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Nonstationary Color Tracking for Vision-Based
Human–Computer Interaction

Ying Wu, Member, IEEE,and Thomas S. Huang, Life Fellow, IEEE

Abstract—Skin color offers a strong cue for efficient localiza-
tion and tracking of human body parts in video sequences for
vision-based human–computer interaction. Color-based target
localization could be achieved by analyzing segmented skin color
regions. However, one of the challenges of color-based target
tracking is that color distributions would change in different
lighting conditions such that fixed color models would be inad-
equate to capture nonstationary color distributions over time.
Meanwhile, using a fixed skin color model trained by the data
of a specific person would probably not work well for other
people. Although some work has been done on adaptive color
models, this problem still needs further studies. This paper
presents our investigation of color-based image segmentation
and nonstationary color-based target tracking, by studying two
different representations for color distributions. In this paper,
we propose the structure adaptive self-organizing map (SASOM)
neural network that serves as a new color model. Our experi-
ments show that such a representation is powerful for efficient
image segmentation. Then, we formulate the nonstationary color
tracking problem as a model transductionproblem, the solution
of which offers a way to adapt and transduce color classifiers in
nonstationary color distributions. To fulfill model transduction,
this paper proposes two algorithms, theSASOM transduction
and the discriminant expectation–maximazation (EM), based on
the SASOM color model and the Gaussian mixture color model,
respectively. Our extensive experiments on the task of real-time
face/hand localization show that these two algorithms can success-
fully handle some difficulties in nonstationary color tracking. We
also implemented a real-time face/hand localization system based
on such algorithms for vision-based human–computer interaction.

Index Terms—Color-based image segmentation, color model,
discriminant analysis, expectation–maximization (EM), nonsta-
tionary color tracking, structure adaptive self-organizing map
(SASOM), vision-based human–computer interaction.

I. INTRODUCTION

I N current virtual environment (VE) applications, keyboards,
mice,wands,and joysticksare themostpopular inputdevices.

However, those devices are either inconvenient or unnatural
when providing three-dimensional (3-D) or high degrees of
freedom (DOF) inputs. To achieve immersive human–computer
interaction,humanbodyparts,e.g., thehand,couldbeconsidered
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as a natural input “device,” which motivates the research of
tracking, analyzing, and recognizing human body movements
[25], [31], [32]. An application example is the gesture interfaces
for virtual environments, in which a set of hand gestures
could be use to represent some commanding inputs such as
pointing, rotating, starting, stopping, etc. Although the goal of
such immersive interfaces is to recognize and understand the
human body movements, the first step to achieve this goal is
to reliably localize and track such human body parts as the
face and the hand. Magnetic sensors have been used to fulfill
these tasks. However, many magnetic sensors are plagued by
magnetic interferences [32]. Alternatively, we could consider
other techniques that are based on noninvasive visual sensors,
by which the motion of the target could be inferred by analyzing
video inputs. We usually call the interaction based on visual
sensory inputs vision-based interaction (VBI).

In most VBI, localizing and tracking targets in video se-
quences provide inputs to the steps of target recognition and
action recognition. Visual localization and tracking are con-
fronted by the difficulties of complex backgrounds, unknown
lighting conditions and complex target movements. When we
need to analyze multiple targets simultaneously, the problem
becomes even more challenging since different targets would
induce occlusion. The robustness, accuracy, and speed are
important to evaluate tracking algorithms.

Different image features provide different cues for tracking
algorithms. Edge-based approaches match image edges in
images, and region-based approaches match image templates
and image regions. Under the small motion assumption that
assumes there is little motion difference between two consecu-
tive image frames, these approaches could achieve reasonable
results. However, when this assumption does not hold, which
could be very likely to happen in practice, these tracking
algorithms would probably lose track, and the recovery of
tracking would depend on other remedies. In addition, these
methods usually involve manual initialization.

An alternative is the blob-based approach, which does not use
local image information such as edges and regions. Instead, it
represents the target by its color and motion such that the lo-
calization and tracking can be fulfilled by segmenting the target
out from the images. For example, when we need to localize
the hand in video sequences, it would be very difficult to repre-
sent the hand based only on edges or image appearances due to
the highly articulated finger movements. In addition, there are
very large variations in hand appearances from different view
directions. On the other hand, when we notice the uniqueness
of the flesh-tone, color-based segmentation approaches could
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afford efficient and robust visual localization. Certainly, com-
bining the above two approaches by integrating multiple visual
cues would result in more robust tracking systems [15], [33].

Meanwhile, efficient segmentation is also desirable for
tracking bootstrapping and reinitialization. Recently, some
successful tracking systems have been built based on skin color
[7], [14], [18], [29], [34]. A simple approach is to collect skin
color pixel samples from the target and to train a color classifier,
such that skin color regions could be segmented by classifying
and grouping input color pixels. To alleviate the difficulty of the
large variation in flesh-tone among different people, one of the
solutions is to tune the color classifier through a huge training
data set collected from many people [17]. Unfortunately, in
practice, there are still some complications. One of them is
that color distributions may change with lighting conditions.
As a result, a fixed skin color model may not work well all the
time. Another difficulty is that collecting such a large labeled
training data set is not trivial at all. An effective approach to this
problem is to adapt color models to different lighting conditions
and different people. Color representations and color model
adaptation schemes are the two important issues to study. We
will discuss these issues in more details in Sections II–VII.

In this paper, we will study two different representations for
color distributions, the structural adaptive self-organizing map
(SASOM) model and the Gaussian mixture model, for the tasks
of adaptive color-based segmentation and nonstationary color
tracking. In Section II, we will describe different color spaces
and models. In Section III, we will present a novel SASOM
neural network, which will be employed as a new color model.
An interesting aspect of such SASOM neural network is that
its structure could be learned through training. An analysis
of the stationary status of SOM neural network will be also
given in that section. Section IV will give a formulation of the
color tracking problem. Based on the SASOM color model
and the Gaussian mixture color model, Section V will present
two algorithms, the SASOM transduction algorithm and the
discriminant expectation–maximazation (EM) or (D-EM) al-
gorithm. Different from the methods of constructing a specific
skin color model, our proposed approach tries to adapt the
models to nonstationary color distributions by transducing a
learned color model through image sequences. Section VI will
report some of our experiments on the proposed SASOM color
model, and the two different color tracking algorithms. We will
conclude the paper in Section VII by summarizing the paper
and giving some thoughts about future studies.

II. REPRESENTATIONS OFCOLOR DISTRIBUTIONS

A. Color Spaces

Digital color images consist of color pixels, each of which
is associated with a color feature vector. Different color
spaces, such as the hue, saturation, and value (HSV) space,
the cyan, magenta, and yellow (CMY) space, the red, green,
and blue (RGB) space, and the normalized-RGB space, have
been used in current research. Many color histogram-based
techniques use two-dimensional (2-D) subspaces of these 3-D
color spaces, partly because of the demanding requirements of

computational resources for 3-D histograms. For example, the
HSV space could be reduced to its HS subspace by ignoring
the V components. However, hue and saturation components
become unstable when the intensity of a pixel becomes too
large or too small, which means that the H and S components
would be meaningless for dark or bright pixels. As a result,
a simple intensity thresholding method could segment bright
objects from a dark background very well, while a color-based
segmentation method using the HS subspace would probably
fail. Therefore, simply reducing the dimensionality of a 3-D
color space to a 2-D subspace might lose valuable color
information.

Although these 3-D color spaces have substantial physical
meanings, it seems that none of them is able to give satisfactory
color invariants through different lighting conditions. The issue
of selecting good color features for the target in color-based seg-
mentation should be addressed. Considering that the HSV color
space is not a linear transformation of the RGB space, we may
want to use a higher dimensional color space such as six–dimen-
sional (6-D) by compounding the HSV with the RGB compo-
nents. Since this higher dimensional color space is redundant, a
linear subspace could be found by performing some dimension
reduction techniques such as the principal component analysis
(PCA) technique and the multiple discriminant analysis (MDA)
technique, which will be described in detail in Section V-B.
By this means, good color features for color pixel classification
could be selected automatically.

B. Representations of Color Distributions

Skin color offers an effective and efficient way to localize and
track hands and faces in vision-based human-computer interac-
tion. The core of color-based tracking is color-based segmen-
tation. According to the representations of color distribution,
current color-based tracking approaches can be classified into
two general categories: nonparametric [17], [18], [28], [34] and
parametric [26], [30], [35].

One of the nonparametric approaches is based on color his-
tograms [17], [18], [28]. Since a color space is quantized by
the structure of a histogram, this technique is confronted by the
same difficulty as the nonparametric density estimation task,
in which the level of quantization will affect the estimation.
Generally, nonparametric approaches work effectively when the
quantization level could be properly set and there are sufficient
data available. However, how to select a good quantization level
for color histograms is not trivial. Although nonuniform quan-
tization schemes would perform better than uniform quantiza-
tion, they are much more complicated. An alternative nonpara-
metric approach proposed in this paper is based on the SOM,
an unsupervised clustering algorithm to approximate color dis-
tributions. The details will be presented in later sections. SOM
can be viewed as a neural-network-based vector quantization
(VQ) algorithm. Instead of specifying the structure of SOM,
the proposed SASOM algorithm has the ability to find an ap-
propriate structure by embedded schemes of growing, pruning,
and merging.

Parametric approaches model color densities in parametric
forms such as the Gaussian model or the Gaussian mixture
model [26], [30], [35]. Let be the color feature vector for each
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pixel. The color distribution of an image can be represented by
a mixture density

(1)

where and where is the con-
ditional density for a pixel belonging to an object in the
image, and it has been parameterized by, and

. This conditional density can also be modeled by
Gaussian mixtures

(2)

where and where is the condi-
tional density for a pixel belonging to a color componentof
the object in the image. Each mixture component can be
modeled by a Gaussian model with mean and covariance
matrix . EM offers a way to fit probabilistic models to the
observation data. The difficulty ofmodel order selectioncould
be handled by heuristics [26], cross-validation, or model selec-
tion.

C. Color-Based Segmentation

Color is a strong cue for image segmentation [5]. Both
parametric and nonparametric approaches have been studied
for segmentation. Histogram-based segmentation approaches
such as color predicate (CP) [18] work well when appropriately
thresholding the histogram. However, there are no obvious
ways to find correct thresholds. Parametric approaches make
use of parametric color models based on the Gaussian model or
the Gaussian mixture model [17], [26]. A difficulty is that there
would not be enough prior knowledge to determine the number
of components of the mixture density in advance.

Since the computational resources needed in color histogram-
ming techniques generally grows with respect to the dimen-
sionality of the color space, it seems that a less computationally
expensive scheme should be found to handle the quantization
of the color space. In this paper, we propose an SASOM
neural network to approximate color distributions, and seg-
mentation is achieved by the competition among the neurons
in the SASOM. The details will be presented in Section III.

D. Color Distributions Under Nonstationary Illumination

It is straightforward that similar color pixels in an image could
be grouped together to facilitate the separation of the foreground
target from the background environment. However, when we
look into the flesh-tone distributions in video inputs in some VE
applications, the segmentation problem is confronted by such
challenges as large variation in skin tone, unknown lighting con-
ditions, and dynamic scenes. In order to achieve user-indepen-
dence, segmentation-based tracking algorithms should be able
to deal with the large variation in skin color for different people.
One possible solution is to make a generic statistical model of
skin color by collecting a huge training data set [17] so that the
generic color model could work for every user.

Even though such a good generic color model can be
obtained, we have to face another difficulty in color tracking:

Fig. 1. 1-D SOM structure.

generic color models would be incapable to handle changing
lighting conditions unless some invariants could be found.
Many color tracking techniques assume controlled lighting
conditions. However, in many cases, the target may be shad-
owed by other objects or by the target itself so that the color
looks very different. What is more, we cannot assume constant
lighting sources, since the lighting directions, intensities, and
tones might also change. In some VE applications, since the
graphics rendered on the display keeps changing, the reflected
lights would change the apparent color of the target. This
color constancy problem is not trivial in color tracking for
vision-based interaction.

Because of dynamic scenes and changing lighting conditions,
color distributions over time are generally nonstationary, since
the statistics of color distributions might change with time. If a
color classifier is trained under a specific condition, it may not
work well in other scenarios.

Some researchers have looked into the nonstationary color
distribution problem in color tracking [26], [29], [33]. A scheme
of color model adaptation was addressed in [26], in which a
Gaussian mixture model was used to represent color distribu-
tion, and a linear extrapolation scheme was employed to adjust
the parameters of the model by a set of labeled training data
drawn from a new image frame. However, since the new image
is not segmented, this labeled data set is not reliable. Other color
adaptive methods take advantage of other visual cues as external
tracking priors [29], [33].

In this paper, to approach this nonstationary color tracking
problem, two schemes will be presented. One is theSASOM
transduction, which updates the weights and structure of
an SASOM to capture the new color distribution based on
both labeled and unlabeled color pixel samples. Another
scheme is called the D-EM algorithm, which approaches such
nonstationary adaptation problem in an EM framework. The
advantage of these two schemes is that they do not require a
large number of labeled training color pixels.

III. SEGMENTATION BASED ON SASOM

SOM [6], [19], [20] could be used to visualize and interpret
large high-dimensional data set by mapping them to a low-di-
mensional space based on a competitive learning scheme. SOM
consists of an input layer and an output layer. Fig. 1 shows the
structure of one-dimensional (1-D) SOM.

The number of nodes in the input layer is the same as the
dimensionality of input vectors. The structure of the output
layer can be 1-D or 2-D connected neurons that are linked
to every input node. A weight vector is associated with each
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link. Through competition among the neurons1 in the output
layer, the index of the winner neuron is taken as the output of
SOM to the input vector. The Hebbian learning rule adjusts the
weights of the winner neuron and its neighborhood neurons in
training. SOM is highly related to VQ [1], [13] and the-mean
clustering technique. An interesting characteristics of SOM is
its property of partial data density preservation.

A. An Analysis of the Stationary Status of SOM

One of the problems of many clustering algorithms is that the
number of clusters should be specified in advance. The perfor-
mance of clustering algorithms depends on the number of clus-
ters. It is the same case in the standard SOM algorithm, which
is also confronted by the structure learning difficulty. In SOM,
when the way of linking of neurons is fixed, the variable left for
representing structure of SOM will be the number of neurons.
Different SOM structures, e.g., different number of neurons,
will lead to different tessellations of the data space. If fewer neu-
rons are used, inputs from lower density regions will be domi-
nated by those from higher density regions in data space. On the
other hand, if more neurons are used, SOM training is unlikely
to form an ordered mapping, since the training will probably get
trapped in one of the local minima.

Many researchers have investigated the structural level
learning of neural networks [2], [4], [11], [12], [16], [21]. A
straightforward approach is to validate a set of neural networks
with different structures. Since the structural level adaptation
implies an optimization in a continuous function space, such
validating scheme can only test a very small set of hypotheses.
Alternatively, people also looked into evolutionary schemes to
find optimal structures for neural networks [2], [16]. Although
such evolutionary optimization has nice global properties, they
are generally slow and computationally intensive. A different
methodology to approach this problem is to parameterize the
structure such that the structural level adaptation could be
fulfilled through optimizing the structure parameters [21]. On
the other hand, many researchers have been looking into the
approaches of dynamically adjust the structure in training [4],
[11], [12]. For example, the approach of growing cell structure
was proposed in [11], in which the numbers and the linking of
neurons could be adjusted during training.

Meanwhile, there have been many studies on the property of
density preservation of SOM [9], [10], [22]–[24], [27]. An inter-
esting result regarding to such property is that the neuron density
is proportional to , where is the probability distri-
bution of the inputs. Such conclusion was reached by assuming a
fixed structure of SOM. However, when directly applying SOM
to some vector quantization tasks, e.g., the color segmentation
task that needs a quantization of color spaces, better results
could be achieved if the neuron density is proportional to
instead of .

Some studies observed that when every neuron has equal
wining probability for the entire data set in the stationary status
of SOM, the neuron density will be proportional to [11],
[36]. A structural adaptation was employed in [11], while a dif-
ferent weight adjusting scheme was used in [36]. It seems that
there exists two extremes: 1) when every neurons has equal

1We use “neurons” for short of “output neurons.”

wining probability, the neuron density will be proportional to
, i.e., more neurons will be allocated to represent higher

density regions in the data space and 2) when the neuron density
is uniform, the wining probabilities of neurons will be propor-
tional to , i.e., neurons that represent higher density regions
of the data space will have higher wining probabilities. It seems
that the standard SOM with fixed structure and with the Heb-
bian learning rule falls in between of these two extremes, i.e.,
the neuron density is proportional to .

Let denote a data point in the data space, and a set of sam-
ples are drawn from the probability distri-
bution function . And let denote the weight vector for
each neuron of SOM, which represents a point in the weight
space. Also we use to represent the position of each neuron
in the weight space. Given a data point, there is a winner
neuron, whose position will be denoted by, which is a func-
tion of , i.e., . Meanwhile, the neighborhood function
in SOM could be denoted by . Generally,

holds, which means that is related only
to the distance . Also, we let and

.
When we consider as the conditional probability

of selecting a winner neuron of weight and position , given
an input data sample, we have

(3)

which means that the wining probability of a certain neuron
given a specific input is determined by the weight of such neuron
and the weight of the actual winner neuron. Consequently, we
could write the wining probability of a certain neuron under the
entire training set

(4)

We could write it in a continuous form as

(5)

where is a normalization factor. If every neuron has the same
wining probability, i.e.,

(6)

We could write

(7)

Let , which means the distance between a certain
neuron and the winner neuron in terms of position. Since
reflects all such input data points that haveas their winner
neuron, so we could write . Furthermore, we could
write the expansion of in terms of

(8)

Meanwhile, we have

(9)

(10)
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Plugging (8)–(10) into (7), we have

(11)

Since is an odd function, i.e., , we will
have

(12)

Furthermore, we obtain

(13)

i.e.,

Obviously, we can write

So, we obtain

(14)

When the training of SOM reaches its stationary status, the
weight space will approximate the data space. We could write

(15)

if holds in the stationary status.

B. An SASOM

There would be two problems if we apply the standard SOM
directly for color segmentation: 1) how can we determine the
structure of the SOM? 2) and does the standard SOM really cap-
ture the color distributions? Unfortunately, there are no general
ways of determining the structure of SOM. In addition, the stan-
dard SOM will not accurately capture the data distribution as
described in Section III-A.

One possible approach to the structure determination could
be cross-validation. Although the structure of the SOM, such as
the number of neurons, is fixed each time, a good structure could
be determined after validating several different structures. How-
ever, this approach does not offer flexibility in training, and it is
not efficient. An alternative approach embeds some heuristics of
changing the structure dynamically in training. Our algorithm,
the SASOM, can automatically find an appropriate number of
neurons based on a set of heuristics such as growing, pruning
and merging. With such set of heuristics, when the SASOM
reach its stationary status, will hold, such
that the neuron density will be proportional to the data distri-
bution as the analysis in Section III-A. We present the growing,
pruning and merging schemes below.

Growing Scheme: In the standard SOM training algorithm,
the response of a neuron is the distance between the input vector
and the weight vector of the neuron. The distance measurement
can be defined as

(16)

(a) (b)

Fig. 2. Growing scheme of SASOM.w is the weight vector, andx is an
input vector. (a) When the input vector is too far from all weight vectors so that
the responses of all neurons are nearly the same, if current inputx is in the
data cluster represented by one of these neurons, sayw , the weight vector of
that neuron will be misplaced unnecessarily tow in SOM training. (b) In this
situation, a new neuron is created and its weight will be set byw = x.

where is a distance measurement between the input vector
and the weight vector of the th neuron of SOM. We call

it the response value of the neuron. The measurement here is
the Euclidean distance, however, other distance measurements
could also be employed.

In standard SOM, the neuron with the smallest response is
taken as the winner

(17)

In some cases, however, when the responses of all neurons
are nearly the same, determining the winner by finding the one
with the smallest response is not suitable. In this situation, the
input vector may be too far from all weight vectors or may be
around the center of the convex hull of the weight vectors. In
this case, the input data pointmay be drawn from any or none
of the data clusters represented by these neurons. As a result
in training, the weight vector of the selected neuron could be
misplaced unnecessarily by adjusting its weight. So, it is not a
robust way to take the neuron of the smallest response as the
winner. In this situation, a new neuron could be generated, and
be inserted it to the current structure by taking the input vector
as its initial weight, which is illustrated in Fig. 2.

By comparing the mean value and the median value of the
response values of all neurons, we make a rule to detect this
situation, in which if or not a new neuron should be created.
The competition can be described as

(18)

where is the response of theth neuron with weight vector ,
and is the number of neurons. The winner can be selected by

if
otherwise

(19)

where and is the number of neurons.
Pruning Scheme: In the training process, when a neuron is

rarely to be a winner, it means that the data cluster represented
by this neuron is of very low density or might be taken as noise.
As a result, such a neuron can be pruned. In practice, a threshold
is set to determine these neurons.

Merging Scheme: In the training process, the distance be-
tween two weight vectors of each two neurons are calculated.
If two weight vectors are close enough, we can merge these two
neurons by assigning the average of the two weights to a new
neuron and deleting these two neurons.
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Fig. 3. The training algorithm of the SASOM.

The algorithm of SASOM is summarized in Fig. 3.
We performed color-based image segmentation based on such

an SASOM model. In our segmentation algorithm, training data
set is collected from one color image, and each data vector is
weighted HSI vector, i.e., , where we set

and . Pixels with large and small intensities
are not included in the training data set, because hue and satu-
ration become unstable in this range. Once trained, the SASOM
is used to label each pixel by its HSI value. The neuron indexes
are used as labels for color image pixels. Some experiment re-
sults will be presented in Section VI-A.

IV. THE NONSTATIONARY COLOR TRACKING PROBLEM

It is a good practice to learn a generic color classifier for
color-based segmentation by collecting a large labeled data set
[17]. If some color invariants could be found, learning such a
color classifier would suggest a direct and robust way to color
tracking. However, when we consider the nonstationary color
distribution over time, we do not generally expect to find such
invariants.

The approach taken in [17] is aninductive learningapproach,
by which the learned color classifier should be able to classify
any pixel in any image. Generally, this color classifier would be
highly nonlinear, and a huge labeled training data set is required
to achieve good generalization. In fact, learning such a highly
nonlinear color classifier for all lighting conditions and all im-
ages may not be necessary, because the requirement of the gen-
eralization could be relaxed to a subset of the data space. This
is the exact case in color tracking. As interesting thing is that a
color classifier at time frame will be only used to classify

pixel in the current specific image. We may not care how
works for other images. So we may expect that could

be simpler than a general purpose classifier. When a new image
at time comes in, this specific classifier should

betransducedto a new classifier which works just for the
new unsegmented image instead of . The classification
can be described as

(20)

where is the label of , and is the number of classes. In
this sense, we do not care the performance of the classifier
for the data outside . We call the problem of transducing the
classifier to given unlabeled model transduction.
Fig. 4 shows the transduction of color classifiers.

This model transduction may not always be feasible unless we
know the joint distribution of and . Unfortunately, such
joint probability is generally unknown since we may not have
enougha priori knowledge about the transition in a color space
over time. One approach is to assume a transition model, like the
case in motion tracking by Kalman filter or condensation [3], so
that we can explicitly model . One of the difficulties
of this approach is that a fixed transition model is unable to
capture complex dynamics. Although the issue of motion model
switching by learning transition models has been addressed in
[3], their scheme is not general. Another difficulty is that it may
not be easy to identify parameters of the transition models due
to the insufficient labeled training data. The approach used in
[26] assumes a linear transition model. However, the transition
(updating) of color models is plagued since the current image
has not been segmented yet.
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Fig. 4. An illustration of transduction of classifiers.

However, our assumption is different from the transition
model assumption. We assume that the classifierat time

can give “confident” labels to several samples in , so
that the data in can be divided into two parts: labeled
data set , and unlabeled set

, where and are the size of
the labeled set and unlabeled set, respectively,is the color
feature vector, and is its label (such as skin or nonskin).
Here, and are from the same distribution. Consequently,
the transductive classification can be written as

(21)

In this formulation, the specific classifier is transduced to
another classifier by combining a large unlabeled data set
from .

V. TRANSDUCTIVE COLOR TRACKING

One of the problems of tracking by color-based segmentation
is that the unknown lighting conditions may change the color
of the target. Even in the case of fixed lighting sources, the
target color may be still different over a video sequence, since
the target might be shadowed by other objects. These situations
confront the approaches that make use of a fixed skin color
model, since the distribution of skin color is nonstationary
through image sequences. This section presents two different
model transduction approaches to the nonstationary color
tacking problem. One of them is based on the SASOM model,
and the other is based on the Gaussian mixture model.

A. Model Transduction Based on SASOM

The color distribution of each image frame could be modeled
by an SASOM, in which each neuron represents a color cluster
for the image at current time frame. Such SASOM also offers
a simple color classifier by neuron competition, through which
the image can be segmented. However, this classifier may not
be good for the next image frame because of the nonstationary
nature of color distributions. A new SASOM is needed for the
new image frame.

Our solution to this problem is calledSASOM transduction,
which is to update the weights and structure of the trained
SASOM according to a set of new training data so that the

transduced SASOM captures the color distribution of the new
image. The new training data set for transduction consists of
both labeled and unlabeled samples. The algorithm is described
below.

• are the weights
of SASOM at time frame . The training data set

is drawn randomly from

the image at time frame . We use to represent
SASOM at time frame .

• The training data set is classified by the SASOM
, and is partitioned into two parts: a labeled data

set and an unlabeled data set . If a sample
is confidently classified by , then put this sample
to the set and label it with the index of the winner
neuron of ; otherwise, put it to and let it
unlabeled.

• Unsupervised updating: The algorithm described in Sec-
tion III is employed to update by the unlabeled
data set .

• Supervised updating: The labeled data set is used in
this step. is drawn from , where is the label
for . The winner neuron for the input is .

if ;

if ;.

After several iterations, the SASOM at time frame
is transduced to .

B. Model Transduction Based on Gaussian Mixtures

In Sections I–IV, we have presented a nonparametric
approach based on SASOM for color segmentation and non-
stationary color tracking. We also investigate a parametric
approach. Our basic idea is to using unlabeled data to help
supervised learning based on the EM framework.

1) The EM Framework:When we treat the pixels in the new
images as unlabeled data, the EM approach can be applied to
this transductive learning problem, since the labels of unlabeled
pixels can be treated as missing values.

The training data set is a union of a set of labeled data set
and a set of unlabeled set. When we assume sample indepen-
dency, the model parameterscan be estimated by maximizing
a posterioriprobability . Equivalently, this can be done
by maximizing . Let .
When introducing a binary indicator , where

iff , and otherwise, we have

(22)

The EM algorithm estimates the parametersby an iterative
hill climbing procedure, which alternatively calculates ,
the expected values for all missing data, and estimates the pa-
rameters given . The EM algorithm generally reaches a
local maximum of . It consists of two iterative steps.
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• E-step: set

• M-step: set

where and denote the estimation for and at the
th iteration, respectively.
When the size of the labeled set is small, EM basically per-

forms an unsupervised learning, except that labeled data are
used to identify the components. If the probabilistic structure,
such as the number of components in mixture models, is known
in advance, EM could estimate true probabilistic model param-
eters. Otherwise, the performance could be very bad. Such a
structure assumption for the probabilistic structure of the data
space is important for the success of EM. Generally, when we
do not have such prior knowledge about the data distribution,
a Gaussian distribution could be assumed to represent a class.
However, this assumption is often invalid in practice, which is
partly the reason that unlabeled data could hurt the classifier.

When such a structure assumption does not hold, EM could
probably fail. One approach to this problem is to try every pos-
sible structure and select the best one. However, it needs more
computational resources. An alternative is to find a mapping
such that the data points are clustered in the mapped data space,
in which the probabilistic structure could be simplified and cap-
tured by simpler Gaussian mixtures.

2) Multiple Discriminant Analysis (MDA):MDA [8] offers
a possible way to relax the assumption of probabilistic structure.
MDA is a natural generalization of Fisher’s linear discrimina-
tion (LDA) in the case of multiple classes. MDA offers many
advantages and has been successfully applied to many tasks.
The basic idea behind MDA is to find a linear transformation

to map the original dimensional data space to a new
space such that the ratio between the between-class scatter and
within-class scatter is maximized in the new space.

MDA offers a means to catch major differences between
classes and discount factors that are not related to classification.
Some features most relevant to classification are automatically
selected or combined by the linear mapping in MDA,
although these features may not have substantial physical
meanings any more. Another advantage of MDA is that the
data are clustered to some extent in the projected space, which
makes it easier to select the structure of Gaussian mixture
models. Details can be found in [8].

3) The D-EM Algorithm: It is apparent that MDA is a super-
vised statistical method, which requires a large set of labeled
samples to estimate some statistics such as mean and covari-
ance in training. When we do not have a large training data set
at hand, we may want to think of combining EM with MDA to
make up the number of labeled data. By combining MDA with
the EM framework, our proposed method, the D-EM, is such a
way to make use of both labeled and unlabeled training data by
combining supervised and unsupervised paradigms. The basic
idea of D-EM is to identify some “similar” samples in the unla-
beled data set to enlarge the labeled data set so that supervised
techniques are made possible in such an enlarged labeled set.

D-EM begins with a weak classifier learned from the initial
labeled set. Certainly, we do not expect much from this weak

classifier. However, for each unlabeled sample , the clas-
sification confidence can be given
based on the probabilistic label as-
signed by this weak classifier

(23)

(24)

Equation (24) is just a heuristic to weight unlabeled data
, although there may be many other choices.
After that, MDA is performed on the new weighted data set

which is linearly projected to a new space of dimension
but unchanging the labels and weights

Then parameters of the probabilistic models are estimated
on , so that the probabilistic labels are given by the Bayesian
classifier according to (23). The algorithm iterates over these
three steps, expectation-discrimination-maximization. The al-
gorithm can be terminated by several methods such as presetting
the iteration times, comparing a threshold and the difference of
the parameters between consecutive two iterations, and using
cross-validation.

It should be noted that the simplification of probabilistic
structures is not guaranteed in MDA. If the components of
data distribution are mixed up, it is very unlikely to find such a
linear mapping. Our experiments show that D-EM works better
than pure EM.

4) Model Transduction by D-EM:The application of D-EM
to color tracking is straightforward. In our current implemen-
tation, in the transformed space, both classes (foreground and
background) are represented by a Gaussian distribution with
three parameters, the mean, the covariance anda priori
probability .

We use three schemes to bootstrap the tracking. The first
method is to manually collect and label some pixels (100 sam-
ples) from both the interested object and background. An alter-
native is to put the interested object in the middle of the image so
that some data can be automatically collected. The third method
is to detect the moving region by image differences in the first
several frames. We assume that we are interested in the object
with the largest motion.

For each new image, by setting a confidence level, the color
classifier at time divides into two parts: labeled set

and unlabeled set . is confidently labeled by . The
D-EM algorithm identifies some “similar” samples in to the
labeled samples in an unsupervised sense. Therefore, good dis-
criminating color features can be automatically selected through
the enlarged labeled data set. After a Bayesian classifier is de-
signed in the new feature space, it is used to probabilistically
label . Through several iterations, the classifier has been
transduced to by D-EM.
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Fig. 5. Some results of image segmentation based on SASOM. Left column:
source color images. Middle column: segmented images. Right column:
interested color regions.

VI. EXPERIMENTS

This section reports our experiments of SASOM for image
segmentation, SASOM transduction, and D-EM for nonsta-
tionary color tracking of faces and hands in video sequences.

A. Experiments Based on SASOM

Our color segmentation algorithm based on SASOM has been
tested on a large variety of pictures. And our localization system
that integrates this color segmentation algorithm has run under
a wide range of operating conditions. Such real-time system has
been employed in vision-based gesture analysis [31]. Extensive
experiments show that our color segmentation algorithm is fast,
automatic, and accurate, and the proposed localization system
is robust, real-time, and reliable. This color segmentation algo-
rithm can also be applied to other segmentation tasks.

1) Performance of Segmentation Using SASOM:One pa-
rameter we should specify in SASOM is the maximum number
of neurons. If the scene is simple, we set the maximum number
to two or three. If the scene is complex, we set it to ten or more.
In between, we use six.

Fig. 5 show some segmentation results. The left column
shows source color images, the middle column shows seg-
mented images, and the right column shows separated color
regions. The color of each segmented color region is the
average color of this region. Each pixel in the source images

is assigned a label by the SASOM algorithm, and this label is
used as a mask to separate the corresponding color region. Our
segmentation algorithm works well through these experiments.
When the background has less color distracters, this algorithm
finds exact color regions. Since texture is not used in the
segmentation, segmentation results will be noisy when there is
color distracter texture in the background. Hand and face im-
ages are taken from a cheap camera in the indoor environment
in our labs. Our algorithm can also successfully segment hand
regions and face regions.

2) Performance of Hand Tracking Using SASOM:A typical
hand-tracking scenario is controlling the display or simulating
a 3-D mouse in desktop environments. A camera mounted at
the top of a desktop computer looks below at the keyboard area,
and gives an image sequence of a moving hand. Another typical
application is to track human face. Our localization system is
able to simultaneously localize multiple objects, which is useful
in tracking of moving human.

Since our localization system is essentially based on a global
segmentation algorithm, it does not largely rely on the tracking
results of previous frames. Even if the tracker may get lost in
some frames for some reasons, it can recover by itself without
interfering the targets. In this sense, the tracking system is very
robust.

Our proposed system can handle changing lighting conditions
to some extend because of the transduction of the SASOM color
classifier. At the same time, since the hue and saturation are
given more weight than intensity, our system is insensitive to
the change of lighting intensity such as in the situations that the
objects are shadowed or the intensity of the light source changes.
However, there are still some problems. Insufficient lighting,
too strong lighting, very dark, or bright backgrounds may bring
some troubles to the color segmentation algorithm, since hue
and saturation become unstable and the system does not give
more weights to intensity. If the lighting condition changes dra-
matically, the color segmentation algorithm may fail since the
color model transduction cannot be guaranteed.

Some hand tracking results in our experiments are given
in Fig. 6. In this experiment, a hand is moving around with
the interference of a moving book. The book is also casting
shadows so that the color of skin is changing. The blue boxes
are the bounding boxes of the interested color region (Demo
video sequence can be obtained at http://www.ece.north-
western.edu/~yingwu).

Our tracking system is very robust and efficient from this
experiment with cluttered backgrounds. Since a book is inter-
fering the hand by shading the light, such system can still find
a correct bounding box. Sometimes, due to the sudden change
of lighting conditions, the tracker may be lost. However, it can
quickly recover. Different skin tones do not affect our system.
The color region of interest in the first image is used to ini-
tialize the SASOM so that it can work with nearly any users.
Our system has been tested in extensive experiments.

B. Experiments Based on Gaussian Mixture Model

1) A Simulation of D-EM:To validate the effectiveness of
D-EM, we performed a simulation experiment. At current
time in tracking, since the color model may not be
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Fig. 6. Results of hand tracking with 18 frames taken from image sequences. A moving hand with interfering of a book is localized. The blue boxes are the
bounding box of the interested color region.

Fig. 7. A comparison between EM and D-EM. Both EM and D-EM converge
after several iterations, but D-EM gives a lower classification error rate.

able to give a good segmentation on the image, the image
at time is not labeled (segmented) so that the ground truth
for the new data set is not available. However, to evaluate
our algorithm, we assume a known ground truth in order to

Fig. 8. The effect of number of labeled and unlabeled data in D-EM. Different
numbers of labeled and unlabeled data are feeded to D-EM. When using 3750
unlabeled data, the lowest error rate drops to 6.9%.

calculate classification errors, although such a ground truth is
not available in real applications.
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Fig. 9. Hand localization by D-EM.

Fig. 10. Face localization by D-EM.

We use two images (resolution 10075), where is a
segmented image, and has the same content as except
that the color distribution of is transformed by shifting the

element of every pixel by 20 such that looks like adding
a red filter to . A color classifier is learned for with
error rate less than 5%. In this simple situation, this color
classifier would fail to correctly segment target regions out
from , since the skin color in is much different. Actually,
it has error rate of 35.2% on in our experiments.

Fig. 7 shows the comparison between EM and D-EM. In
this experiment, both EM and D-EM converge after several
iterations, but D-EM gives a lower classification error rate
(6.9% versus 24.5%). To investigate the effect of the unlabeled
data used in D-EM, we feed the D-EM algorithm a different
number of labeled and unlabeled samples. The number of
labeled data is controlled by the confidence level. In this
experiment, confidence level is the same as the size of the
labeled set. In general, combining unlabeled data can largely
reduce the classification error when labeled data are very
limited. When using 20% (1500) unlabeled data, the lowest
error rate achieved is 27.3%. When using 50% (3750) unlabeled

data, the lowest error rate drops to 6.9%. The transduced color
classifier gives around 30% more accuracy. Fig. 8 shows the
effect of different sizes of labeled and unlabeled data sets in
D-EM.

2) Hand and Face Localization Based on D-EM:Based on
the D-EM algorithm, we implemented a nonstationary color
tracking system, which is also applied to a gesture interface, in
which hand gesture commands are localized and recognized to
provide inputs to a virtual environment application. These ex-
periments ran at 15–20 Hz on a single processor SGI O2 R10000
workstation.

Figs. 9 and 10 show two examples of hand and face local-
ization in a typical lab environment. Both cases are difficult for
static color models. In Fig. 9, the skin color in different parts
of hand are different. The camera moves from downwards to
upwards and the lighting conditions on the hand are different.
Hand becomes darker when it shadows the light sources in sev-
eral frames. In Fig. 10, skin color changes a lot when the head
moves back and forth, and turns around. We also observed that
D-EM failed under dramatic lighting changes such as turning
on/off lights.
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VII. CONCLUSION AND FUTURE WORK

Computer vision techniques provide promising ways to
human–computer interaction through understanding human
movements from visual data. An important step to achieve this
goal is the robust and accurate tracking of the human body such
as hand and face. However, cluttered backgrounds, unknown
lighting conditions and multiple moving objects make the
tracking tasks challenging. This paper mainly concentrated
on color-based image segmentation and color-based target
tracking by addressing these difficulties.

This paper presented a new representation of color model
based on the proposed SASOM neural network, in which
the structure of the SOM could be learned in training. This
SASOM representation could afford efficient image segmenta-
tion through a competition process of the neurons in SASOM.
Then we investigated the nonstationary color-based tracking
problem. A challenge of this task lies in the fact that the lighting
condition and the background may not be static, such that the
color distributions in the image sequence is not stationary.
In order to capture the nonstationary color distributions, our
method, i.e., SASOM transduction, transduces the SASOM
over time by combing supervised and unsupervised learning
paradigms. Based on the SASOM model, we achieved a robust
real-time tracking system that has been widely used in our
further research.

We notice that the SASOM transduction is not mature, and
it needs more efforts to find a better way to combine super-
vised and unsupervised learning schemes. In addition, since the
process of competition among all neurons is essentially parallel,
the tracking system can be made much faster by parallel imple-
mentation of the competition process. Currently, our localiza-
tion system outputs a bounding box of the target. Shape analysis
of localized target will be extended to estimate its 3-D motion.

Besides the nonparametric SASOM model, we also looked
into a parametric approach based on the Gaussian mixture
model. Since the nonstationary color tracking could be formu-
lated as a model transduction problem, our study focused on the
problem of learning a new Gaussian mixture model based on
an old mixture model and a set of unlabeled training data, e.g.,
unsegmented color pixel data. Integrating discriminant analysis
and the EM framework, the proposed D-EM algorithm offers a
means to relax the assumption of probabilistic structures of data
distribution. In addition, the proposed D-EM algorithm is able
to select a good color space automatically. Some promising
color-based tracking results were also achieved by the D-EM
approach.

One of the future research directions of the D-EM algorithm
is to explore the nonlinear case of MDA. In addition, the con-
vergence and stability analysis should be studied in the future
work. Currently, the confidence level is an important parameter
in the transduction to control the size of labeled set. It needs fur-
ther studies.
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