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Nonstationary Color Tracking for Vision-Based
Human—Computer Interaction

Ying Wu, Member, IEEEand Thomas S. Huangife Fellow, IEEE

Abstract—Skin color offers a strong cue for efficient localiza- as a natural input “device,” which motivates the research of
tion and tracking of human body parts in video sequences for tracking, analyzing, and recognizing human body movements
vision-based human-—computer interaction. Color-based target 155 131], [32]. An application example is the gesture interfaces
localization could be achieved by analyzing segmented skin color . . - .
regions. However, one of the challenges of color-based target]cor virtual environments, in which a set qf hgnd gestures
tracking is that color distributions would change in different Ccould be use to represent some commanding inputs such as
lighting conditions such that fixed color models would be inad- pointing, rotating, starting, stopping, etc. Although the goal of
equate to capture nonstationary color distributions over time. such immersive interfaces is to recognize and understand the
Meanwhile, using a fixed skin color model trained by the data p,man hody movements, the first step to achieve this goal is
of a specific person would probably not work well for other . .
people. Although some work has been done on adaptive color to reliably localize and traqk such human body parts as thg
mode|s’ this pr0b|em still needs further studies. This paper face and the hand. l\/lagnetIC sSensors haVe been Used to fulﬁ"
presents our investigation of color-based image segmentationthese tasks. However, many magnetic sensors are plagued by
and nonstationary color-based target tracking, by studying two magnetic interferences [32]. Alternatively, we could consider
different representations for color distributions. In this paper, ey techniques that are based on noninvasive visual sensors,
we propose the structure adaptive self-organizing map (SASOM) . . . .
neural network that serves as a new color model. Our experi- b,yWh'_Ch the motion of the target CO,U|d be |r-1ferred by analy.zmg
ments show that such a representation is powerful for efficient Video inputs. We usually call the interaction based on visual
image segmentation. Then, we formulate the nonstationary color sensory inputs vision-based interaction (VBI).
tracking problem as a model transductionproblem, the solution In most VBI, localizing and tracking targets in video se-
of which offers a way to adapt and transduce color classifiers in quences provide inputs to the steps of target recognition and

nonstationary color distributions. To fulfill model transduction, - L - L .
this paper proposes two algorithms, theSASOM transduction action recognition. Visual localization and tracking are con-

and the discriminant expectation-maximazation (EM)based on fronted by the difficulties of complex backgrounds, unknown

the SASOM color model and the Gaussian mixture color model, lighting conditions and complex target movements. When we
respectively. Our extensive experiments on the task of real-time need to analyze multiple targets simultaneously, the problem
face/hand localization show that these two algorithms can SUCCeSS-pacomes even more challenging since different targets would

fully handle some difficulties in nonstationary color tracking. We . d lusi Th bust d d
also implemented a real-time face/hand localization system based'Nduce OcCclusion. The robusiness, accuracy, and speed are

on such algorithms for vision-based human—computer interaction. important to evaluate tracking algorithms.
Index Terms—Color-based image segmentation, color model Dif_ferent image features provide different Cugs for tracking .
discriminant analysis, expectation-maximization (EM), nonsta- 9Orithms. Edge-based approaches match image edges in

tionary color tracking, structure adaptive self-organizing map images, and region-based approaches match image templates
(SASOM), vision-based human—computer interaction. and image regions. Under the small motion assumption that
assumes there is little motion difference between two consecu-
tive image frames, these approaches could achieve reasonable
results. However, when this assumption does not hold, which
N current virtual environment (VE) applications, keyboardgould be very likely to happen in practice, these tracking
mice, wands, and joysticks are the most popular input deviceggorithms would probably lose track, and the recovery of
However, those devices are either inconvenient or unnatunialcking would depend on other remedies. In addition, these
when providing three-dimensional (3-D) or high degrees @fiethods usually involve manual initialization.
freedom (DOF) inputs. To achieve immersive human—computerAn alternative is the blob-based approach, which does not use
interaction, humanbody parts, e.g., the hand, could be considelsshl image information such as edges and regions. Instead, it
represents the target by its color and motion such that the lo-
Manuscript received April 15, 2001; revised October 30, 2001. This workwgélization and tracking can be fulfilled by segmenting the target
supported by Northwestern Faculty Startup Funds, the National Science Foont from the images. For example, when we need to localize
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afford efficient and robust visual localization. Certainly, comeomputational resources for 3-D histograms. For example, the
bining the above two approaches by integrating multiple visudiSV space could be reduced to its HS subspace by ignoring
cues would result in more robust tracking systems [15], [33].the V components. However, hue and saturation components
Meanwhile, efficient segmentation is also desirable fdyecome unstable when the intensity of a pixel becomes too
tracking bootstrapping and reinitialization. Recently, sorlarge or too small, which means that the H and S components
successful tracking systems have been built based on skin calould be meaningless for dark or bright pixels. As a result,
[7], [14], [18], [29], [34]. A simple approach is to collect skina simple intensity thresholding method could segment bright
color pixel samples from the target and to train a color classifi@bjects from a dark background very well, while a color-based
such that skin color regions could be segmented by classifyisggmentation method using the HS subspace would probably
and grouping input color pixels. To alleviate the difficulty of thdail. Therefore, simply reducing the dimensionality of a 3-D
large variation in flesh-tone among different people, one of tlwlor space to a 2-D subspace might lose valuable color
solutions is to tune the color classifier through a huge trainirigformation.
data set collected from many people [17]. Unfortunately, in Although these 3-D color spaces have substantial physical
practice, there are still some complications. One of them figeanings, it seems that none of them is able to give satisfactory
that color distributions may change with lighting conditionscolor invariants through different lighting conditions. The issue
As a result, a fixed skin color model may not work well all thef selecting good color features for the target in color-based seg-
time. Another difficulty is that collecting such a large labelethentation should be addressed. Considering that the HSV color
training data set is not trivial at all. An effective approach to thigpace is not a linear transformation of the RGB space, we may
problem is to adapt color models to different lighting conditiongant to use a higher dimensional color space such as six—dimen-
and different people. Color representations and color modibdnal (6-D) by compounding the HSV with the RGB compo-
adaptation schemes are the two important issues to study. Weats. Since this higher dimensional color space is redundant, a
will discuss these issues in more details in Sections II-VII. linear subspace could be found by performing some dimension
In this paper, we will study two different representations fateduction techniques such as the principal component analysis
color distributions, the structural adaptive self-organizing mdpCA) technique and the multiple discriminant analysis (MDA)
(SASOM) model and the Gaussian mixture model, for the tastechnique, which will be described in detail in Section V-B.
of adaptive color-based segmentation and nonstationary cdByrthis means, good color features for color pixel classification
tracking. In Section Il, we will describe different color spacesould be selected automatically.
and models. In Section Ill, we will present a novel SASOM
neural network, which will be employed as a new color modeB. Representations of Color Distributions
An interesting aspect of such SASOM neural network is that Skin color offers an effective and efficient way to localize and
its structure could be learned through training. An analysigack hands and faces in vision-based human-computer interac-
of the stationary status of SOM neural network will be alsgon. The core of color-based tracking is color-based segmen-
given in that section. Section IV will give a formulation of thetation. According to the representations of color distribution,
color tracking problem. Based on the SASOM color modeurrent color-based tracking approaches can be classified into
and the Gaussian mixture color model, Section V will presefio general categories: nonparametric [17], [18], [28], [34] and
two algorithms, the SASOM transduction algorithm and thgarametric [26], [30], [35].
discriminant expectation—-maximazation (EM) or (D-EM) al- One of the nonparametric approaches is based on color his-
gorithm. Different from the methods of constructing a specifigrams [17], [18], [28]. Since a color space is quantized by
skin color model, our proposed approach tries to adapt thee structure of a histogram, this technique is confronted by the
models to nonstationary color distributions by transducingsame difficulty as the nonparametric density estimation task,
learned color model through image sequences. Section VI will which the level of quantization will affect the estimation.
report some of our experiments on the proposed SASOM colgenerally, nonparametric approaches work effectively when the
model, and the two different color tracking algorithms. We wiljuantization level could be properly set and there are sufficient
conclude the paper in Section VII by summarizing the papghta available. However, how to select a good quantization level
and giving some thoughts about future studies. for color histograms is not trivial. Although nonuniform quan-
tization schemes would perform better than uniform quantiza-
tion, they are much more complicated. An alternative nonpara-
Il. REPRESENTATIONS OFCOLOR DISTRIBUTIONS metric approach proposed in this paper is based on the SOM,
an unsupervised clustering algorithm to approximate color dis-
tributions. The details will be presented in later sections. SOM
Digital color images consist of color pixels, each of whiclcan be viewed as a neural-network-based vector quantization
is associated with a color feature vector. Different coldivQ) algorithm. Instead of specifying the structure of SOM,
spaces, such as the hue, saturation, and value (HSV) spdoe,proposed SASOM algorithm has the ability to find an ap-
the cyan, magenta, and yellow (CMY) space, the red, gregmppriate structure by embedded schemes of growing, pruning,
and blue (RGB) space, and the normalized-RGB space, hawel merging.
been used in current research. Many color histogram-basedParametric approaches model color densities in parametric
techniques use two-dimensional (2-D) subspaces of these 3ebms such as the Gaussian model or the Gaussian mixture
color spaces, partly because of the demanding requirementsnafdel [26], [30], [35]. Letx be the color feature vector for each

A. Color Spaces
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pixel. The color distribution of an image can be represented by :____,_.....,...f',‘.‘.'f','fff ................ :
a mixture density A0 Sma o
C LR NP | N/ 4 D,/ A !

p(x|©) ]Z::lp (x| Js J) o( J) (1) weights

whererzlp(Oj) = 1 and wherep (x|0,;8,) is the con- ¥ YN s
ditional density for a pixel belonging to an objedt; in the X X X
image, and it has been parameterizedhyand® = {6,,j =

1,...,C}. This conditional density can also be modeled b§9- 1. 1-D SOM structure.

Gaussian mixtures

T generic color models would be incapable to handle changing

p(x10;;6;) = p(xlex; O5)p(cr) (2) lighting conditions unless some invariants could be found.

k=1 Many color tracking techniques assume controlled lighting
WhereZ:,C_l pler) = 1 and wherep(x|cy; 8;1,) is the condi- conditions. Howe\(er, in many cases, th.e target may be shad-
tional dengity for a pixel belonging to a color componepbf owed by other objects or by the target itself so that the color

the objectO; in the image. Each mixture component can b@oks very different. What is more, we cannot assume constant

modeled by a Gaussian model with meap and covariance Itlghtlng §orl11trc?s, S'Ece thelllghtlng <1|/rEect|on|§, |tr_1ten3|t|<_es, a?r?
matrix 3. EM offers a way to fit probabilistic models to the ones mignt aiso change. In some applications, since the

observation data. The difficulty ahodel order selectionould graphics rendered on the display keeps changing, the reflected

be handled by heuristics [26], cross-validation, or model seleltghts would change the f”‘ppare”F polqr of the targ_et. This
tion. color constancy problem is not trivial in color tracking for

vision-based interaction.
C. Color-Based Segmentation Because of dynamic scenes and changing lighting conditions,
olor distributions over time are generally nonstationary, since
he statistics of color distributions might change with time. If a
ﬁgr classifier is trained under a specific condition, it may not

Color is a strong cue for image segmentation [5]. Bo
parametric and nonparametric approaches have been stu
for segmentation. Histogram-based segmentation approa S well in other scenarios

such as color predicate (CP) [18] work well when appropriately Some researchers have looked into the nonstationary color

threshold@ng the histogram. However, th(_ere are no obvio Rtribution problem in color tracking [26], [29], [33]. A scheme
ways to find correct thresholds. Parametric approaches m €&olor model adaptation was addressed in [26], in which a

use of parametric color models based on the Gaussian modelal ,s<ian mixture model was used to represent color distribu-

the Gaussian mixture model [17], [26]. A difficulty is that ther‘?ion, and a linear extrapolation scheme was employed to adjust

would not be enough prior knowled.ge.to determine the numbmre parameters of the model by a set of labeled training data
of components of the mixture density in advance.

Si h ional ded in color hi drawn from a new image frame. However, since the new image
Ince the computational resources needed in color histograig ¢ segmented, this labeled data set is not reliable. Other color

ming Fechnlques generally.grows with respect to the d,'me daptive methods take advantage of other visual cues as external
sionality of the color space, it seems that a less computationg ¥cking priors [29], [33]

expensive scheme should be found to handle the quantizatio
of the color space. In this paper, we propose an SASO

neural network to approximate color distributions, and seg—ll
mentation is achieved by the competition among the neuro,
in the SASOM. The details will be presented in Section IIIbot

T this paper, to approach this nonstationary color tracking
oblem, two schemes will be presented. One isSHSOM
ansduction which updates the weights and structure of
SASOM to capture the new color distribution based on
h labeled and unlabeled color pixel samples. Another
scheme is called the D-EM algorithm, which approaches such

nonstationary adaptation problem in an EM framework. The

Itis straightforward that similar color pixels in animage couldgyantage of these two schemes is that they do not require a
be grouped together to facilitate the separation of the foregroyggye number of labeled training color pixels.
target from the background environment. However, when we

look into the flesh-tone distributions in video inputs in some VE
applications, the segmentation problem is confronted by such
challenges as large variation in skin tone, unknown lighting con-SOM [6], [19], [20] could be used to visualize and interpret
ditions, and dynamic scenes. In order to achieve user-indepkige high-dimensional data set by mapping them to a low-di-
dence, segmentation-based tracking algorithms should be ahknsional space based on a competitive learning scheme. SOM
to deal with the large variation in skin color for different peopleconsists of an input layer and an output layer. Fig. 1 shows the
One possible solution is to make a generic statistical modelsifucture of one-dimensional (1-D) SOM.
skin color by collecting a huge training data set [17] so that the The number of nodes in the input layer is the same as the
generic color model could work for every user. dimensionality of input vectors. The structure of the output
Even though such a good generic color model can leyer can be 1-D or 2-D connected neurons that are linked
obtained, we have to face another difficulty in color trackingo every input node. A weight vector is associated with each

D. Color Distributions Under Nonstationary Illumination

I1l. SEGMENTATION BASED ON SASOM
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link. Through competition among the neuréns the output wining probability, the neuron density will be proportional to
layer, the index of the winner neuron is taken as the output gfx), i.e., more neurons will be allocated to represent higher
SOM to the input vector. The Hebbian learning rule adjusts thiensity regions in the data space and 2) when the neuron density
weights of the winner neuron and its neighborhood neuronsiguniform, the wining probabilities of neurons will be propor-
training. SOM is highly related to VQ [1], [13] and tliemean tional top(x), i.e., neurons that represent higher density regions
clustering technique. An interesting characteristics of SOM dd the data space will have higher wining probabilities. It seems
its property of partial data density preservation. that the standard SOM with fixed structure and with the Heb-

bian learning rule falls in between of these two extremes, i.e.,
A. An Analysis of the Stationary Status of SOM the neuron density is proportional tx)?/3.

One of the problems of many clustering algorithms is that th Letx denote a data point in the data space, and_ a set_ of sam-
number of clusters should be specified in advance. The perflﬁ‘:'}_S {X1,Xz,...,xy} are drawn from the probability distri-
mance of clustering algorithms depends on the number of clfLtion functionp(x). And letw denote the weight vector for
ters. It is the same case in the standard SOM algorithm, whigch neuron of SOM, which represents a point in the weight
is also confronted by the structure learning difficulty. In SOMSPaCe- Also we usg to represent the position of each neuron
when the way of linking of neurons is fixed, the variable left fol" the weight Space. G|V(_en a data pomtther(_e IS & winner
representing structure of SOM will be the number of neuronscyron, Whose Eosmon will be_ denoted@‘y, which is a func_-
Different SOM structures, e.g., different number of neurondon of X, i.e., £*(x). Meanwhile, Ehe neighborhood flmctmn
will lead to different tessellations of the data space. If fewer neli* SOM*COUM be denoted bi(¢, £*). Gene:a!ly,A(ﬁ,ﬁ ) =
rons are used, inputs from lower density regions will be domit(& —&7(x)) hOIdS’*Wh'Ch means that(¢, £™) is Eelated only
nated by those from higher density regions in data space. On Eﬂége distancg — £"(x). Also, we let0 < A(¢,£") < 1 and
other hand, if more neurons are used, SOM training is unlike‘iy£ ) = 1. ) . . .
to form an ordered mapping, since the training will probably get When we consideA(¢, £*(x)) as the conditional probability
trapped in one of the local minima. of s_electlng a winner neuron of weight and positior¢, given
Many researchers have investigated the structural led] iNPut data sample, we have
Iearping of neural networ}(s [2], [4], [11], [12], [16], [21]. A Pain(€]%) o< A(E, £5(x)) (3)
straightforward approach is to validate a set of neural networks
with different structures. Since the structural level adaptatigfhich means that the wining probability of a certain neuron
implies an optimization in a continuous function space, suéiven a specificinputis determined by the weight of such neuron
validating scheme can only test a very small set of hypothes@gd the weight of the actual winner neuron. Consequently, we
Alternatively, people also looked into evolutionary schemes f@uld write the wining probability of a certain neuron under the
find optimal structures for neural networks [2], [16]. Althougtentire training set
such evolutionary optimization has nice global properties, they N
are generally slow and computationally .intensive. A different Poin(€) ZA(S — £ (x))p(x). (4)
methodology to approach this problem is to parameterize the 1
structure such that the structural level adaptation could L .
fulfilled through optimizing the structure parameters [21]. Og\?e could write itin a continuous form as
the other hand, many researc_hers have been I_ookin.g_into the Puin(8) = l/ A(E — £°(x))p(x)dx (5)
approaches of dynamically adjust the structure in training [4], Z Jo
[11], [12]. For example, the approach of growing cell structurghere is a normalization factor. If every neuron has the same
was proposed in [11], in which the numbers and the linking @fining probability, i.e.,
neurons could be adjusted during training.
Meanwhile, there have been many studies on the property of Pyin(§) = Const. (6)
der)sity preservatio_n of SOM [9], [10], [2_2]—[24], [27]. An inter-We could write
esting result regarding to such property is that the neuron density
is proportional top(x)?/3, wherep(x) is the probability distri- IPuin(§) _ 1 / N(€ — € (x))p(x)dx = 0. @)
bution of the inputs. Such conclusion was reached by assuming a o€ Z Ja
fixed structure of SOM. However, when directly applying SOM et ¢ = ¢*(x) — ¢, which means the distance between a certain
to some vector quantization tasks, e.g., the color segmentatifiron and the winner neuron in terms of position. Sigite
task that needs a quantization of color spaces, better respdiiects all such input data points that hayeas their winner
could be achieved if the neuron density is proportional(to) neuron, so we could write = w(¢+-¢). Furthermore, we could
instead ofp(x)*/*. write the expansion gf(x) in terms ofé*(x) — ¢
Some studies observed that when every neuron has equal
wining probability for the entire data set in the stationary status p(x) = p(W(€ + o)) = p(w) + ep'(w)w'(§).  (8)
of SOM, the neuron density will be proportional #x)[11], .
[36]. A structural adaptation was employed in [11], while a difl_\/leanwhne, we have
ferent weight adjusting scheme was used in [36]. It seems that dx =dw({ +¢) = W' (£ + €)de
there exists two extremes: 1) when every neurons has equal (W + ew” )de 9)

e use “neurons” for short of “output neurons.” N (€ —&(x)) =A(—¢) = —N(e). (20)
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Plugging (8)—(10) into (7), we have Q X x,?\w‘: X
/ [p(w) + ep’(W)w'] [w' + ew"| A(e)de = 0. (11)
Q K I S
SinceA’(¢) is an odd function, i.eA'(—¢) = —A'(¢), we will FA :
have fd 6 \
.'l W V.V “’ Wy ‘23
/ [p(w)w” + p/(w)(w')?] eA'(e)de = 0. (12) Wi 3 !
& @ (b)
Furthermore, we obtain Fig. 2. Growing scheme of SASOMy; is the weight vector, angt is an
" , o input vector. (a) When the input vector is too far from all weight vectors so that
p(w)w” +p'(w)(w')* =0 (13) the responses of all neurons are nearly the same, if current injaiin the
data cluster represented by one of these neuronsysayhe weight vector of
i.e., that neuron will be misplaced unnecessarilyty in SOM training. (b) In this
situation, a new neuron is created and its weight will be sethy= .
w' _ p/(W)W/
w' p(w) whereD is a distance measurement between the input vector

x and the weight vectow; of theith neuron of SOM. We call

Obviously, we can write : :
Y it the response value of the neuron. The measurement here is

d, ,_ d the Euclidean distance, however, other distance measurements
— logw' = —— logp(w).
dé dé could also be employed.
So, we obtain In standard _SOM, the neuron with the smallest response is
taken as the winner
W = (14) in D 17
e =W = —. = d X 7).
€ p(w) ¢ = argmin (x,w;) a7

When the training of SOM reaches its stationary status, the!n SOme cases, however, when the responses of all neurons

weight space will approximate the data space. We could writ"€ nearly the same, determining the winner by finding the one
with the smallest response is not suitable. In this situation, the

s x p(x) (15) input vector may be too far from all weight vect_ors or may be
dw around the center of the convex hull of the weight vectors. In
if Puin(§) = Const holds in the stationary status. this case, the input data poixtmay be drawn from any or none
of the data clusters represented by these neukgnds a result
B. An SASOM in training, the weight vector of the selected neuron could be

There would be two problems if we apply the standard SOMisplaced unnecessarily by adjusting its weight. So, it is not a
directly for color segmentation: 1) how can we determine tHgbust way to take the neuron of the smallest response as the
structure of the SOM? 2) and does the standard SOM really Cg\ﬂnner. In this situation, a new neuron could be generated, and
ture the color distributions? Unfortunately, there are no geneRf inserted it to the current structure by taking the input vector
ways of determining the structure of SOM. In addition, the sta@s its initial weight, which is illustrated in Fig. 2.
dard SOM will not accurately capture the data distribution as BY comparing the mean value and the median value of the
described in Section IlI-A. response values of all neurons, we make a rule to detect this

One possible approach to the structure determination cogféHation, in which if or not a new neuron should be created.
be cross-validation. Although the structure of the SOM, such 28€ competition can be described as
the number of neurons, is fixed each time, a good structure could v, =D(x,w;) Vie{l,...,M} (18)
be determined after validating several different structures. How- ) _ )
ever, this approach does not offer flexibility in training, and it i/herev; is the response of thigh neuron with weight vectow;,
not efficient. An alternative approach embeds some heuristics3¥d is the number of neurons. The winner can be selected by

changing the structure dynamically in training. Our algorithm, NULL, if mean(v) ~ median(v)

the SASOM, can automatically find an appropriate number of = { argmin; v;, otherwise (19)
neurons based on a set of heuristics such as growing, prunir‘w B .

and merging. With such set of heuristics, when the SASOK{T€"®Y = {v1,v2,...,var} andM is the number of neurons.

Pruning Scheme: In the training process, when a neuron is

reach its stationary statu$,:,(¢) = Const will hold, such i :
’E\rely to be a winner, it means that the data cluster represented

that the neuron density will be proportional to the data dist

bution as the analysis in Section IlI-A. We present the growin it h b d.1 " threshold
pruning and merging schemes below. s aresult, such aneuron can be pruned. In practice, a thresho
s set to determine these neurons.

Growing Scheme: In the standard SOM training algorithrﬁ, inq Sch In the traini the dist b
the response of a neuron is the distance between the input vectd\(lergmg cheme. In the training process, the distance be-
en two weight vectors of each two neurons are calculated.

and the weight vector of the neuron. The distance measurem .
. If two weight vectors are close enough, we can merge these two
can be defined as S .
neurons by assigning the average of the two weights to a new
D(x,w;) = ||x — wy| (16) neuron and deleting these two neurons.

y this neuron is of very low density or might be taken as noise.



WU AND HUANG: NONSTATIONARY COLOR TRACKING 953

« Initially set the number of neurons M to 2, and randomly initialize
the weights w; = w;(0),7 = {1, 2}, where w;(k) represents the weight
vector of the ¢th node at the kth iteration.

+ Draw an input x from the training sample set randomly to the SA-
SOM.

» Find the winner among the neurons using Equation 19.

o If(winner!=NULL), adjust the weights of the winner neuron ¢ and its

two neighborhood neurons ¢ — 1 and ¢ + 1.

we(k +1) = we(k) + n(k)(x — wc(k))
We-1(k+1) = We_1(k) + 1(k) a(k)(x — We-1(k))
Wer1(k + 1) = Wepa (k) + (k) (k) (x — Weqa (k)

where 7(k) is the step size of learning, (k) is a neighborhood function,
k is the counter of iteration.

« If there is no winner, grow a new neuron m according to the growing
scheme. w,,(k+1) =x and set M = M + 1.

« If a neuron rarely wins, delete it according to pruning scheme, M =
M-1

« Calculate the distances between each two neurons and perform merg-

ing scheme.

Fig. 3. The training algorithm of the SASOM.

The algorithm of SASOM is summarized in Fig. 3. pixel x; in the current specific imagh. We may not care how
We performed color-based image segmentation based on si¢hworks for other images. So we may expect that could
an SASOM model. In our segmentation algorithm, training datee simpler than a general purpose classifier. When a new image
set is collected from one color image, and each data vectorZjs; at timet + 1 comes in, this specific classifige/, should
weighted HSI vector, i.ex = {«aH, 35, vI}, where we set betransducedo a new classified;, ; which works just for the
«a = 3 =1andy = 0.1. Pixels with large and small intensitiesnew unsegmented imadg,; instead ofi;. The classification
are not included in the training data set, because hue and satn be described as
ration become unstable in this range. Once trained, the SASOM
is used to label each pixel by its HSI value. The neuron indexes ¥ = at&  1ax p (yjlxi, M, Ie41:V Xi € Legr)

are used as labels for color image pixels. Some experiment re- . .
sults will be presented in Section VI-A. W%ereyi is the label ofx;, andC' is the number of classes. In

this sense, we do not care the performance of the clasaffier
for the data outsidé, ;. We call the problem of transducing the
classifierM,; to M, given unlabeled,,; model transduction

It is a good practice to learn a generic color classifier fd¥ig. 4 shows the transduction of color classifiers.
color-based segmentation by collecting a large labeled data sethis model transduction may not always be feasible unless we
[17]. If some color invariants could be found, learning such lknow the joint distribution o, and/; ;. Unfortunately, such
color classifier would suggest a direct and robust way to colfmint probability is generally unknown since we may not have
tracking. However, when we consider the nonstationary colenougha priori knowledge about the transition in a color space
distribution over time, we do not generally expect to find sucbver time. One approach is to assume a transition model, like the
invariants. case in motion tracking by Kalman filter or condensation [3], so

The approach taken in [17] is amductive learningapproach, that we can explicitly model(7;,1|1:). One of the difficulties
by which the learned color classifier should be able to classiff this approach is that a fixed transition model is unable to
any pixel in any image. Generally, this color classifier would beapture complex dynamics. Although the issue of motion model
highly nonlinear, and a huge labeled training data set is requirgditching by learning transition models has been addressed in
to achieve good generalization. In fact, learning such a higHl3], their scheme is not general. Another difficulty is that it may
nonlinear color classifier for all lighting conditions and all im-not be easy to identify parameters of the transition models due
ages may not be necessary, because the requirement of the ggethe insufficient labeled training data. The approach used in
eralization could be relaxed to a subset of the data space. T[2i6] assumes a linear transition model. However, the transition
is the exact case in color tracking. As interesting thing is that(apdating) of color models is plagued since the current image
color classifierM, at time framet will be only used to classify has not been segmented yet.

(20)

IV. THE NONSTATIONARY COLOR TRACKING PROBLEM
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?w‘xﬂl 1

transduced SASOM captures the color distribution of the new

image. The new training data set for transduction consists of

both labeled and unlabeled samples. The algorithm is described
below.

e WD = I i =1 c=D ) are the weights
of SASOM at time framen — 1. The training data set
xm = {x;"),k =1,...,N ¢ is drawn randomly from
the image at time frame. We useW(" to represent
SASOM at time framen.

« The training data set’("™) is classified by the SASOM
W1 “and is partitioned into two parts: a labeled data
setx™ and an unlabeled data s&™ . If a samplex_™
is confidently classified byv(*~1) | then put this sample
to the setXl(") and label it with the index of the winner
neuron of W—1); otherwise, put it tox ™ and let it
unlabeled.

» Unsupervised updating: The algorithm described in Sec-
tion 1Il is employed to updatéV(*—1) by the unlabeled

Fig. 4. Anillustration of transduction of classifiers.

However, our assumption is different from the transition
model assumption. We assume that the classifigrat time
t can give “confident” labels to several samples/in;, so
that the data in/;; can be divided into two parts: labeled
data setl = {(x,,y;),7=1,...,N}, and unlabeled set

U = {x;,j=1,...,M}, where N and M are the size of data sewu . . .
el » Supervised updating: The labeled data)sﬁ‘f) is used in
the labeled set and unlabeled set, respectiwglyis the color . _ o) _
feature vector, angy; is its label (such as skin or nonskin).  thisstep(xy, ;) is drawn from;™, wherel; is the label
Here, £ andi{ are from the same distribution. Consequently, ~ for x,. The winner neuron for the inptty is c.
the transductive classification can be written as (n—1) (n—1) .
) W —i—a(xk—wc ), if c=1;;
wy =
yi =arg max p(y;lxi, L,UNx €U). (21) ’ wi D —a (g =WV b,
In this formulation, the specific classifig¥, is transduced to After several iterations, the SASOM at time frame- 1
another classifieM; {; by combining a large unlabeled dataset  is transduced te.
from I;4;. ) _ )
B. Model Transduction Based on Gaussian Mixtures
V. TRANSDUCTIVE COLOR TRACKING In Sections -1V, we have presented a nonparametric

One of the problems of tracking by color-based segmentatigﬁproaCh based on SASOM for color segmentation and non-

is that the unknown lighting conditions may change the colg}atlona?]/ cg)olorbtrgck!gg. Wet alsq lnvesltlg:)atle dadp?ratme;rlf
of the target. Even in the case of fixed lighting sources, t proach. Lur basic 1dea 1s 1o using unlabeled data to help

target color may be still different over a video sequence, sind pervised learning based on the EM framework.

the target might be shadowed by other objects. These situation%) The EM Framework-When we treat the pixels in the new

confront the approaches that make use of a fixed skin co@ages aj ur;lable led Qata, trt])? EM gppr?ﬁl Clh Ealn b? al?ptI;eld ;0
model, since the distribution of skin color is nonstationarg_IS ransductive learning probiem, since the labels of uniabele

through image sequences. This section presents two differ ' er:s (lf\ar_] pe tzjee;tedéia)s_ missing v?lues.t f labeled data get
model transduction approaches to the nonstationary color € lraning data ser'is a union ot a set ot labeled data

tacking problem. One of them is based on the SASOM mod éd a St(:]t of ur:jlalbeled ge:é\g;en \t/)ve astgunlej%mple 'T‘d.e‘?e”'
and the other is based on the Gaussian mixture model. ncy, the model parame an be estimated by maximizing

a posterioriprobabilityp (®|D). Equivalently, this can be done
A. Model Transduction Based on SASOM by maximizinglg (p(©|D)). Let!(©|D) = lg (p(©)p(D|®)).
o ] When introducing a binary indicatef = (1, ..., 2c), where
The color distribution of each image frame could be modelezgj = 1iff y; = O;, andz;; = 0 otherwise, we have

by an SASOM, in which each neuron represents a color cluster
for the image at current time frame. Such SASOM also offef62|P, Z) = lg (p(©))
a simple color classifier by neuron competition, through which <
the image can be segmented. However, this classifier may not + Z Zzij lg (p(0;|0)p(xi|0;;0)) . (22)
be good for the next image frame because of the nonstationary xi €D j=1
nature of color distributions. A new SASOM is needed for the The EM algorithm estimates the parame®@rby an iterative
new image frame. hill climbing procedure, which alternatively calculaté§z],
Our solution to this problem is callé8ASOM transductign the expected values for all missing data, and estimates the pa-
which is to update the weights and structure of the trainedmeter®® given F/[Z]. The EM algorithm generally reaches a
SASOM according to a set of new training data so that thecal maximum of(®|D). It consists of two iterative steps.
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* E-step: seg*+) = F [zu); (C)(k)} classifier. However, for each unlabeled sampjec I/, the clas-

sification confidencew; = {w;x, k = 1,...,C} can be given
based on the probabilistic labgl = {l,;x,k = 1,...,C} as-
whereZ® and®®) denote the estimation fo and® at the Signed by this weak classifier

kth iteration, r_espectively. _ _ P (WTx;|04) p(Or) -
When the size of the labeled set is small, EM basically per- ik ="¢ (23)
forms an unsupervised learning, except that labeled data are > p(WTx;|04) p(On,)
k=1

used to identify the components. If the probabilistic structure, T
such as the number of components in mixture models, is known wir =lg (P(W'x;|08))  k=1,....C. (24)

in advance, EM could estimate true probabilistic model para@quaﬂon (24) is just a heuristic to weight unlabeled dgjtee
eters. Otherwise, the performance could be very bad. Suc'l]taalthough there may be many other choices.

structure assumption for the probabilistic structure of the datan e, that, MDA is performed on the new weighted data set
space is important for the success of EM. Generally, when we
do not have such prior knowledge about the data distribution, D= ﬁU{xj, L, w;:Vx; e}
a Gaussian distribution could be assumed to represent a class. . .
However, this assumption is often invalid in practice, which i&hich is linearly projected to a new space of dimensibr- 1
partly the reason that unlabeled data could hurt the classifier?ut unchanging the labels and weights
When such a structure assumption does not hold, EM could T ) T )
probably fail. One approach to this problem is to try every poﬁ—9 = Wiy x; € £ U (Whxs Ly, wisV g €U
sible structure and select the best one. However, it needs mpfen parameter® of the probabilistic models are estimated
computational resources. An alternative is to find a mapping D, so that the probabilistic labels are given by the Bayesian
such that the data points are clustered in the mapped data speie@sifier according to (23). The algorithm iterates over these
in which the probabilistic structure could be simplified and caphree steps, expectation-discrimination-maximization. The al-
tured by simpler Gaussian mixtures. gorithm can be terminated by several methods such as presetting
2) Multiple Discriminant Analysis (MDA):MDA [8] offers  the iteration times, comparing a threshold and the difference of
a possible way to relax the assumption of probabilistic structut@e parameters between consecutive two iterations, and using
MDA is a natural generalization of Fisher’s linear discriminacross-validation.
tion (LDA) in the case of multiple classes. MDA offers many |t should be noted that the simplification of probabilistic
advantages and has been successfully applied to many tasisictures is not guaranteed in MDA. If the components of
The basic idea behind MDA is to find a linear transformatioata distribution are mixed up, it is very unlikely to find such a
W to map the originat/; dimensional data space to a néw linear mapping. Our experiments show that D-EM works better
space such that the ratio between the between-class scattertaafl pure EM.
within-class scatter is maximized in the new space. 4) Model Transduction by D-EMThe application of D-EM
MDA offers a means to catch major differences betweas color tracking is straightforward. In our current implemen-
classes and discount factors that are not related to classificati@fion, in the transformed space, both classes (foreground and
Some features most relevant to classification are automaticailyckground) are represented by a Gaussian distribution with
selected or combined by the linear mappiNg in MDA, three parameters, the mean the covarianc&,; anda priori
although these features may not have substantial physiggdbability P;.
meanings any more. Another advantage of MDA is that the We use three schemes to bootstrap the tracking. The first
data are clustered to some extent in the projected space, whigdthod is to manually collect and label some pixels (100 sam-
makes it easier to select the structure of Gaussian mixtes) from both the interested object and background. An alter-
models. Details can be found in [8]. native is to put the interested object in the middle of the image so
3) The D-EM Algorithm: Itis apparent that MDA is a super-that some data can be automatically collected. The third method
vised statistical method, which requires a large set of labelgtto detect the moving region by image differences in the first
samples to estimate some statistics such as mean and coferal frames. We assume that we are interested in the object
ance in training. When we do not have a large training data sg@th the largest motion.
at hand, we may want to think of combining EM with MDA to  For each new imagg, by setting a confidence level, the color
make up the number of labeled data. By combining MDA witBlassifierM, ; attimet— 1 divides!, into two parts: labeled set
the EM framework, our proposed method, the D-EM, is suchg and unlabeled sét,. £, is confidently labeled by, _; . The
way to make use of both labeled and unlabeled training databyEM algorithm identifies some “similar” samplesif to the
combining supervised and unsupervised paradigms. The basiseled samples in an unsupervised sense. Therefore, good dis-
idea of D-EM is to identify some “similar” samples in the unlacriminating color features can be automatically selected through
beled data set to enlarge the labeled data set so that supervisetenlarged labeled data set. After a Bayesian classifier is de-
techniques are made possible in such an enlarged labeled seigned in the new feature space, it is used to probabilistically
D-EM begins with a weak classifier learned from the initialabell;. Through several iterations, the classifi¢y_; has been
labeled set. Certainly, we do not expect much from this wedatansduced td4, by D-EM.
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is assigned a label by the SASOM algorithm, and this label is
used as a mask to separate the corresponding color region. Our
segmentation algorithm works well through these experiments.
When the background has less color distracters, this algorithm
finds exact color regions. Since texture is not used in the
segmentation, segmentation results will be noisy when there is
color distracter texture in the background. Hand and face im-
ages are taken from a cheap camera in the indoor environment
in our labs. Our algorithm can also successfully segment hand
regions and face regions.

2) Performance of Hand Tracking Using SASOM:typical
hand-tracking scenario is controlling the display or simulating
a 3-D mouse in desktop environments. A camera mounted at
the top of a desktop computer looks below at the keyboard area,
and gives an image sequence of a moving hand. Another typical
application is to track human face. Our localization system is
able to simultaneously localize multiple objects, which is useful
in tracking of moving human.

Since our localization system is essentially based on a global
segmentation algorithm, it does not largely rely on the tracking
results of previous frames. Even if the tracker may get lost in
some frames for some reasons, it can recover by itself without
interfering the targets. In this sense, the tracking system is very
robust.

Our proposed system can handle changing lighting conditions
to some extend because of the transduction of the SASOM color
classifier. At the same time, since the hue and saturation are
given more weight than intensity, our system is insensitive to
Fig. 5. Some results of image segmentation based on SASOM. Left cqurTm:e_ change of lighting intens!ty suc.h asin th,e situations that the
source color images. Middle column: segmented images. Right colunfRjeCts are shadowed or the intensity of the light source changes.
interested color regions. However, there are still some problems. Insufficient lighting,

too strong lighting, very dark, or bright backgrounds may bring
V1. EXPERIMENTS some troub_les to the color segmentation algorithm, since hu_e
and saturation become unstable and the system does not give

This section reports our experiments of SASOM for imaggyore weights to intensity. If the lighting condition changes dra-
segmentation, SASOM transduction, and D-EM for nonstgsatically, the color segmentation algorithm may fail since the
tionary color tracking of faces and hands in video sequencesgg|or model transduction cannot be guaranteed.

Some hand tracking results in our experiments are given
A. Experiments Based on SASOM in Fig. 6. In this experiment, a hand is moving around with

Our color segmentation algorithm based on SASOM has belég interference of a moving book. The book is also casting
tested on a large variety of pictures. And our localization systesfiadows so that the color of skin is changing. The blue boxes
that integrates this color segmentation algorithm has run un@ég¢ the bounding boxes of the interested color region (Demo
awide range of operating conditions. Such real-time system h4deo sequence can be obtained at http://www.ece.north-
been employed in vision-based gesture analysis [31]. Extensiv@stern.edu/~yingwu).
experiments show that our color segmentation algorithm is fast Our tracking system is very robust and efficient from this
automatic, and accurate, and the proposed localization sys@¥geriment with cluttered backgrounds. Since a book is inter-
is robust, real-time, and reliable. This color segmentation algi&ing the hand by shading the light, such system can still find
rithm can also be applied to other segmentation tasks. a correct bounding box. Sometimes, due to the sudden change

1) Performance of Segmentation Using SASOBhe pa- Of lighting conditions, the tracker may be lost. However, it can
rameter we should Specify in SASOM is the maximum numbgﬂlcmy recover. Different skin tones do not affect our system.
of neurons. If the scene is simple, we set the maximum numbte color region of interest in the first image is used to ini-
to two or three. If the scene is complex, we set it to ten or moriéalize the SASOM so that it can work with nearly any users.
In between, we use Six. Our system has been tested in extensive experiments.

Fig. 5 show some segmentation results. The left column . , )
shows source color images, the middle column shows s&- EXPeriments Based on Gaussian Mixture Model
mented images, and the right column shows separated colot) A Simulation of D-EM:To validate the effectiveness of
regions. The color of each segmented color region is tlleEM, we performed a simulation experiment. At current
average color of this region. Each pixel in the source imagtme ¢ in tracking, since the color model/,_; may not be
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Fig. 6. Results of hand tracking with 18 frames taken from image sequences. A moving hand with interfering of a book is localized. The blue boxes are the
bounding box of the interested color region.

— EM #——s  Using 20% unlabeled data

o—a  D-EM| o—=o  Using 50% unlabeled data
0] »—v Using 100% unlabeled datg
os|

o109

s &

efror rate
error ragle

g

8 ; 10 7 “ " " E.J 2 k.
iteration confidence level

Fig. 7. A comparison n EM and D-EM. Both EM and D-EM convergg. . .

af?er sever;?iteegtisgs,tl))it;NS-eEM giv?asda lower clg;sificat?or:j error re;:tz. © gﬁhgmﬁérsTgfeI:kf)f;ztdoggzmuﬁgbcglzjbzil;'o;r:g ;‘e"e'ZZE'fg ga.t;?\jnv?,h?,fu'z:ggrg%o
unlabeled data, the lowest error rate drops to 6.9%.

able to give a good segmentation on the imdgethe image

at time¢ is not labeled (segmented) so that the ground truth

for the new data set is not available. However, to evaluatelculate classification errors, although such a ground truth is

our algorithm, we assume a known ground truth in order tmt available in real applications.
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Fig. 9. Hand localization by D-EM.

Fig. 10. Face localization by D-EM.

We use two images (resolution 180r5), wherel; is a data, the lowest error rate drops to 6.9%. The transduced color
segmented image, anl} has the same content ds except classifier gives around 30% more accuracy. Fig. 8 shows the
that the color distribution of; is transformed by shifting the effect of different sizes of labeled and unlabeled data sets in
R element of every pixel by 20 such that looks like adding D-EM.

a red filter to I;. A color classifier is learned fof; with 2) Hand and Face Localization Based on D-ENBased on
error rate less than 5%. In this simple situation, this coldthe D-EM algorithm, we implemented a nonstationary color
classifier would fail to correctly segment target regions outacking system, which is also applied to a gesture interface, in
from I, since the skin color id; is much different. Actually, which hand gesture commands are localized and recognized to
it has error rate of 35.2% o, in our experiments. provide inputs to a virtual environment application. These ex-

Fig. 7 shows the comparison between EM and D-EM. Iperiments ran at 15-20 Hz on a single processor SGI 02 R10000
this experiment, both EM and D-EM converge after severalorkstation.
iterations, but D-EM gives a lower classification error rate Figs. 9 and 10 show two examples of hand and face local-
(6.9% versus 24.5%). To investigate the effect of the unlabelation in a typical lab environment. Both cases are difficult for
data used in D-EM, we feed the D-EM algorithm a differergtatic color models. In Fig. 9, the skin color in different parts
number of labeled and unlabeled samples. The number dffhand are different. The camera moves from downwards to
labeled data is controlled by the confidence level. In thigopwards and the lighting conditions on the hand are different.
experiment, confidence level is the same as the size of tHand becomes darker when it shadows the light sources in sev-
labeled set. In general, combining unlabeled data can largelal frames. In Fig. 10, skin color changes a lot when the head
reduce the classification error when labeled data are venoves back and forth, and turns around. We also observed that
limited. When using 20% (1500) unlabeled data, the loweBtEM failed under dramatic lighting changes such as turning
error rate achieved is 27.3%. When using 50% (3750) unlabeleafoff lights.
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VII. CONCLUSION AND FUTURE WORK

Computer vision techniques provide promising ways to
human—computer interaction through understanding human
movements from visual data. An important step to achieve thist!
goal is the robust and accurate tracking of the human body such
as hand and face. However, cluttered backgrounds, unknowi]
lighting conditions and multiple moving objects make the
tracking tasks challenging. This paper mainly concentrated[3]
on color-based image segmentation and color-based target
tracking by addressing these difficulties. (4]

This paper presented a new representation of color modejs]
based on the proposed SASOM neural network, in which
the structure of the SOM could be learned in training. This g,
SASOM representation could afford efficient image segmenta-
tion through a competition process of the neurons in SASOM.[7]
Then we investigated the nonstationary color-based tracking
problem. A challenge of this task lies in the fact that the lighting [g]
condition and the background may not be static, such that the
color distributions in the image sequence is not stationary.
In order to capture the nonstationary color distributions, our
method, i.e., SASOM transduction, transduces the SASON{OI
over time by combing supervised and unsupervised Iearningll
paradigms. Based on the SASOM model, we achieved a robust
real-time tracking system that has been widely used in our
further research. [12]

We notice that the SASOM transduction is not mature, and
it needs more efforts to find a better way to combine super!13]
vised and unsupervised learning schemes. In addition, since thgy
process of competition among all neurons is essentially parallel,
the tracking system can be made much faster by parallel impltﬁ
mentation of the competition process. Currently, our localiza-
tion system outputs a bounding box of the target. Shape analysis
of localized target will be extended to estimate its 3-D motion. [16]

Besides the nonparametric SASOM model, we also looked
into a parametric approach based on the Gaussian mixtufe?]
model. Since the nonstationary color tracking could be formu-
lated as a model transduction problem, our study focused on theg;
problem of learning a new Gaussian mixture model based on
an old mixture model and a set of unlabeled training data, e.g!
unsegmented color pixel data. Integrating discriminant analysigg;
and the EM framework, the proposed D-EM algorithm offers a
means to relax the assumption of probabilistic structures of data!]
distribution. In addition, the proposed D-EM algorithm is able
to select a good color space automatically. Some promising
color-based tracking results were also achieved by the D-ENE3!
approach.

One of the future research directions of the D-EM algorithm[24]
is to explore the nonlinear case of MDA. In addition, the con- 25
vergence and stability analysis should be studied in the futur%
work. Currently, the confidence level is an important parameter
in the transduction to control the size of labeled set. It needs fu28]
ther studies.
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