

Fig. 11. Segmentation results of general objects on thedbgykimage data-base.

segmenting human hand and head, cell phone and telephgrseand even receipts. We present

some of the results in Figure 12. The results are quite ateura

E. Validation of the quasi-semi-supervised EM on real eixpents

One may have the concern that why the local-global variatienergy formulation can achieve
better results. The reason is that the quasi-semi-suer&@d algorithm generally will achieve
more accurate estimation of the joint data likelihood maated thus more accurate estimation
of the foreground and background model, since the objedtiwetion incorporated a term to
maximize the joint data likelihood. In fact, this can be destoated by analyzing the failure case
of the variational energy formulation without the data likeod potential in Figure 3(c). We plot
the marginal foreground background distribution obtaifredh both formulations in Figure 13.

For convenience, we call the variational formulation withthe global data likelihood potential
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Fig. 12. Segmentation results of other general objects.

as local variational formulation.

From left to right, the first row in Figure 13 presents theraatied marginal foreground/background
distributions by our algorithm upon convergence on thé/ andV dimension, respectively. The
second row of Figure 13 shows the ground-truth marginaftidigion onZ, U andV’, which are
estimated on the manually annotated foreground/backgdrouarthe image shown in Figure 3(c)
(actually, different intermediate results of the same ienage shown in (h) of Figure 2, 4 and 5,
respectively.). The third row presents the three margirsdtidutions estimated by the algorithm
deduced on the local variational formulation.

It is worthwhile to mentioning how close are the marginaltrlsitions estimated by our
algorithm to the ground-truth marginal distributions. lntrast, also note that how far away are
the foreground/background distributions obtained by thall variational formulation to those

of the ground-truth . It is obvious that the failure of thedbwariational formulation is due to
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Fig. 13. The estimated marginal distribution of foregroretl line) and background (blue line) dn(first column),U (second
column) andV” (last column). The first row presents these distributiortsiolked by our algorithm upon convergence. The second
row presents the ground-truth distributions estimated @mually labelled foreground/background regions. And thiedtrow
presents these distributions estimated by local variatiéormulation. The comparison is performed on the imagesshmm
Figure 3 (c).

the inability to accurately estimate the foreground/backgd distributions. This is not strange
because under the local variational formulation, the tvabritiutions are independently estimated
by traditional EM algorithm [27] over the regiaA - and. Az, respectively, which are doomed by
the local fitting problem. On the other hand, our fixed-padietations nicely solved this problem

since it also maximize the global image data likelihood &t shme time.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a novel local-global variational gnéogmulation for image segmenta-

tion, based on which an iterative scheme is formulated ttoparthe minimization of the energy.
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Our main contributions are (1) the incorporation of a gloibahge data likelihood potential to
better estimate the foreground/background distributiamsl (2) a set of fixed-point equations
which we call quasi-semi-supervised EM for Gaussian m&taodels. As we have discussed, the
guasi-semi-supervised EM is specially suited to deal whthlearning problem with inaccurate
labeled data where an unknown portion of the labels of tha de¢ erroneous.

Based on the proposed approach, we have built a real timemsytst segment, rectify and
enhance business card images. Our formulation and algoatle also general to segment other
general objects. Extensive experiments have demonstitadeeffectiveness and efficiency of the
proposed approach. Future work includes extending thatwamnial energy formulation for the

segmentation of multiple objects.
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