
NORTHWESTERN UNIVERSITY

Collaborative Multiple Kernel Tracking:
Theory and Algorithms

A THESIS

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

For the degree
MASTER OF SCIENCE

Field of Electrical and Computer Engineering

By Zhimin Fan
Supervising Professor: Ying Wu

Department of Electrical Engineering and Computer Science
Northwestern University

Evanston, Illinois 60208, USA

December, 2005

c© Copyright by Zhimin Fan 2005
All Rights Reserved.

1

Abstract

To make the kernel-based tracking algorithms more reliable, in this work, we

mainly deal with two major singular cases in kernel-based tracking, concerned

with kernel observability and tracking stability.

Singular kernel observability indicates that the motions of interest cannot be

uniquely recovered by the kernel. We present a novel multiple collaborative kernel

approach, in which a complex motion is represented by a set of inter-correlated

simpler motions. With this formulation, we present a rigorous analysis on a criti-

cal issue of kernel observability and obtain a criterion, based on which we propose

a new method using collaborative kernels that has the theoretical guarantee of en-

hanced observability. This new method has been shown to be computationally

efficient in both theory and practice, which can be readily applied to complex

motions such as articulated motions.

Another singular case, unstableness in tracking, is caused by inappropriate

kernel placement, which requires research on optimal kernel placement. The the-

oretical analysis presented in this work indicates that the optimal kernel placement

can be evaluated based on a closed-form criterion, and achieved efficiently by a

novel gradient-based algorithm. Based on that, new methods for temporal-stable

2

multiple kernel placement and scale-invariant kernel placement are also proposed.

These new theoretical results and new algorithms greatly advance the study of

kernel-based tracking in both theory and practice. Extensive experimental results

demonstrate the improved tracking reliability.

3

Acknowledgments

I would like to thank my advisor, Prof. Ying Wu, for his invaluable guidance,

enlightening advice, endless encouragement and support throughout my study

here in Northwestern University. The fruitful discussions with Prof. Ying Wu

not only help me to go through many difficulties, but also add more deep insights

into this research work.

I would like to thank Prof. Ying Wu, Prof. Aggelos Katsaggelos, and Prof. Thra-

sos Pappas to kindly be my committee members, and thank Prof. Allen Taflove

for his support and help. I would like to thank to my lab mates, Gang Hua, Ting

Yu, Ming Yang, Shengyang Dai, and Junsong Yuan for their selfless efforts and

cooperations to make the study and living here enjoyable. I would also like to

thank the members of IVPL for their help.

Finally, I will thank my parents and my girlfriend Na, for their love, under-

standing, consistent support and encouragement, without which this work will not

become true.

This work was supported in part by National Science Foundation (NSF) Grant

IIS-0308222, NSF IIS-0347877 (CAREER), Northwestern startup funds and the

Murphy Fellowships.

4

Contents

1 Introduction 12

2 Related Work 19

2.1 Kernel-based Tracking . 19

2.1.1 Mean shift analysis . 19

2.1.2 Mean shift tracking . 22

2.1.3 Closed-form tracking . 25

2.2 Singularities in Kernel-based Tracking 27

2.2.1 Kernel-observability and improvement on kernel design . 28

2.2.2 Tracking stability and optimal kernel placement 30

3 Multiple Collaborative Kernel Tracking 32

3.1 Kernel-observability Analysis 32

5

3.1.1 Example 1: a single kernel 36

3.1.2 Example 2: kernel concatenation 37

3.1.3 Example 3: kernel combination 38

3.2 Multiple Collaborative Kernels 41

3.2.1 Enhancing the observability 42

3.2.2 The system description 47

3.2.3 The collaboration . 52

3.3 Experiments . 55

3.3.1 Tracking structured object 55

3.3.2 Tracking articulated objects 59

3.3.3 Using the subspace model 60

3.4 Remarks . 66

4 Efficient Optimal Kernel Placement for Reliable Visual Tracking 67

4.1 Optimal Single Kernel Placement 67

4.1.1 Applying the condition theory 68

4.1.2 Interpretation of the condition number criterion using the

2-norm . 71

4.1.3 An equivalent condition number 72

6

4.1.4 Find optimal kernel placement efficiently 77

4.2 Multiple Kernel Placement . 81

4.3 Scale-invariant Kernel Placement 84

4.3.1 Scale selection . 86

4.3.2 Pruning text regions . 88

4.4 Discussions . 89

4.4.1 Region selection vs. feature point selection 89

4.4.2 Interpretation of condition number criterion using the S-

norm . 91

4.5 Experiment . 92

4.5.1 Single kernel . 93

4.5.2 Multiple collaborative kernels 94

4.6 Remarks . 98

5 Conclusions 100

7

List of Tables

8

List of Figures

3.1.1 A comparison of single kernel (top row), kernel concatenation

(middle row), and kernel combination (bottom row). 40

3.1.2 The surfaces of 1 − ‖√q − √p‖2 of (a) single kernel, (b) kernel

concatenation, and (c) kernel combination. 41

3.2.1 The length constraint on a rod. 42

3.3.1 Tracking a handset. 56

3.3.2 Tracking a rod-shaped bottle. 57

3.3.3 Tracking a finger. 58

3.3.4 Tracking the articulated body with two arms. 59

3.3.5 Tracking an articulated structure. 60

3.3.6 Labelled interest points for subspace model learning. 61

3.3.7 Tracking three parts of interest on a box. 62

9

3.3.8 Error comparison of single and collaborative kernels against the

ground truth. 63

3.3.9 Tracking four parts of interest on a box. 64

3.3.10Tracking the head and shoulders. 64

3.3.11Tracking a magazine cover with deformation. 65

4.1.1 Synthesized image patterns and their κ2, κS 77

4.1.2 column (a): yellow: image region, red: kernel. column (b), (c),

and (d) are κ2, κS and κS − κ2 evaluated in the region of column

(a), respectively. 78

4.1.3 column (a): the red rectangle indicates the start kernel position,

the green one is the optimized kernel placement found by the

gradient-based searching algorithm. column (b): the correspond-

ing descending value of the κS . column (c): the regions covered

by the kernel, which is moving along the direction of the gradient

towards the good placement. The red line with a spot indicates the

center of mass of each color component. 82

10

4.3.1 In each figure (a)-(h). Top row: scale-invariant kernel placement.

Larger circle means higher density of converged kernel samples.

Bottom row: good kernel regions with appropriate scale selection

after pruning texture regions. 86

4.5.1 Tracking with (bottom row) and without (top row) kernel place-

ment optimization. 94

4.5.2 Tracking with (bottom row) and without(top row) kernel place-

ment optimization. 95

4.5.3 Multiple kernel tracking, with (bottom row) and without (top row)

placement optimization. 96

4.5.4 Multiple kernel tracking, with (bottom row) and without (top row)

collaboration. 97

4.5.5 Multiple kernel tracking, with (bottom row) and without (top row)

collaboration. 98

4.5.6 Multiple kernel tracking, with (bottom row) and without (top row)

collaboration. 99

11

Chapter 1

Introduction

Kernel-based methods [6, 30] have attracted much attention in computer vision [8,

10, 14, 15, 31] and have recently shown promising performance in the challenging

problem of visual tracking [9]. In this context, the representation of the object

being tracked is the convolution of the object features with a spatially weighted

kernel, which enables efficient gradient based optimization methods, such as mean

shift [8] or closed-form method [17], to search for the best match to the target

model based on the collected visual measurements (or observations). Thus, one

of the most appealing merits of kernel-based trackers is their low computational

cost, compared with other commonly employed tracking schemes, such as particle

filters [22] or exhaustive template matching.

12

Since the kernel-based tracking methods are gradient-based differential ap-

proaches, their performances are largely affected by the quality of the searching

directions calculated from the measurements (i.e., the discrepancy between the

candidates and the target model). However, in practice, singularities are often ob-

served in computing the gradient, which may greatly impair the tracking perfor-

mance. In this work, we address the two major singularities, propose algorithms

associated with proved theories, which can help to achieve a much more reliable

tracking performance.

One kind of singularity is about the kernel observability. That is, the searching

direction is indifferent to the measurements, i.e, the measurements become more

or less invariant to some motion parameters, such that these motion parameters are

not uniquely recoverable or observable, indicating a deficient kernel observability.

Regarding this singular case, three critical issues of both theoretical and practical

importance need to be investigated:

• Is there a criterion or a test that detects such singularities and checks the

observability of the motion?

• Is there a principled way of kernel design to prevent or alleviate such singu-

larities?

13

• Can we cope with such singularities in more complex motions (e.g., articu-

lation) while still achieving computational efficiency?

There have been some initial studies related to these questions. For example,

in [7], to deal with the problem that most kernels, being scale-invariant, cannot re-

cover the scale changes of the target, a method was proposed to combine multiple

kernels of different resolutions. An outstanding initial investigation on multiple

kernels was presented in [17], where an unconstrained linear least square formu-

lation was given and the motion singularity can be revealed by the rank deficiency

when approaching its solution, based on which a multiple kernel method was pro-

posed to possibly reduce the risk of rank deficiency.

These initial investigations on multiple kernels are meaningful, but they are

inadequate. For example, although several suggestions have been made in [17]

on designing multiple kernels, it is desirable to have a more rigorous theoretical

guarantee on motion recoverability and a more principled and generalizable ap-

proach to kernel design. In addition, complex motions (e.g., motions of articulated

bodies) pose a great challenge to most existing kernel-based tracking algorithms

which are largely confined by single target and simple motions, and this is a topic

remained largely unexplored among the literatures of kernel-based methods. Al-

14

though many top-down algorithms have been explored for complex motion [4, 33],

they are in general computationally demanding. Thus, it will be very meaningful

if the bottom-up kernel-based solutions can be found.

Inspired by [17, 33], we present a novel multiple collaborative kernel approach

to visual tracking. This approach treats kernel-based tracking in a more general

formulation, i.e., a relaxation and constraints formulation, in which a complex

motion can be represented by a set of inter-correlated simpler motions. In this

new formulation, the state equation describes the constraints among these sim-

pler motions, and the measurement equation characterizes the independent vi-

sual measurement processes of these simpler motions. With this formulation, our

work present a rigorous theoretical analysis on the singularity issue, i.e., kernel

observability, and presents the observability criterion. Based on this, we propose

the multiple collaborative kernel method that has the theoretical guarantee of en-

hanced observability. This new method has been shown to be computationally

efficient in both theory and practice.

The proposed design of “multiple collaborative kernels” closely follows the

theoretical concerns on “kernel-observability”, i.e., singularity in motion detec-

tion, and substantially broadens the applicability of kernel based methods for

tracking of multiple targets with complex motions, such as the articulated body

15

motions.

Besides the singular case of kernel observability, another kind of major singu-

larity is about the tracking stability. All the representative kernel-based tracking

methods [7, 9, 13, 17] assume that unique and stable motion estimation can be

obtained as in the well-conditioned cases. In other words, a small perturbation of

the placement of the kernel does not change much the motion estimation. Unfor-

tunately, evidence from the practice challenges this assumption. For example, in

mean shift tracking, it is often observed that different initializations of the tracker

(i.e., delineate the region to track and place the kernel accordingly) may largely

influence the performance. If we put the same kernel at one place, the tracker

may work well; but when choosing a slightly different place, the tracker may fail

unexpectedly, e.g., even a small perturbation can change the estimated motion

significantly, thus bringing unstableness into the tracking. This raises another in-

teresting and critical question: is there an optimal placement for the kernels to

achieve reliable tracking? Specifically:

• How can we evaluate the sensitivity of a placement?

• Does there exist a computationally efficient way to find the optimal kernel

placement?

16

• How can we place multiple kernels if a training sequence is available?

• Does there exist a scale-invariant kernel placement?

In this work, we also present our study in search of the answers to the above

intriguing questions in order to achieve more reliable tracking results. Our study

starts with a conjecture that subregions of the target may play different roles in

tracking, since some subregions of the target may be more reliable for tracking

while others may not. We provide a detailed analysis in order to identify those

regions, and derive a closed-form criterion for evaluating the sensitivity of kernel

placement. To make the optimal kernel placement feasible, we derive a gradient-

based algorithm to efficiently search for an optimal placement, which greatly re-

duces the computational cost compared with a brute force way of examining all

the possible placement on the image exhaustively. We also propose a method

to discover temporal-stable kernels for multiple kernel placement, and study the

issue of scale-invariant kernel placement.

Advancing the state of the art, the contributions of this work include:

(1) the theoretical results that unify the study of the motion observability issue

in most kernel-based methods including single and multiple kernels;

(2) a principled way of designing observable kernels, i.e.. the multiple col-

17

laborative kernels, that can be easily generalized to complex objects and

motions;

(3) an efficient computational paradigm to cope with complex objects and mo-

tions due to the “collaboration” among a set of inter-correlated kernels, each

of which only takes charge of recovering a simpler motion;

(4) a closed-form criterion for choosing the optimal kernel placement, on which

a much more reliable tracking performance can be achieved;

(5) a gradient-based searching algorithm to find such optimal kernel place-

ments, which greatly reduces the computational cost compared with the

commonly used exhaustive searching.

The remainder of the thesis is organized as follows. Chapter 2 introduces the

related work and the two major singularities in kernel-based tracking. Chapter

3 presents our detailed analysis on multiple collaborative kernel tracking, which

deals with the singular case of kernel observability. Chapter 4 presents our study

on the issue of optimal kernel placement, which deals with the singular case of

tracking stability. Conclusions are made in chapter 5.

18

Chapter 2

Related Work

2.1 Kernel-based Tracking

2.1.1 Mean shift analysis

Mean shift analysis is mainly used for exploring the maximal or minimal prop-

erties in density estimation. Given a set {xi}, i = 1, . . . , n of n points in the d-

dimensional space Rd, the multivariate kernel density estimate with kernel K(x)

and window radius (band-width) h, computed in the point x is given by

f̂(x) =
1

nhd

n
∑

i=1

K

(

x− xi

h

)

(2.1.1)

19

where, K(x) can be the multivariate Epanechnikov kernel

KE(x) =















1
2
c−1d (d+ 2)(1− ‖x‖2) if ‖x‖ ≤ 1

0 otherwise
(2.1.2)

and cd is the volume of the unit d-dimensional sphere. Another commonly used

kernel is the multivariate normal

KN(x) = (2π)
−d/2 exp

(

−1
2
‖x‖2

)

(2.1.3)

Denote the profile of a kernel K as a function k such that K(x) = k(‖x‖2).

For example, the Epanechnikov profile is

kE(x) =















1
2
c−1d (d+ 2)(1− x) if x ≤ 1

0 otherwise
(2.1.4)

and the normal profile is given by

kN(x) = (2π)
−d/2 exp

(

−1
2
x

)

(2.1.5)

So, the density estimate can be written as

f̂K(x) =
1

nhd

n
∑

i=1

k

(

‖x− xi

h
‖2
)

(2.1.6)

By denoting g(x) = −k′(x), the derivative of f̂K(x) is computed as follows,

20

∇̂fK(x) ≡ ∇f̂K(x) = 2
nhd+2

∑n
i=1(x− xi)k

′ (‖x−xi

h
‖2
)

= 2
nhd+2

∑n
i=1(xi − x)g

(

‖x−xi

h
‖2
)

= 2
nhd+2

[
∑n

i=1 g
(

‖x−xi

h
‖2
)]

[

∑n
i=1

xig(‖x−xi
h

‖2)
∑n

i=1
g(‖x−xi

h
‖2)
− x

]

(2.1.7)

Note that the derivative of the Epanechnikov profile is the uniform profile,

while the derivative of the normal profile remains a normal.

The last bracket in Eq.(2.1.7) contains the sample mean shift vector

Mh,K(x) ≡
∑n

i=1 xig
(

‖x−xi

h
‖2
)

∑n
i=1 g

(

‖x−xi

h
‖2
) − x (2.1.8)

The mean shift procedure is defined recursively by computing the mean shift

vector Mh,K(x) and translating the center of kernel by Mh,K(x).

Let yj, j = 1, 2, ... represnet the sequence of successive locations of kernel K,

where

yj+1 =

∑n
i=1 xig

(

‖yj−xi

h
‖2
)

∑n
i=1 g

(

‖yj−xi

h
‖2
) (2.1.9)

is the weighted mean at yj computed with kernel K and y1 is the center of the

initial kernel. The corresponding density computed with kernel K in the points

Eq.(2.1.9) are

21

f̂K =
{

f̂K(j)
}

j=1,2,...
≡

{

f̂K(yj)
}

j=1,2,...
(2.1.10)

A theorem is proved in [9], which states that

Theorem 1 If the kernel K has a convex and monotonic decreasing profile, the

sequences Eq.(2.1.9) and (2.1.10) are convergent.

According to Eq.(2.1.7), the yj+1 in Eq.(2.1.9) is actually the point, which

yields zero in the derivative of density estimated at point yj . Therefore, the den-

sity estimated at yj+1 is a local optimum in the neighborhood of yj . The conver-

gency of the point sequence of Eq.(2.1.9) and the density estimation sequence of

Eq.(2.1.10) actually tells that the local extremity of density can be found by the

mean shift iteration.

2.1.2 Mean shift tracking

The above mean shift analysis can be used for efficient object tracking [9]. In this

subsection, the notations mostly follow that in [9].

Assume {xi}i=1...n be the pixel locations of the target. For each pixel xi,

a binning function b(xi) maps a predefined feature, e.g., the color, of xi onto

a histogram bin u, with u ∈ {1 . . .m}. Let K be a spatially weighted kernel.

22

Then, a histogram representation of the target q= [q1, q2, . . . , qm]
T ∈ R

m can be

computed as,

qu =
1

C

n
∑

i=1

K(xi − c)δ(b(xi), u), (2.1.11)

where δ is the Kronecker delta function, c is the kernel center and C is the normal-

ization factor. Using a decaying kernel K actually means that the pixels centered

at the center of the kernel contribute more to the color histogram, while peripheral

pixels are the least reliable.

Given an initial start at location c0, the core problem in tracking is to find a

best displacement ∆c such that the measurement p(c0 +∆c) at the new location

best matches the target q, i.e.,

∆c∗ = argmin
∆c

O(q,p(c0 +∆c)), (2.1.12)

where O(·, ·) is the objective function for matching. For example, it can be the

Bhattacharyya coefficient [9]:

OB(∆c)
4
= −〈√q,

√

p(c0 +∆c)〉 = −
√

qT
√

p(c0 +∆c).

Denote c = c0+∆c, we can approximate
√

qT
√

p(c) by using Taylor series

23

expansion,

√

qT
√

p(c) ≈ 1

2

m
∑

u=1

√

pu(c0)qu +
1

2

m
∑

u=1

pu(c)

√

qu
pu(c0)

(2.1.13)

Then, introducing Eq.(2.1.11) in Eq.(2.1.13) we obtain

√

qT
√

p(c) ≈ 1

2

m
∑

u=1

√

pu(c0)qu +
1

2C

n
∑

u=1

wik

(

‖c− xi

h
‖2
)

(2.1.14)

where

wi =
m
∑

u=1

δ(b(xi), u)

√

qu
pu(c0)

(2.1.15)

In Eq.(2.1.14), since the first term is independent of c, and the second term

represents the density estimate computed with kernel profile k at c, with the data

being weighted by wi. Therefore, the maximization of this density,the minimiza-

tion of the objective function OB(∆c), can be efficiently achieved based on the

mean shift iteration, i.e., given the current center of kernel c0, the direction to

search for maximum is along the mean shift vector,

∑n
i=1 xig

(

‖c0−xi

h
‖2
)

∑n
i=1 g

(

‖c0−xi

h
‖2
) − c0

since this direction is just the gradient of the current density estimate.

24

2.1.3 Closed-form tracking

A more concise matrix form of the object histogram, Eq.(2.1.11), can be written

as [17]:

q(c) = UTK(c), (2.1.16)

where

U =

















δ(b(x1), u1) . . . δ(b(x1), um)

...
...

...

δ(b(xn), u1) . . . δ(b(xn), um)

















∈ R
n×m,

and

K =
1

C

















K(x1 − c)

...

K(xn − c)

















∈ R
n.

This expression facilitates a closed-form method for object tracking.

In general, for the target model, the kernel is centered at 0, and we denote it

by q = UTK. By the same token, we can represent the histogram observed at a

given candidate region centered at c as:

p(c) = UTK(c). (2.1.17)

The Matusita metric, which is equivalent to the Bhattacharyya coefficient, is

used in [17] as the objective function, which is:

25

OM(∆c)
4
= ‖√q−

√

p(c+∆c)‖2. (2.1.18)

Linearizing Eq.(2.1.18), we obtain

M∆c =
√

q−
√

p(c),

where
√

q,
√

p(c) ∈ R
m, ∆c ∈ R

r, M ∈ R
m×r,

M = 1
2
diag(p(c))−

1

2UTJK(c),

JK(c) =

























∇cK(x1 − c)

∇cK(x2 − c)

...

∇cK(xn − c)

























,

(2.1.19)

and diag(p) represents the matrix with p on its diagonal, r is the dimensionality

of the motion parameters.

Thus, the solution∆c, which minimizes the difference between
√

q−
√

p(c),

can be computed in closed-form by solving the above linear equation as

∆c = (MTM)−1MT (
√

q−
√

p(c)).

26

2.2 Singularities in Kernel-based Tracking

Since the kernel-based tracking methods are essentially gradient-based differential

approaches, their performances are greatly influenced by the quality of the search-

ing directions calculated based on the local measurements. In practice, great de-

teriorations can be observed during tracking, because there exist singular cases in

computing the gradient.

One kind of singularity is about the kernel observability. That is, we some-

times are plagued in the singular situation where the same optimal value of O(∆c)

can be achieved over a continuous range, i.e., any candidate region induced by

the movement in this range matches the target equally well. In other words, the

motion parameters can not be uniquely determined, or can not be fully observed

through the kernel. This kind of singularity is due to the inadequate kernel design,

which impairs the kernel’s observability to the underlying object motions. We will

further investigate into this issue and present our solution in Chapter 3.

Another kind of singularity is about the tracking stability. When we put the

kernel into some places, it is possible that even a small perturbation can change

the estimated motion significantly, thus bringing unstableness into the tracking.

To address this issue, we present our study in Chapter 4, where a detailed analysis

27

is given to identify the good regions to track, a closed-form criterion is derived for

evaluating the sensitivity of kernel placement and for choosing the optimal kernel

placement. To make the optimal kernel placement feasible, we also propose a

gradient-based algorithm to efficiently search for such a placement, which greatly

reduces the computational cost compared with the exhaustive search.

2.2.1 Kernel-observability and improvement on kernel design

Kernels are considered as measuring tools to obtain observations of the feature

space, which can guide optimization algorithms, often gradient based approaches,

to solve a certain problem. Here, the design of the kernel plays a key role. Inade-

quate kernel design will impair the kernel’s observability to the underlying param-

eters needed to be estimated, which will mislead the optimization procedure, and

results in very poor performance. The recent awareness of the inadequate kernel

design calls for more appropriate schemes to construct kernels.

One type of the inadequate kernel design is about the resolution of the kernel’s

sensitivity. When exploring the color space for image segmentation [8], in order to

make the kernels being able to acquire a more precise and pertinent measurement,

kernels having various bandwidths [10, 29] or shapes [31] have been proposed.

28

Another type of the inadequate kernel design is about the lack of the measur-

ing tools, i.e., kernels associated with a certain property in the feature space are

missing. In the kernel-based tracking problem [9], traditional kernels cannot re-

act to the scale changes of the target. A set of kernels in the scale space is thus

constructed in [7] to account for this limitation.

An interesting inadequate kernel design encountered recently in the kernel-

based tracking problem poses new challenges to the issue of kernel-observability:

whether or not the underlying object motions can be uniquely determined from the

kernel observation? This is also the main topic of our study in Chapter 3. Pointed

out in the initial work by Hager et.al. [17], the measurement obtained from the

kernels with some deficiency is insensitive to certain object motions and thus will

induce singularities in the “unique recovery” of those motion parameters. More

intuitively, some kernels, by construction, are blind to some certain object mo-

tions, which will lead to tracking failures. Multiple kernels are then used in [17]

to increase the measurement space, which is supposed to accommodate those pre-

viously unobservable motions.

In this thesis, we give an in-depth and more rigorous investigation into the is-

sue of “kernel-observability”. A criterion is derived from a more general descrip-

tion of the tracking problems, which not only supervises the “unique recovery”

29

of the object motion, but also brings out a collaborative kernel tracking scheme.

This scheme offers substantial advantages over the previous single independent

kernel method.

2.2.2 Tracking stability and optimal kernel placement

Besides the issue of kernel-observability, another critical issue in tracking is the

stability. Significant changes in kernel positions caused by small perturbations

from observation is an undesirable phenomena of unstableness in tracking. Dif-

ferent kernel placements have different stabilities in tracking. We will present our

study on analyzing the stability, or in other words, sensitivity, in choosing kernel

placement and propose the criterion to select regions, which are optimal by the

construction of the kernel-based tracker.

To the best our knowledge, the question that “what is the optimal region to

place a kernel for tracking?” has remained largely unexplored among the litera-

tures. In [5][24][25][28], the problem of selecting good feature point for tracking

has been studied based on eigenvalue analysis. Some work also extends the point

matching framework to address other geometrical features such as lines [20][32].

But, the representations of good feature points/lines are largely different from that

30

of good regions for tracking, so is the analytical result.

Our work on exploring optimal kernel placement is new. Besides, we also pro-

pose a method to discover temporal-stable kernels for multiple kernel placement,

and study the issue of scale-invariant kernel placement.

31

Chapter 3

Multiple Collaborative Kernel

Tracking

3.1 Kernel-observability Analysis

The issue of “kernel-observability” mentioned in the previous chapter can be re-

lated to the “system-observability” of a more general system in Eq.(3.1.1) for a

better definition and explanation. We omit the noise terms for clarity, since it does

not affect the analysis.














Ω(x) = 0

y = M(x),

(3.1.1)

32

where Ω(x) represents the inherent property of the state variable x, such as the

complexity, self-contained constraint or the system dynamics, andM denotes the

observation or measurement process. In this system, the state variable x is hidden

and can only be estimated through the measurement y. In the tracking scenario,

the state variable refers to the motion to be estimated. Here we do not limit our

discussions only to the 2D displacements, but generalize it to r dimensional mo-

tion vector, i.e., x ∈ R
r. A critical issue is whether or not x can be uniquely

determined from y, i.e., the observability of this system.

In the context of kernel tracking, we treat

x
4
= ∆c.

Our analysis is based on the linearization of the system at a given initial start c,

since the local property of c is the mostly concerned in the tracking problem. The

collected image evidence for c + ∆c is the difference between the target and the

candidate, i.e.,
√

q−
√

p(c+∆c). Linearizing it w.r.t. ∆c, we have

√
q−

√

p(c) = M∆c,

33

where
√

q,
√

p(c) ∈ R
m, ∆c ∈ R

r, M ∈ R
m×r,

M = 1
2
diag(p(c))−

1

2UTJK(c),

JK(c) =

























∇cK(x1 − c)

∇cK(x2 − c)

...

∇cK(xn − c)

























,

and diag(p) represents the matrix with p on its diagonal. This result was actually

obtained in [17]. In view of this, we treat the measurement y
4
=
√

q −
√

p(c),

and thus the linearized measurement equation can be written as:

y = M∆c = Mx. (3.1.2)

When the motion constraints holds at c + ∆c, i.e., Ω(c + ∆c) = 0, we can

always linearize it as

Ω(c) + Ω′(c)∆c = 0.

Thus, when we define l 4
= −Ω(c), and G

4
= Ω′(c), we have a linearized system

state equation, or the state constraint equation:

l = Ω′(c)∆c = Gx, (3.1.3)

where x ∈ R
r and G ∈ R

s×r, s is the number of linear constraints. We have the

following theorem that stipulates the kernel observability,

34

Theorem 2 Kernel-Observability

The system described by Eq.(3.1.2) and Eq.(3.1.3) is observable, i.e., unique re-

covery of x is guaranteed, iff

rank(MTM+ γGTG) = r, ∀γ > 0 (3.1.4)

i.e., (MTM+ γGTG) is of full rank.

Proof:

Given the system state equation Eq.(3.1.3) and the measurement equation

Eq.(3.1.2), we form an objective function that penalizes the measurement mis-

match and the deviation from the system constraints:

L(x)
4
= ‖Mx− y‖2 + γ‖Gx− l‖2,

where γ > 0. Setting the derivative to zero, we have:

x∗ = (MTM+ γGTG)−1(MTy + γGT l).

This is equivalent to the least square solution to the following system:








M

√
γG









x =









y

√
γl









.

35

Thus the solution is unique iff the rank of MTM+γGTG is full, or









M

√
γG









has

full column rank.

Based on this theorem, we demonstrate three examples on the unique recovery

of x, i.e., ∆c, from the above system, and motivate our proposed approach of

multiple collaborative kernels in Section 3.2.

3.1.1 Example 1: a single kernel

As a special case, if we do not consider the system state equation, which means

the contribution of G vanishes, i.e., G = 0, the observability of a single kernel,

based on the Theorem 2, is given by checking rank(MTM), or rank(M)1.

This conclusion coincides with the SSD-based analysis in [17], where a least

square problem is formulated:

min
∆c
‖√q−

√

p(c)− 1
2
d(p(c))−

1

2UTJK(c)∆c‖2.

Hager et.al. [17] pointed out the rank deficiency of M = 1
2
d(p)−

1

2UTJK(c) will

not allow a unique solution to ∆c.

In order to recover∆c in this system, before taking effort to make M full rank,

1For matrix H, rank(HT
H) = rank(H)

36

it should be noted that d(p)−
1

2 and U would not be rank deficient as long as the

number of the non-zero values in the histogram is no less than the number of the

parameters to be estimated, which is solely determined by the image and the target

property.

Thus, the point that the observability gain can found its place is to change the

kernel related JK(c), i.e., to change the ways of extracting the representative infor-

mation from the objects, which motivates the methods of using multiple kernels.

Two examples will be given in Sec 3.1.2 and Sec. 3.1.3, and our proposed method

in Sec. 3.2.

3.1.2 Example 2: kernel concatenation

We can concatenate multiple kernels to increase the dimensionality of the mea-

surement (i.e., the histogram). Suppose there are w kernels, each of them pro-

duces a histogram measure for the object, pi(c) = UTKi(c), where i = 1, . . . , w.

By vertically stacking these histograms into p and q, it is easy to show that based

37

on the Theorem 2, the observability is given by checking rank(MTM), where

M =
1

2
d(p)−

1

2

















UT

. . .

UT

































JK1

...

JKw

















, (3.1.5)

which may hopefully have full column rank to enable a unique solution to ∆c.

This makes sense since more features have been used. This is actually the multiple

kernel method suggested in [17]. In fact, the kernel concatenation implies the

optimization problem as:

min
∆c

w
∑

i=1

‖√q−
√

pi(c+∆c)‖2.

3.1.3 Example 3: kernel combination

Besides kernel concatenation in Sec. 3.1.2 that uses more features, another fea-

sible solution is kernel combination to produce new features by aggregating the

histogram vectors from multiple kernels (with normalization):

q =
w
∑

i=1

UTKi, p =
w
∑

i=1

UTKi(c).

Then the measurement equation is written as:

√

q−
√

p(c) = M∆c,

38

where

M =
1

2
d(p)−

1

2UT

w
∑

i=1

JKi
. (3.1.6)

This may also make the matrix MTM full rank. In essence, as long as the

measurement matrix M can well depict the characteristics around c, we can find

a proper ∆c in the neighborhood that minimizes
√

q−
√

p(c+∆c).

Here, we give an illustrative example. For comparison, we employ the same

roof kernels as in [17], with length l, span s, center c and normal vector n.

Kroof (x; c,n) =
4

(l ∗ s2)max(
s

2
− ‖(x− c) · n‖, 0).

Intuitively, this is a truncated triangular kernel with preferred orientation n.

We implement a single roof kernel, a concatenation of two roof kernels with or-

thogonal orientations as Eq.(3.1.5) and a combination of the same two roof kernels

as Eq.(3.1.6) to track a chalk box as shown in Fig. 3.1.1. The surfaces of value

1−‖√q−√p‖2 w.r.t∆c generated by these three methods in one of the tracking

iterations are plotted in Fig. 3.1.2.

It is now clear that because of the rank deficiency, a single kernel cannot per-

ceive the changes of ∆c in some specific directions. While concatenated or com-

bined kernels can well approximate the neighborhood values and ensure to find

the ∆c minimizing the error ‖√q − √p‖, (in Figure 3.1.2, that is maximizing

39

(a) Single kernel

(b) Kernel concatenation

(c) Kernel combination

Figure 3.1.1: A comparison of single kernel (top row), kernel concatenation (mid-

dle row), and kernel combination (bottom row).

1− ‖√q−√p‖2). Concatenated kernels and combined kernels have shown sim-

ilarly better performance.

However, although these two multiple kernel methods may outperform the sin-

gle kernel method, neither of them provides a principled way of designing multi-

ple kernels.

40

(a) (b) (c)

Figure 3.1.2: The surfaces of 1 − ‖√q − √p‖2 of (a) single kernel, (b) kernel

concatenation, and (c) kernel combination.

3.2 Multiple Collaborative Kernels

As shown by the examples in Sec. 3.1, it is clear that we expect better performance

than single kernel methods by using multiple kernels in the measurement process,

Eq.(3.1.2). Based on the kernel observability Theorem, we notice that most ex-

isting multiple kernel methods [7, 17], including kernel concatenation and kernel

combination, do not utilize the state constraints, Eq.(3.1.3), which should also be

used to cope with the rank deficiency. The neglect of the state constraints will

largely limit the applicability of these methods, especially for complex objects

and motions. This is also one reason that holds the kernel methods back from

tracking multiple targets, since simply assigning independent kernels on multiple

targets is unlikely to solve the problem.

A new scheme, multiple collaborative kernels, is proposed in this section by

41

exploiting the state equation Ω(x) = 0. We show that this is also an efficient way

to improve the “observability” of the tracking system (Sec. 3.2.1), by utilizing

appropriate system description (Sec. 3.2.2). Our analysis also reveals the “collab-

oration” of multiple kernels that makes possible efficient computation (Sec. 3.2.3).

3.2.1 Enhancing the observability

To start with, an obvious and commonly encountered prototype of Ω(x) = 0 for

multiple targets would be the structural constraint. Taking a rigid rod as a simple

example, see Fig. 3.2.1, we now show the improved “kernel-observability”.

Figure 3.2.1: The length constraint on a rod.

Considering the slim shape of the rod, it is difficult to track it with one simple

symmetric kernel. Alternatively, we can relax its motion by representing it as

the joint motion of the two ends, while enforcing the length constraint on this

relaxed (higher-dimensional) motion. Two simple symmetric kernels take charge

of the two ends respectively. The benefit of doing this, besides recovering the rod

42

position, is the estimation of the rod orientation.

By exploring the structural constraint, say, the rod is of fixed length L, we

have2,

‖c1 − c2‖2 = L2, (3.2.1)

where, c1 and c2 are the resulting centers of the kernels placed at the ends. Then

the objective function, which jointly considers both of the two kernels, will be

formulated as:

O(c1, c2) =
2

∑

i=1

‖√qi −
√

pi(ci)‖2 + γ‖L2 − ‖c1 − c2‖2‖2,

where q1, p1(c1) are the target model and the measured candidate associated with

one of the ends, similarly with q2 and p2(c2). This formulation compromises

the feature similarities and the structural constraint, with γ being the tradeoff.

By linearizing it at (c1, c2), we have a linear system (with state equation and

2This simple constraint is for illustrative purpose. More complex constraint will be readily

incorporated.

43

measurement equation):














































l = G









∆c1

∆c2









y = M









∆c1

∆c2









, (3.2.2)

where

q =









q1

q2









,p =









p(c1)

p(c2)









,y =









√
q1 −

√

p1(c1)

√
q2 −

√

p2(c2)









,

M =









M1 0

0 M2









,

Mi =
1
2
diag(p(ci))

− 1

2UT
i JK(ci), i = 1, 2

G = 2

[

(c1 − c2)
T (c2 − c1)

T

]

,

l = L2 − ‖c1 − c2‖2.
Based on the kernel observability Theorem in Sec. 3.1, the observability of this

formulation is given by checking rank(MTM + γGTG). This is equivalent to

the column rank of









M

√
γG









, which will be no less than that of M.

Then, we can generalize the above idea by considering multiple kernels with

a certain structural constraint Ω(c1, c2, . . . , cw) = 0. The objective function will

44

thus have the form,

O(c1, c2, . . . , cw) =
w
∑

i=1

‖√qi −
√

pi(ci)‖2

+γ‖Ω(c1, c2, . . . , cw)‖2.
(3.2.3)

After the linearization w.r.t. ∆c1,∆c2, . . . ,∆cw, we have the following gen-

eral system state equation and measurement equation:














l = G∆c

y = M∆c

, (3.2.4)

where

∆c =

























∆c1

∆c2

. . .

∆cw

























, y =

























√
q1 −

√

p(c1)

√
q2 −

√

p(c2)

. . .

√
qw −

√

p(cw)

























,

M =

























M1 0 0 0

0 M2 0 0

0 0
. . . 0

0 0 0 Mw

























,

G =

[

∂Ω
∂c1

∂Ω
∂c2

· · · ∂Ω
∂cw

]

,

l = −Ω(c1, c2, . . . , cw).

(3.2.5)

45

Similarly, the unique motion can be estimated, provided that









M

√
γG









has full

column rank.

Now, it is worth pointing out that without the introduced constraint Ω(·), i.e.,

G = 0, the solution will be reduced to

y = M∆c, (3.2.6)

which is equivalent to solving the w kernel tracking problems independently, re-

quiring M to have full column rank, i.e., every kernel needs to be observable.

The advantage of the collaborative kernels is that it does not require all the

kernels to be fully observable. Even if some of the kernels get bad, e.g., distracted

by the clutters, the other kernels may still be able to “pull” the ill-behaved kernels

back to the track according to the inherent constraint embedded in Eq.(3.2.4). As

long as (MTM + γGTG) is of full rank, our method can tolerate those unob-

servable kernels. In theory, such a good property is guaranteed by the fact that

rank(









M

√
γG









) ≥ rank(M).

46

3.2.2 The system description

The system description can have various forms in different applications. Two

prototypes of the system description of multiple kernel placements would be the

global subspace description and the local component-wise description.

In the example of tracking a rod in Sec. 3.2.1, the fixed-length model is ac-

tually a component-wise description. It is rigid in its form because it is really

difficult to learn a comprehensive model of a moving rod. Assuming one end, e1,

of the rod is fixed in the image, the image coordinates of the other end, e2, can be

any point in the circle, with e1 being the center and L being the radii. However,

given short inter-frame interval, the length between the two ends will not vary

much. So, the component-wise description can help multiple kernels search for

the optimal displacements of instantaneous motions.

A more general form of the multiple kernel placements would be a subspace

model. The subspace model are widely employed in computer vision [11, 21] and

graphics [27] for representing the data patterns, which is especially useful when

a lower dimensional compact representation is needed for a higher dimensional

data. The subspace model is learnable. In [3], the sequence of joint angle trajecto-

ries of human gaits are modelled into a lower dimensional data stream generated

47

by an “ARMA” model, which is essentially the projection results onto a learned

lower dimensional subspace. In [11], a subspace model is learned as the Active

Appearance Model for interest points on the face.

In this section, we give the formulation of the system equation using the sub-

space model. Given a set of training data or learned prior knowledge of multiple

interest points on an object, where we wish to place kernels for tracking, the co-

ordinates of these multiple kernels in all the frames, c ∈ R2w can be compactly

modelled by a lower d-dimensional subspace Sd ⊂ R2w. Obviously, the dif-

ference between the coordinates, which is the kernel displacement we seek for,

resides in the same subspace as well, ∆c ∈ Sd.

It is not our intention to convince the reader that the subspace representation

offers an optimal modelling for structured object tracking, we just to illustrate

that the subspace model is valid in some common data sets and thus offering more

flexibility in designing and implementing multiple collaborative kernels for such

tracking tasks (such as a part-based tracker with kernels placed on each part),

which cannot be handled by single, independent kernels.

We assume that the multiple kernels are placed on the interest points with

coordinates p1,p2, . . . ,pw. For subspace modelling, a common treatment is to

eliminate the translation by subtracting the mean vector from those coordinates,

48

for j = 1, . . . , w

pj = pj − pmean,

where pmean =
∑w

j=1
pj

w
.

In the following, the script, f (f = 1, 2, . . .), will represent the frame number,

e.g. c
f denotes c at frame f , []f represents the vector collected at frame f . After

obtaining a set of concatenated vectors of kernel coordinates collected from a

series of frames,

c
f
= [p1,p2, . . . ,pw]Tf = [p1 − pmean,p2 − pmean, . . . ,pw − pmean]

T
f ∈ R2w,

(3.2.7)

we can apply PCA to c
f
, f = 1, 2, . . . to obtain a lower d-dimensional subspace

representation, Sd. For example, the subspace of the in-plane rigid motion will

be of dimension 2. An affine motion model will yield an even higher motion

subspace. Then, the concatenated kernel displacement in each frame, ∆c
f
, f =

1, 2, . . ., resides in the same subspace as well, ∆c
f ∈ Sd. Recall Eq.(3.2.7), it

49

should be clear that

∆c
f
= [∆c1,∆c2, . . . ,∆cw]Tf = ∆cf −∆cfmean,

∆cf = [∆c1, c2, . . . , cw]
T
f

∆cfmean = [∆cmean,∆cmean, . . . ,∆cmean]
T
f

where ∆cmean =
∑w

j=1
∆cj

w
. The notation ∆c, which has the mean vector sub-

tracted, is used here to differentiate with∆c, the vector without mean subtraction,

in Sec. 3.2.1.

This brings a practical constraint on ∆c
f when we solve for the kernel dis-

placements in each frame f . The imposed subspace constraint, or the system

equation, is formulated as follows, (we omit frame number f for brevity.)

(I−VVT)(∆c−∆cmean) = 0, (3.2.8)

where V = [v1, v2, . . . , vd] is the learned orthonormal basis of the model subspace

Sd by using PCA on the set of vectors ∆c
f with f = 1, 2, . . . being the frame

number. The dimension d is determined by checking the steepest drop in the sorted

eigenvalues. Thus VVT is the projection matrix to the subspace Sd, and (I −

VVT) represents the residual after the projection. Eq.(3.2.8) actually represents

that the vector ∆c−∆cmean reside in the subspace spanned by V.

50

Combing Eq.(3.2.8) with Eq.(3.2.6), we have














0 = (I−VVT)(∆c−∆cmean)

y = M∆c

. (3.2.9)

It can also be shown that the constraint will improve the kernel-observability, since

the solution to Eq.(3.2.9) is

∆c = (MTM+γ(I−VVT)T (I−VVT))−1(MTy+γ(I−VVT)T (I−VVT)∆cmean).

(3.2.10)

It is seen that I). the rank of matrix MTM + γ(I −VVT)T (I −VVT) is no

less than that of M, thus the overall “kernel-observability” is improved; II). the so-

lution Eq.(3.2.10) not only looks for the location to minimize the color histogram

difference, but also shows the consent on the subspace description. The effec-

tiveness of subspace modelling and the encouraging tracking performance will be

demonstrated in the experiment section.

The global subspace model and the local component-wise model are just two

prototypes of the system description, Ω(x) = 0, the above paradigm of design for

multiple collaborative kernels can be readily extended to other system descriptions

with different physical meanings as well, such as the more complicated motion

dynamics or the learned motion priors.

51

3.2.3 The collaboration

The solution to the linear system in our formulation Eq.(3.2.4 for multiple collab-

orative kernel tracking is given by:

∆c = (MTM+ γGTG)−1(MTy + γGT l). (3.2.11)

Specifically, for the component-wise description in Sec. 3.2.1,

G =

[

∂Ω
∂c1

∂Ω
∂c2

· · · ∂Ω
∂cw

]

,

l = −Ω(c1, c2, . . . , cw).
(3.2.12)

For the subspace description in Sec. 3.2.2,

G = I−VVT

l = (I−VVT)∆cmean

(3.2.13)

Due to the relaxation of the system states, the dimension of the matrix (MTM+

γGTG) can be quite large (the sum of motion parameters of all individual ker-

nels). Thus, it is computationally demanding to calculate its inverse. Considering

the special structure of M, we obtain a much more efficient method, which pre-

cisely reveals the collaboration among multiple kernels.

52

By applying matrix inversion lemma3, we can obtain,

∆c = (I−D)(MTM)−1(MTy + γGT l), (3.2.14)

where D = γ(MTM)−1GT (γG(MTM)−1GT + I)−1G

Providing that MTM is non-singular, this equation means that we can save the

computational cost on (MTM + γGTG)−1 by computing (γG(MTM)−1GT +

I)−1 and (MTM)−1 instead. Generally, the dimensionality of (γG(MTM)−1GT+

I), which equals the number of constraint, is smaller than the parameters to be es-

timated, i.e., the dimensionality of (MTM + γGTG). Moreover, the calculation

of (MTM)−1 is not difficult since it has a block-diagonal structure form (recalling

the structure of M in Eq.(3.2.5)). All of these count to a potential decrease in the

computational cost.

Noticing that the solution to the unconstrained problem (i.e., independent ker-

nels) is given by:

∆cu = (M
TM)−1MTy = M†y, (3.2.15)

where M† is the pseudo-inverse of M. This unconstrained solution can be cal-

culated easily with linear cost w.r.t. the number of kernels, since M is a block

3(A + BD)−1 = A
−1 −A

−1
B(DA

−1
B + I)−1

DA
−1, where A is a n by n matrix, B is a

n by m matrix and D is a m by n matrix

53

diagonal matrix. Any single kernel tracking method can be applied here.

Using the unconstrained solution ∆cu, we can rewrite the solution to the con-

strained problem, Eq.(3.2.14), as:

∆c = (I−D)∆cu + z(c), (3.2.16)

where z(c) = γ(I − D)(MTM)−1GT l. The mechanism of the collaboration

among multiple kernels is pronounced: each individual single-kernel tracker fol-

lows its designated target (a small part of the entire target of interest) by its own

means, and exchanges “corrections” to other single-kernel tracker. Such a col-

laboration ends up with an equilibrium where the entire target is tracked and the

structural constraints among multiple kernels are satisfied.

The collaboration actually suggests a very efficient recursive method of calcu-

lating the constrained solution. We can alternate two steps until convergence: first

relax the constraints to solve the unconstrained one by Eq.(3.2.15), and then ad-

just the unconstrained estimates according to Eq.(3.2.16), with less computational

cost.

∆ck+1 ←− (I−Dk)[M(∆ck)]†yk + zk, (3.2.17)

which is very similar to the fixed point iteration and converges very fast.

This collaborative solution is useful to multiple target tracking. Because we

54

avoid estimating the motion states from the joint parameter space. Instead, we

solve the divided problems in the reduced solution space, then applying regular-

ized terms to meet the certain constraint.

3.3 Experiments

In this section, we report our experiments of the proposed multiple collaborative

kernel method to track structured objects and articulated objects, and the compar-

ison to multiple independent kernel tracker.

3.3.1 Tracking structured object

Object with certain spatial structure is a commonplace in many tracking tasks.

But some of them, such as a handset or a rod-shaped bottle, cannot be easily han-

dled by the tracker with a single symmetric kernel. See Fig. 3.3.1 and Fig. 3.3.2.

Our experiments validate the proposed method of multiple collaborative kernels

that can track these targets successfully and to estimate the target orientation as a

byproduct.

Fig. 3.3.1 shows 4 sample frames from a sequence of a rotating handset. The

histogram in the RGB space is taken as the feature. We first apply two independent

55

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 3.3.1: Tracking a handset.

normal kernels at both ends of the handset, colored as red and blue, respectively.

The result is shown in Fig. 3.3.1(a). We should notice that the motion along the

handset is not fully observable for both kernels, and the appearances of the two

ends of the handset are identical. The two kernels drift along the handset and

eventually lose the track.

With the same kernels but collaborating them based on our method, we in-

troduce a length constraint, ‖c1 − c2‖2 = L2, with L given by the initialization.

The result is shown in Fig. 3.3.1(b). As predicted, the collaboration of the two

kernels leads to a successful tracking result. This experiment shows a quite mean-

ingful property of the collaborative kernel approach: although not all the kernels

are fully observable, the collaboration can still make the ensemble observable. In

56

all experiments, we set γ in Eq.(3.2.3) to be 1.

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 3.3.2: Tracking a rod-shaped bottle.

Fig. 3.3.2 shows another experiment on a rod-shaped bottle. We first place

two independent normal kernels at the ends. The histogram of H-value of the

HSV space is used as the object feature. Sample frames of the result of using

independent kernels are shown in Fig. 3.3.2(a). Notice that the motion of the

lower-end, indicated by the kernel in blue, is not fully observable, since the image

regions in the lower part of the bottle are similar. Thus the blue kernel is vulner-

able to distraction when the two kernels function independently. In contrast, the

collaboration of the two kernels contributes to a more reliable tracking result, as

shown in Fig. 3.3.2(b).

The proposed collaborative scheme also provides another benefit. When a

57

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 3.3.3: Tracking a finger.

certain target is our focus-of-attention but unfortunately cannot be stably tracked,

we can refer to another easily tracked object as an auxiliary to gain a better result.

In Fig. 3.3.3, we aim to track the fingertip in a clutter. By placing a kernel on the

easily tracked wrist, we constrain the two kernels with a fixed length. The result

of using our method is shown in Fig. 3.3.3(b). In fact, The roles of the object of

attention and the auxiliary are interchangeable throughout the process in order to

ameliorate the potential tracking failure of either one. Two independent kernels,

as shown in Fig. 3.3.3(a), of course are unable to recover from tracking failure in

the clutter.

58

3.3.2 Tracking articulated objects

Another useful application of multiple collaborative kernel tracking is to track

articulated targets, such as human body articulation. To the best of our knowledge,

this is the first work extending kernel methods into this task.

Fig. 3.3.4 shows sample frames of an experiment, in which a person moves

his two arms. We apply two pairs of collaborative kernels on the elbows and the

hands. The tracking result of our approach is shown in Fig. 3.3.4(b). On the

contrary, the method based on four independent kernels leads to a much inferior

performance, as shown in Fig. 3.3.4(a).

(a) using four independent kernels.

(b) using two pairs of collaborative kernels.

Figure 3.3.4: Tracking the articulated body with two arms.

Another experiment on an articulated structure consisting of an arm and a

bottle in hand is shown in Fig. 3.3.5. We apply three kernels to the elbow, the

hand and one end of the bottle, respectively. Compared with the result yielded by

59

independent kernels (in Fig. 3.3.5(a)), two pairs of collaborative kernels (elbow

& hand, hand & bottle tip) provide a much more robust performance as shown in

Fig. 3.3.5(b).

(a) using three independent kernels.

(b) using two pairs of collaborative kernels.

Figure 3.3.5: Tracking an articulated structure.

The structural constraint used here serves as a basic means facilitating the

implementation of multiple collaborative kernels on more complex tracking tasks.

3.3.3 Using the subspace model

In this section, we demonstrate the advantages provided by using the subspace

constraint model.

First, we need to learn the subspace model from the training data. Fig. 3.3.6

shows the sample image, in which a static box is being viewed by a moving cam-

era. We manually labelled three interest points denoted by red “x” through a

60

sequence of 50 frames. A subspace model is then obtained by applying PCA on

the concatenated vectors of kernel positions c = c−cmean (with mean vector sub-

tracted). The dimension of the subspace is determined by examining the sharpest

drop in the sorted eigenvalues.

Figure 3.3.6: Labelled interest points for subspace model learning.

Then, the solution Eq.(3.2.16) is used to guide the collaborative kernels for

tracking. This formula makes clear a two-step approach. One is an unconstrained

kernel shifting: ∆cu, and the next is a constrained subspace regularization. In ex-

periment, we implement this two-step method for computational efficiency, as was

described in Sec. 3.2.3. If the resulting kernel displacement deviates a lot from

the subspace model, a mapping to the learned subspace is taken for regularization

purpose.

For all of the sequences, we also test the single independent kernel method.

Both methods are applied for every other frame. The comparison result for this

61

“box” sequence is shown in Fig. 3.3.7. We can see that in presence of fast scene

changes, single kernels are more vulnerable to distractions and are more prone to

lose the track. In contrast, the enforced subspace constraint is capable to stabilize

the kernel movements, thus having an overall better ability to avoid distractions

for each kernel.

(a) using three independent kernels.

(b) using three collaborative kernels under subspace constraint.

Figure 3.3.7: Tracking three parts of interest on a box.

We have also compared the results of single and collaborative kernels against

the ground truth, which is obtained by manually labelling. Fig. 3.3.8(a) shows

the error of kernel positions obtained through 150 frames. Fig. 3.3.8(b) shows

the error of histogram matching in the same sequence. The robustness of the

collaborative kernels is shown.

Fig. 3.3.9 shows the result of another moving box sequence. The subspace

model is learned from a sequence of 50 frames. It can be seen that the single

kernels are subject to drifting along a certain direction. For instance, look at the

62

(a) Errors in kernel position. Left: independent kernels. Right: collaborative kernels.

(b) Errors in histogram matching. Left: independent kernels. Right: collaborative kernels.

Figure 3.3.8: Error comparison of single and collaborative kernels against the

ground truth.

orange stripe at the bottom of the box. The kernels cannot observe the precise

movement along this stripe because all the locations in this stripe yield the similar

histogram as that of the original target. For comparison, the subspace constraint is

shown to be able to discriminate and regularize the invalid kernel positions, thus

more robust result is obtained.

Fig. 3.3.10 shows the result for tracking the head and shoulders of a person.

63

(a) using four independent kernels.

(b) using four collaborative kernels under subspace constraint.

Figure 3.3.9: Tracking four parts of interest on a box.

As shown in Fig. 3.3.10(a), the performance of independent kernels is not war-

ranted by neglecting the spatial constraint among them. Drift and deviation are

observed. In contrast, since the training data we collected for subspace modelling

admits noise measurement and variations, to some extent, in the scale, the sub-

space model can help to tolerate some scale changes of tracked object, e.g., the

person went down or came closer to the camera, as shown in Fig. 3.3.10(b). A

more stable performance is obtained.

(a) using three independent kernels.

(b) using three collaborative kernels under subspace constraint.

Figure 3.3.10: Tracking the head and shoulders.

64

A more challenging task is shown in Fig. 3.3.11. We want to track some in-

terest regions on a magazine cover, which is undergoing deformation. A subspace

model is learned from 75 frames. Fig. 3.3.11(a) shows the tracking result of six

independent kernels. Their ability of tolerating distortion is poor. Several kernels

easily drift away. The collaborative kernel tracking, as shown in Fig. 3.3.11(b),

achieves more robust performance. By framing in the subspace model, both his-

tograms matching and subspace model regularizing contribute to stabilize the ker-

nel positions against large distortions. The resulting kernels can well grasp this

structured magazine cover.

(a) using six independent kernels.

(b) using six collaborative kernels under subspace constraint.

Figure 3.3.11: Tracking a magazine cover with deformation.

To summarize, by using multiple kernels, we can ease the burden of represent-

ing and tracking a holistic object, possibly with some distortions or deformations,

by using a set of collaborative kernels. This is a feasible approach [1, 18], although

some more challenging problems, such as model updating, are worth being further

65

studied.

3.4 Remarks

In this chapter, a criterion is obtained on the issue of “kernel-observability”, which

leads to a principled way of kernel design with prevention of singularity in kernel

based tracking problems. Based on this, a multiple collaborative kernel tracking

scheme is proposed. Different from the most existing kernel based algorithms,

which are confined by independent kernels and single target, we show that by

exploiting the inherent relationship among multiple kernels, not only the “kernel-

observability” is improved, but also the applicability of the kernel based methods

is naturally extended to cope with articulated targets and complex motions. This

helps to gain more insight into the role that kernel plays in the tracking problems.

However, the geometric constraint used in this chaper is rigid in its current

form. The subspace constraint offers more modelling power and tolerance, but

still, lacks an update scheme, which alone is an interesting research topic in visual

tracking. The focus of our future work will be exploring how to incorporate richer

system models to account for more complicated motions and how to make the

kernel design adaptable to various environmental changes.

66

Chapter 4

Efficient Optimal Kernel Placement

for Reliable Visual Tracking

4.1 Optimal Single Kernel Placement

As mentioned in Sec. 2.2.2, the ill-conditioned case of unstableness in tracking

may notably deteriorate the tracking performance. Different kernel placement can

yield quite different stablilities in tracking. In this section, we give more detailed

analysis into such a case and propose a criterion to select optimal locations to

place kernels, which avoids the ill-conditioning to the largest extent. The analy-

sis is more easily approachable under the formulation of closed-form tracking in

67

Sec. 2.1.3. For brevity, notations, such as the histogram representation and the so-

lution of estimated motion for tracking, are referred to Sec. 2.1.3. The analytical

result for optimal kernel placement is equivalently applicable to that of mean shift

tracking in Sec. 2.1.2.

4.1.1 Applying the condition theory

To analyze the stableness, or say, the sensitivity, of the solution ∆c for kernel

placement, we first refer to the condition theory.

To solve x from a linear equation,

Ax = b.

besides requiring A to be invertible, it is also expected that the solution is numer-

ically stable. The analysis of how sensitive the x is, given changes in b, can be

achieved by examining the condition number defined as,

κ(A) = ‖A‖‖A−1‖.

For example, when 2−norm is used, κ2(A) = ‖A‖2‖A−1‖2 = σ1(A)/σn(A),

which is the ratio between the largest and the smallest singular value.

68

For a single kernel, we need to calculate the motion parameter∆c from M∆c =

√
q−

√

p(c). The solution is

∆c = (MTM)−1MT (
√

q−
√

p(c)).

So, (MTM)−1MT should be considered as a whole entity, which tells how sensi-

tive the ∆c is, given small changes in
√

q−
√

p(c).

Since (MTM)−1MT is not a square matrix, its “condition number” is not well

defined. However, considering the essence of this problem, if we take SVD of the

2×m matrix (MTM)−1MT as (MTM)−1MT = UΣVT .

We would expect that the 2 singular values in Σ be comparable to each other,

such that the (MTM)−1MT is equally sensible in both directions of its two or-

thonormal singular vectors. Otherwise, if the two singular values are unbalanced,

a fluctuation in
√

q−
√

p(c) caused by noise will change the solution ∆c signif-

icantly along the singular vector corresponding to the larger singular value, and

negligibly along the singular vector corresponding to the smaller singular value,

bringing in undesirable numerical instability, and such a region is generally con-

sidered to be a bad placement of the kernel.

69

Notice that

(MTM)−1 = (MTM)−1MT ((MTM)−1MT)T = UΣ2UT ,

and assume σ1 and σ2 are two singular values of (MTM)−1MT , it is easy to verify

that

κ2((M
TM)−1) = (σ1/σ2)

2.

We also have κ2(M
TM) = κ2((M

TM)−1). In view of this, the sensitivity

evaluation of (MTM)−1MT is just equivalent to inspecting the condition num-

ber of (MTM), since κ2(MTM) monotonically increases/decreases when σ1/σ2

increases/decreases.

So, the criterion for a reliable kernel tracking is: we need to put the kernel to

such a place that the condition number of MTM is minimized.

min
c

κ2(M
TM). (4.1.1)

70

4.1.2 Interpretation of the condition number criterion using

the 2-norm

Here, we give an intuitive interpretation of the condition number criterion using

the 2-norm, which requires to evaluate the singular values of MTM. Actually,

evaluating the singular values of M doesn’t affect the analytical result.

In the following, xi represents a data point with index i, while x
j
i denotes point

i of color j. For the problem of n points within the kernel range and m color bins.

By recalling Eq.(2.1.19),

M =
1

2
diag(p(c))−

1

2UTJK(c).

The ith row of the n × 2 matrix JK is (xi − c)g
(

‖xi−c

h
‖2
)

, with g(·) = −k′(·)

and k′(·) being the profile of the kernel K. Then, by left multiplying the m × n

sifting matrix UT , the resulting m× 2 matrix, denoted as D = UTJK(c), has the

meaning that the jth row of D is the sum of x
j
i − c weighted by g

(

‖x
j
i−c

h
‖2
)

for

all pixels xi of color j, i = 1, . . . , n, j = 1, . . . ,m.

As for M = 1
2
diag(p(c))−

1

2D, we can see that each row of M is just the

normalization of the corresponding row in D by a factor of 2p(c)
1

2 , thus giving a

particular constraint on ∆c,

71

[

1
2
√

p
j

∑

i

(xji − c)g

(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)]

∆c =
√

qj −√pj. (4.1.2)

The intuition of the LHS of this equation, i.e., the j th row of M, is that we sum

all the displacement vector x
j
i −c of color j, which are weighted by g

(

‖x
j
i−c

h
‖2
)

,

and then the summation is scaled by 1
2
√

p
j

. Denote this result as [djx djy], which

can be effectively considered as the center of mass of all pixels of color j.

Since a good kernel placement is featured by a M with comparable singular

values, this requires that all the rows of M, [djx djy], j = 1 . . . ,m well span the

2D space. The corresponding situation is that all the center of masses of the color

components should be distributed evenly around the center c.

4.1.3 An equivalent condition number

In practice, 2-norm condition number is not straightforward to compute. In this

section, we introduce another form of condition number, being equivalent to the

2-norm condition number when the matrix is 2×2 symmetric positive definite.

The new condition number offers a great ease of computation and facilitates an

efficient searching algorithm for optimal kernel placement, as will be derived as

follows.

The Schatten 1-norm [2][19][26] is defined as,

72

‖A‖S =
∑

σi,

where σ1, . . . , σn are the singular values of A. When A is a symmetric positive

definite matrix, we can have,

‖A‖S =
∑

σi = trace(A),

∏

σi = det(A).

(4.1.3)

Given a 2× 2 symmetric positive definite matrix A={aij}, we can then have a

closed form expression of S-norm condition number as,

κS(A) = ‖A‖S‖A−1‖S = trace(A)trace(A−1)

= trace(A) trace(A)
det(A) = (a11+a22)2

a11a22−a12a21
.

(4.1.4)

And equivalently,

κS(A) =
(σ1 + σ2)

2

σ1σ2
. (4.1.5)

According to [16], any two condition numbers κα(A) and κβ(A) are equiva-

lent in that constants c1 and c2 can be found for which

c1κα(A) ≤ κβ(A) ≤ c2κα(A).

73

For example, 1
n
κ2(A) ≤ κ1(A) ≤ nκ2(A), for A∈ Rn×n. Here, we can show

that,

Proposition 1 κ2(A) ≤ κS(A) ≤ n2κ2(A), if matrix A is n × n symmetric

positive definite.

Proof:

Denote σ1 ≥ σ2 ≥ · · · ≥ σn are n sorted singular values of A.

κS(A) = ‖A‖S‖A−1‖S

‖A‖S = trace(A) =
n
∑

i=1

σi, ‖A−1‖S = trace(A−1) =
n
∑

i=1

1

σi

Since,
n
∑

i=1

σi ≥ σ1,

n
∑

i=1

1

σi
≥ 1

σn
,

so,

κS(A) ≥
σ1
σn
= κ2(A)

Also,
n
∑

i=1

σi ≤ nσ1,

n
∑

i=1

1

σi
≤ n

σn
,

we have,

κS(A) ≤ nσ1 ·
n

σn
= n2κ2(A)

74

Therefore, κ2(A) ≤ κS(A) ≤ n2κ2(A).

Besides this interlacing property, which is existed for all the condition num-

bers, we can further show that,

Proposition 2 κS is monotonically increasing/decreaing when κ2 increases/decreases,

if the matrix is 2 × 2 symmetric positive definite.

Proof:

κS is monotonic with κ2 as long as the derivative of κS w.r.t κ2 does not change

sign. We know that κ2 ≥ 1 and according to Eq.(4.1.5),

κS = (σ1+σ2)2

σ1σ2
=

σ2
1
+2σ1σ2+σ2

2

σ1σ2

= σ1

σ2
+ 2 + σ2

σ1
= κ2 + 2 +

1
κ2

so,

dκS
dκ2

= 1− 1

κ22
> 0 ∀κ2 ≥ 1

Therefore, since MTM is 2 × 2 symmetric positive definite, if we find the lo-

cal/global minimum of its κS , we in fact find the local/global minimum of its κ2.

This nice property ensures that the good kernel measured by κS is just the good

75

kernel measured by κ2. Because computing κS only involves element-wise calcu-

lation, it is much more convenient and efficient than κ2, which is non-analytical.

So the claim is that, κS is an equivalent substitute for κ2 in all the cases [5][24][25][28]

when the 2-norm condition number of a 2×2 covariance matrix needed to be eval-

uated.

To summarize, given

M =

















d1x d1y

...
...

dmx dmy

















,

where

[djx djy] =

[

1
2
√

p
j

∑

i,b(xi)=j

(xji − c)g

(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

]

, (4.1.6)

is the weighted sum of the displacement vectors of all pixels of color j, or called

the center of mass of color component j.

We can compute in closed-form

κS(M
TM) = ‖(MTM)‖S‖(MTM)−1‖S

=
(
∑

(dj
x)

2+
∑

(dj
y)

2)2
∑

(dj
x)2

∑

(dj
y)2−(

∑

(dj
xd

j
y))2

.

(4.1.7)

76

The region with a small κS(MTM) is the good choice for kernel placement,

on which the stability of tracking will be better than those regions with larger

condition numbers. Fig. 4.1.1 shows some synthesized image patterns and their

κ2, κS . The first one has the lowest condition number, coinciding the interpretation

given in Sec. 4.1.2. Fig. 4.1.2 shows the κ2, κS and their differences evaluated in

two image regions. It is observed that they exhibit the same pattern of ridges and

valleys, and their differences are small compared with their own magnitudes.

κ2 = 1.0, κ2 = 8.3, κ2 = 11.1, κ2 = 10301, κ2 =∞

κS = 4.0, κS = 10.4, κS = 13.2, κS = 10303, κS =∞

Figure 4.1.1: Synthesized image patterns and their κ2, κS .

4.1.4 Find optimal kernel placement efficiently

In practice, only obtaining the criterion for optimal kernel placement is insuffi-

cient, since it is not attractive to exhaustively evaluate this criterion all over the

image. In this section, we derive a gradient descent algorithm, which can effi-

ciently find good placement for kernels.

77

(a) (b) (c) (d)

Figure 4.1.2: column (a): yellow: image region, red: kernel. column (b), (c), and

(d) are κ2, κS and κS − κ2 evaluated in the region of column (a), respectively.

Notice that in Eq.(4.1.6) and Eq.(4.1.7), the condition number κS only involves

djx and djy, which are explicitly presented as a function of the kernel position c. So,

we can compute the derivative of κS(MTM) w.r.t the kernel position, c. Denote

κS(M
TM) =

A2

B
=

A2

DE − F 2
,

where

A =
∑

j ‖[djx djy]‖2 =
∑

j(d
j
x)
2 +

∑

j(d
j
y)
2,

D =
∑

j(d
j
x)
2, E =

∑

j(d
j
y)
2, F =

∑

j(d
j
xd

j
y),

B =
∑

j(d
j
x)
2
∑

j(d
j
y)
2 −

(

∑

j(d
j
xd

j
y)
)2

= DE − F 2.

Here, the goal is to compute

78

∂ A2

B

∂c
=

2AB ∂A
∂c

−A2 ∂B
∂c

B2 =
2AB ∂A

∂c
−A2(D ∂E

∂c
+E ∂D

∂c
−2F ∂F

∂c
)

B2 .

So, we need ∂A
∂c

, ∂D
∂c

, ∂E
∂c

, and ∂F
∂c

. In practice, we will express ∂D
∂c
= [∂D

∂cx
∂D
∂cy
],

∂E
∂c
= [∂E

∂cx
∂E
∂cy
], and ∂F

∂c
= [∂F

∂cx
∂F
∂cy
]. Details can be derived as follows,

∂A
∂c
=
∑

j

2[djx djy]
∂[dj

x dj
y]

∂c
,

∂D
∂cx

=
∑

j

2djx
∂dj

x

∂cx
, ∂D

∂cy
=
∑

j

2djx
∂dj

x

∂cy
,

∂E
∂cx

=
∑

j

2djy
∂dj

y

∂cx
, ∂E

∂cy
=
∑

j

2djy
∂dj

y

∂cy
,

∂F
∂cx

=
∑

j

[

∂dj
x

∂cx
djy + djx

∂dj
y

∂cx

]

, ∂F
∂cy

=
∑

j

[

∂dj
x

∂cy
djy + djx

∂dj
y

∂cy

]

.

where

∂[dj
x dj

y]

∂c
= 1

2
√

p
j

[

∑

i

(−1)g
(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

+
∑

i

(xji − c)T ∂g
∂c

]

,

∂dj
x

∂cx
= 1

2
√

p
j

[

∑

i

(−1)g
(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

+
∑

i

(xjix − cx)
∂g
∂cx

]

,

∂dj
x

∂cy
= 1

2
√

p
j

∑

i

(xjix − cx)
∂g
∂cy

,

∂dj
y

∂cx
= 1

2
√

p
j

∑

i

(xjiy − cy)
∂g
∂cx

,

∂dj
y

∂cy
= 1

2
√

p
j

[

∑

i

(−1)g
(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

+
∑

i

(xjiy − cy)
∂g
∂cy

]

.

When g() is Gaussian kernel, i.e., g
(

∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

= exp

(

−
∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

, we

have

79

∂g
∂c
= exp

(

−
∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

2(xj
i−c)

h2

∂g
∂cx

= exp

(

−
∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

2(xj
ix−cx)
h2

∂g
∂cy

= exp

(

−
∥

∥

∥

x
j
i−c

h

∥

∥

∥

2
)

2(xj
iy−cy)
h2

When Epanechnikov kernel is used, i.e., g(c) = 1 and ∂g
∂c
= 0, the above

equations will be reduced to much simpler forms as shown below.

A =
∑

j

‖[djx djy]‖2 =
∑

j

1
4pj

∥

∥

∥

∥

∑

i

(xji − c)

∥

∥

∥

∥

2

D =
∑

j

1
4pj

[

∑

i

(xjix − cx)

]2

E =
∑

j

1
4pj

[

∑

i

(xjiy − cy)

]2

F =
∑

j

1
4pj

[

∑

i

(xjix − cx)
∑

i

(xjiy − cy)

]

∂A
∂c
=
∑

j

2
4pj

[

∑

i

(xji − c)

] [

∑

i

(−1)
]

∂D
∂cx

=
∑

j

2
4pj

[

∑

i

(xjix − cx)

] [

∑

i

(−1)
]

, ∂D
∂cy

= 0

∂E
∂cx

= 0, ∂E
∂cy

=
∑

j

2
4pj

[

∑

i

(xjiy − cy)

] [

∑

i

(−1)
]

∂F
∂cx

=
∑

j

1
4pj

[

∑

i

(xjiy − cy)

] [

∑

i

(−1)
]

, ∂F
∂cy

=
∑

j

1
4pj

[

∑

i

(xjix − cx)

] [

∑

i

(−1)
]

Notice that all the above values can be obtained by scanning the pixels in the

kernel region only once, so the calculation is easy and efficient.

80

Fig. 4.1.3 shows some illustrative examples. In all 3 images in (a), we start

from the kernel with red rectangle and end up with the kernel with the green

one, led by the gradient-based search. Fig. 4.1.3(b) shows the descending κS .

Fig. 4.1.3(c) shows the regions covered by the kernel, which is moving along the

direction of the gradient towards the good placement.

4.2 Multiple Kernel Placement

As demonstrated in Chapter 3, the kernel based tracking is no longer confined

to single kernels. Multiple kernels have several advantages over single kernel.

For example, multiple kernels can alleviate the singularity and improve the ker-

nel’s observability to the motions [13][17]. Multiple kernels are better at handling

tracking an object with complex structure, while a holistic representation based

on a single kernel is cumbersome. In such a case, distributing the tracking task

into several correlated sub-tasks would be viable. Another benefit is the save of

the computation since each sub-task only needs a relatively small kernel.

We think good strategies to place multiple kernels are I) each kernel has a

reliable tracking performance, i.e., at a good location, and based on which, II) the

structure of the multiple kernels should remain stable through the sequence and

81

(a) (b) (c)

Figure 4.1.3: column (a): the red rectangle indicates the start kernel position, the

green one is the optimized kernel placement found by the gradient-based search-

ing algorithm. column (b): the corresponding descending value of the κS . column

(c): the regions covered by the kernel, which is moving along the direction of the

gradient towards the good placement. The red line with a spot indicates the center

of mass of each color component.

be simple.

The first strategy can be addressed by the proposed method, that is, the gradient-

based searching algorithm can find the good placements near the initialized ones.

82

The second strategy states that those multiple kernels are expected to maintain

an invariant structure, thus serving as an consistent description of the object with

good fidelity but great simplicity.

If a kernel is good for tracking at the beginning, but is not suitable for tracking

due to view or illumination changes afterwards, this kernel is considered unstable

and should be pruned away. It is also required that the stable structure be simple,

although the object could be complex. By this means, we can adopt the scheme of

multiple collaborative kernel tracking in Chapter 3 [13], which has superior kernel

observability than single kernel, to coordinate those representative kernels for an

overall reliable tracking performance

However, there is no general answer to the question that what kind of struc-

ture of multiple kernels should be chosen, and this is in fact an ongoing research

topic in computer vision [12]. For simplicity, we chose triangle, which is easy to

manipulate and works well in many sequences.

For each triangle, we build a 2D histogram, recording the 2 internal angles

of that triangle. We obtain the statistics of this 2D histogram over a training

sequence. The most stable triangle, with all the internal angles exhibiting little

variation, is expected to yield a peak in this 2D histogram. So, for each triangle

formed by 3 kernels, we measure the entropy of its associated 2D histogram, and

83

choose the one, which has the minimum entropy, to be the most stable triangle

kernel structure.

Then, we use this triangle modelling for collaborative kernel tracking [13].

This optimal multiple kernel placement and the mining for stable structure are

fully automatic after the initialization of a set of kernels at the very beginning.

The initialization can be done either manually or evenly on the image grid.

4.3 Scale-invariant Kernel Placement

A placement is good for kernel if the condition number evaluated on that region

is small. This placement is even better if its associated condition number achieves

a local minimum, i.e., it is the only one that should be selected from its neighbor-

hood. However, it is obvious that the condition number changes when the scale of

the kernel changes, therefore, the local minima property could also vary w.r.t the

scale.

An interesting question is that if there exists a placement of a kernel, whose

condition number is the local minima for all, or for a large number of different,

scales? and how to find them?

Placing a kernel at such a place is invariant to the scale changes, meaning that,

84

it can yield reliable tracking performance when changes occur in the kernel scale,

or in the image scale, or in the scales of both image and kernel, since scale changes

in the image and in the kernel is just a relative term. This is in fact a very nice

property.

In order to find such placements, rather than brute force evaluating the condi-

tion number through all the scales and neighborhood, the searching algorithm in

Sec 4.1.4 offers considerable efficiency.

We can evenly initialize a set of kernel samples with different scales on the

grid. Then, let these kernels converge to their corresponding local minima. When

all the kernel samples are converged, a distribution of the places of converged

kernels are obtained. The set of local maxima of such a distribution indicate the

set of scale-invariant kernel placements.

In experiment, we generalize kernels with 7 different scales, each scale with

400 evenly initialized kernel samples. The places, to which a large amount of

kernel samples are converged, are shown in the top rows of Fig. 4.3.1 (a)-(h). It

can be seen that most of these places are featured by a region with diversified color

pixels’ intensity and spatial distributions.

85

(a) (b) (c) (d).

(e) (f) (g) (h).

Figure 4.3.1: In each figure (a)-(h). Top row: scale-invariant kernel placement.

Larger circle means higher density of converged kernel samples. Bottom row:

good kernel regions with appropriate scale selection after pruning texture regions.

4.3.1 Scale selection

With scale-invariant kernel positions in hand, we can further proceed one step.

That is, to choose the appropriate scale of the kernel for that region. Although

the scale-invariant region yields the local minimum of κS in most of the scales

86

within its neighborhood, different scales still have different κS , and of course,

the scale associated with a lower κS is more preferred. In the following, denote

si, i = 1, 2, · · · the discretized scales with increasing order.

One criterion is to choose the scale with a low κS , that is to maximize

Q(si, c)
4
=

1

κ((Msi,c)
T (Msi,c))

,

where Msi,c is obtained at c with scale si.

Another criterion should also be considered, that is to maximize the difference

between the histograms, q, obtained at the current scale si and the immediately

adjacent larger scale si+1. This implies that the object of interest, kernel of scale

si, should differ from its adjacent background, the region of scale si+1, to some

large extent. Denote

W(si, c)
4
= d(qsi,c,qsi+1,c)

By combining the above two functions, the appropriate scale at position c is

determined as

s∗ = argmax
si

(Q(si, c) · W(si, c))

87

The attractive properties of this approach is that, Q(si, c) ensures that the

tracking algorithm can be stable on such a scale, while W(si, c) tells the fact

that there is sufficient difference, or say, discriminance, between the object and

the background, thus preventing the tracking algorithm being distracted by the

background.

4.3.2 Pruning text regions

Here, another issue needed to be considered is the texture region, which is the

major source of confusion in determining the regions’ “goodness” by analyzing

eigenvalues, or in essence, singular values, because texture region can also yield

comparative eigenvalues but is in general not the region of interest. To deal with

this problem, in [28], a threshold is set to ensure that the minimal eigenvalue is

large enough. Here, we can use the S-norm to achieve the equivalent effect of

pruning away texture regions, but with a much more efficient closed-form formu-

lation.

As suggested in [26], ‖(MTM)−1‖S = 1
σ1
+ 1

σ2
= σ1+σ2

σ1σ2
, and 1

σ2
≤ 1

σ1
+ 1

σ2
≤

2
σ2

So, in order to get a large σ2, we should select those regions which can yield a

small σ1+σ2

σ1σ2
, and this can be computed explicitly as

88

σ1 + σ2
σ1σ2

=

∑

(djx)
2 +

∑

(djy)
2

∑

(djx)2
∑

(djy)2 − (
∑

(djxd
j
y))2

(4.3.1)

So, after we find those scale-invariant kernel regions (Sec. 4.3), choose the

appropriate scale (Sec. 4.3.1), we can further filter out texture regions, which yield

large values of Eq.(4.3.1).

The result is shown in the bottom rows of Fig. 4.3.1 (a)-(h). It can be seen

that, in the top rows, there are some detected good regions, denoted as red points,

located at texture regions, such as in the sky, or in the bush etc., while they are

successfully pruned away as shown in the bottom rows.

The property of such placement for featured region selection, pattern recogni-

tion will be our main future work.

4.4 Discussions

4.4.1 Region selection vs. feature point selection

It may be noted that the form of M∆c =
√

q−
√

p(c) is similar to that of feature

point matching [26][28], in that they are all in the general form of solving a linear

equation, i.e., Ax=b. Actually, the property of the matrix A has been actively

studied in the past decades for point matching, such as computing the optical

89

flow [5][24][25][28]. Some work also extends the point matching framework to

address other geometrical features such as lines [20][32].

However, our work is different from those work in the following aspects.

1) The content of matrix A, denoted as Aregion in our work, and Apoint in

[26][28].

Aregion = M =

















d1x d1y

...
...

dmx dmy

















, Apoint =

















g1x g1y

...
...

gnx gny

















.

where [djx djy] is the center of mass of all pixels of color j, for m color bins,

j = 1, ...,m, and [gix giy] being the image gradient of pixel i w.r.t x and y axes,

for n pixels within a small window around the feature point, i = 1, ..., n.

The different content determines that their analytical results are different. That

is, there is no certain correspondences between optimal feature points and optimal

regions for tracking. We think these works have different practical impacts in real

applications.

2) The criterion and the analytical method In our work, the criterion is

κS(M
TM), which has the equivalent effect as analyzing κ2(M

TM). In [28], the

criterion is that the smallest eigenvalue of ATA is larger than a threshold. In

90

[26], ‖(ATA)−1‖S is checked, which has been shown to have the same effect

as requiring the smallest eigenvalue of ATA to be larger than a threshold. In

contrast, our criterion takes into account of both singular values of M, which is

more general.

As for the analytical method, we have shown that κS is equivalent to κ2 when

considering the 2×2 covariance matrix case, which leads to some nice analytical

properties.

3) Gradient descent search We provide a gradient based searching scheme

to find the optimal regions within an image efficiently, which avoids exhaustive

search. But the selection of feature point has to be exhaustive.

4.4.2 Interpretation of condition number criterion using the S-

norm

We already know the structure of M = [vx vy], where vx = [d1x, . . . , d
m
x]

T ,

vy = [d1y, . . . , d
m
y]

T are the X-coordinates and Y-coordinates of the the centers of

color masses, respectively. Then we have

∑

j(d
j
x)
2 = ‖vx‖2,

∑

j(d
j
y)
2 = ‖vy‖2,

(
∑

j(d
j
xd

j
y))

2 = ‖vT
xvy‖2 = ‖vx‖2‖vy‖2 cos2(θ).

where θ is the angle between vectors vx and vy.

91

Recall Eq.(4.1.7),

κS(M
TM) = (‖vx‖2+‖vy‖2)2

‖vx‖2‖vy‖2−‖vx‖2‖vy‖2 cos2(θ)

=
‖vx‖

4
+‖vy‖

4

‖vx‖2‖vy‖2
+2

1−cos2(θ) ≥ 4
1−cos2(θ) ≥ 4.

It is easy to verify that the desirable minimum of the above condition number

is achieved when

‖vx‖ = ‖vy‖, and cos(θ) = 0, i.e.,vx ⊥ vy,

which implies that the roles of X and Y coordinates of those centers of color

masses are equivalent and interchangeable. The optimal case would be that these

mass centers are located symmetrically around the center of kernel c. This is ac-

tually the same as the interpretation we have given in Sec. 4.1.2, but from another

point of view. A perfect example is already shown in the left most column of

Fig. 4.1.1.

4.5 Experiment

In this section, experiments using real video sequences demonstrate the effective-

ness and usefulness of the proposed algorithm for efficient optimal kernel place-

ment.

92

4.5.1 Single kernel

For an object of interest, arbitrarily labelling a region, which meets some special

standards, such as owning a high variance, strong edges, or a high entropy, and

assigning a kernel on it, may not be optimal. In many cases, unexpected tracking

failures make people change the kernel placement through trial and error.

On the contrary, placing kernels by the criterion presented in Sec. 4.1.3 and the

efficient searching algorithm derived in Sec. 4.1.4 can easily bring more reliable

tracking performance.

Fig. 4.5.1(b) shows the tracking result with a kernel initialized as in Fig. 4.5.1(a).

The tracking is not stable, since the unidirectional color distribution in the ini-

tial place yields a large condition number. Using the same initialization as (a),

we apply the gradient-based algorithm and find a good kernel placement, with

much lower condition number, as shown in (c), the corresponding tracking result

is shown in (d). More reliable performance is obtained.

Fig. 4.5.2(a) shows an arbitrarily initialized kernel placement, the correspond-

ing tracking result is in Fig. 4.5.2(b), in which drifting is observed. In contrast,

the searching algorithm moves the place from (a) to a good placement as in (c).

The tracking performance is instantly improved a lot, as shown in (d). Notice

93

(a) (b)tracking result of a kernel placed arbitrarily.

(c) (d) tracking result of a kernel with initial location optimized.

Figure 4.5.1: Tracking with (bottom row) and without (top row) kernel placement

optimization.

that the location in Fig. 4.5.2(a) and Fig. 4.5.2(c) is very close, and this is indeed

difficult for manual initialization, as heedlessly marking a region, to achieve a ro-

bust performance. This shows that the searching algorithm effectively helps us to

discriminate good and bad regions for tracking.

4.5.2 Multiple collaborative kernels

Good strategies to place multiple kernels are that I) each kernel is at a good place-

ment, II) the structure of the multiple kernels should be stable.

To track a region of interest, we initialize a set of kernels on the grid, and run

the searching algorithm to find good placements. By this means, we can have a

94

(a) (b)tracking result of a kernel placed arbitrarily.

(c) (d) tracking result of a kernel with initial location optimized.

Figure 4.5.2: Tracking with (bottom row) and without(top row) kernel placement

optimization.

large coverage of the possible multiple kernel combinations and safely avoid the

risk of having bad manually labelled regions.

Then we track these kernels over a training sequence, which can be the first

several frames of the video. We choose the most stable triangle formed by 3

kernels.

In Fig. 4.5.3(a), multiple kernels are evenly initialized on the grid within the

region of interest. Without the gradient searching algorithm, that is, we just ac-

cept and start from the initial kernel locations, mine for the most stable triangle

and apply collaborative tracking scheme. The result is shown in Fig. 4.5.3(b).

95

Fig. 4.5.3(c) shows the good kernel placement found by applying the gradient

searching algorithm on the kernel locations in (a), the corresponding tracking re-

sult is shown in (d). In all the figures, the bounding box of the object of interest

is reconstructed by conferring the initial localization of the kernels w.r.t. the ob-

ject. How well can we know the position and orientation of the original object

measures the quality of collaborative tracking. It is seen that the performance of

kernels, whose locations are optimized, is much better. This is because the ker-

nels, without placement optimization, are more likely to have a large condition

number and thus having more exposure to the unstableness in the tracking.

(a) (b)multiple kernels, evenly initialized, tracking with collaboration.

(c) (d) multiple kernels, location optimized, tracking with collaboration.

Figure 4.5.3: Multiple kernel tracking, with (bottom row) and without (top row)

placement optimization.

The next three sequences involve object scale changes, in which the optimal

96

multiple collaborative kernel tracking works well.

Fig. 4.5.4(a) and Fig. 4.5.4(b) show the tracking result from the same ini-

tial kernel locations (left most column), after searching from the evenly grid-

ded initialization. Without collaborative scheme applied, the unsatisfactory result

in Fig. 4.5.4(a) shows that, although all the kernels are good at the beginning,

they still can lost due to various disturbances in tracking, such as, unexpected

abrupt motions, disturbance from the object with similar appearance or illumina-

tion changes. Since the kernels track independently, they cannot recover them-

selves, such that the face is lost track. By collaborating the initially good kernels,

the result of localizing the face by the 3 kernels is more reliable, as shown in

Fig. 4.5.4(b).

(a) multiple kernels, location optimized, tracking without collaboration.

(b) multiple kernels, location optimized, tracking with collaboration.

Figure 4.5.4: Multiple kernel tracking, with (bottom row) and without (top row)

collaboration.

97

Fig. 4.5.5 and Fig. 4.5.6 have the similar settings as in Fig. 4.5.4. The re-

sult with collaboration, row (b), again yields much more reliable reconstruction

performance of estimating the position, orientation and the scale of the magazine

cover.

(a) multiple kernels, location optimized, tracking without collaboration.

(b) multiple kernels, location optimized, tracking with collaboration.

Figure 4.5.5: Multiple kernel tracking, with (bottom row) and without (top row)

collaboration.

4.6 Remarks

To summarize, in this chapter, we present a detailed analysis to the criterion of

optimal kernel placement. An equivalent criterion is also derived, which has a

closed-form representation and enables a nice gradient-based algorithm to find

optimal kernel placement efficiently. Placement of temporal-stable multiple ker-

98

(a) multiple kernels, location optimized, tracking without collaboration.

(b) multiple kernels, location optimized, tracking with collaboration.

Figure 4.5.6: Multiple kernel tracking, with (bottom row) and without (top row)

collaboration.

nels and scale-invariant kernels are also studied.

99

Chapter 5

Conclusions

The purpose of this work is to cure the two major and frequently encountered sin-

gularities in kernel based tracking, which are concerned with kernel observability

and tracking stability. The contributions include (1) the theoretical results that

unify the study of the motion observability issue in most kernel-based methods

including single and multiple kernels; (2) a principled way of designing observ-

able kernels, i.e.. the multiple collaborative kernels, that can be easily gener-

alized to complex objects and motions; (3) an efficient computational paradigm

to cope with complex objects and motions due to the “collaboration” among a

set of inter-correlated kernels, each of which only takes charge of recovering a

simpler motion; (4) a closed-form criterion for choosing the optimal kernel place-

100

ment, on which a much more reliable tracking performance can be achieved; (5) a

gradient-based searching algorithm to find such optimal kernel placements, which

greatly reduces the computational cost compared with the commonly used ex-

haustive searching. These new theoretical results and new algorithms help us to

better understand and implement the kernel-based tracking method.

101

Bibliography

[1] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via

a sparse, part-based representation”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2004, vol. 26, no. 11, pp. 1475-1490.

[2] J. Benesty and T. Gansler, “A recursive estimation of the condition number

in the RLS algorithm”, Proc. IEEE Conference on Acoustics, Speech, and

Signal Processing, 2005, pp. 25-28.

[3] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto, “Recognition of human gaits”,

Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2001,

vol. 2, pp. 52-57.

[4] A. Blake and M. Isard. Active Contours. Springer-Verlag, London, 1998.

102

[5] M. Brooks, W. Chojnacki, D. Gaeley, and A. Hengel, “What value covari-

ance information in estimating vision paramaters”, Proc. International Con-

ference on Computer Vision, 2001, pp. 302-308.

[6] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1995, vol. 17, no. 8, pp. 790-

799.

[7] R. T. Collins, “Mean-shift blob tracking through scale space”, Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2003, vol. 2, pp.

234-240.

[8] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature

space analysis”, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 2002, vol. 24, no. 5, pp. 603-619.

[9] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid

objects using mean shift”, Proc. IEEE Conference on Computer Vision and

Pattern Recognition, 2000, vol. 2, pp. 142-149.

[10] D. Comaniciu, V. Ramesh, and P. Meer, “The variable bandwidth mean shift

and data-driven scale selection”, Proc. International Conference on Com-

103

puter Vision, 2001, vol. 1, pp. 438-445.

[11] T. F. Cootes, G. J. Edwards, and C. J. Taylor. “Active appearance models”,

Proc. European Conference on Computer Vision, 1998, pp. 484-498.

[12] D. Crandall, P. Felzenszwalb, and D. Huttenlocher, “Spatial priors for part-

based recognition using statistical models”, Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition, 2005, vol. 1, pp. 10-17.

[13] Z. Fan, Y. Wu, and M. Yang, “Multiple Collaborative Kernel Tracking”,

Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[14] K. Fukunaga, and L. D. Hostetler, “The Estimation of the Gradient of a Den-

sity Function, with Applications in Pattern Recognition”, IEEE Transactions

on Information Theory, 1975, vol 21, pp. 32-40.

[15] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic

Press, 1990, Second Edition.

[16] G.H. Golub and C.F. Van Loan, “Matrix computations”, 2nd edition, The

John Hopkins University Press, Baltimore, MD, 1989.

104

[17] G. D. Hager, M. Dewan, and C. V. Stewart, “Multiple kernel tracking with

SSD”, Proc. IEEE Conference on Computer Vision and Pattern Recognition,

2004, vol. 1, pp. 790-797.

[18] B. Heisele, T. Serre, M. Pontil, and T. Poggiom “Component-based face

detection”, Proc. IEEE Conference on Computer Vision and Pattern Recog-

nition, 2001, vol. 1, pp. 657-662.

[19] R.A. Horn and C.R. Johnson, “Topics in matrix analysis”, Cambridge,

Mass.: MIT Press, 1991.

[20] M. Irani and P. Anandan, “Robust multi-sensor image alignment”, Proc. In-

ternational Conference on Computer Vision, 1998, pp. 959-966.

[21] M. Irani, “Multi-frame correspondence estimation using subspace con-

straints”, Int’l. J. Computer Vision, vol. 48, no. 3, pp. 173-194, 2002.

[22] M. Isard and A. Blake, “CONDENSATION – conditional density propaga-

tion for visual tracking”, Int’l J. Computer Vision, 1998, vol. 29, pp. 5-28.

[23] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region

detector”, ECCV, 2004.

105

[24] Y. Kanazawa and K. Kanatani, “Do we really have to consider covariance

matrices for image features?” Proc. International Conference on Computer

Vision, 2001, pp. 301-306

[25] J.K. Kearney, W.B. Thompson, and D.L. Boley, “Optical flow estimation:

an error analysis of gradient-based methods with local optimization”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1990, vol. 9, pp.

229-244.

[26] C.S. Kenney, B.S. Manjunath, M. Zuliani, G.A. Hewer, and A.V. Nevel,

“A condition number for point matching with application to registration and

postregistration error estimation”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2003, vol. 25, pp. 1437-1454.

[27] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing physically

realistic human motion in low-dimensional, behavior-specific spaces”, Proc.

SIGGRAPH, 2004.

[28] J. Shi and C. Tomasi, “Good features to track”, Proc. IEEE Conference on

Computer Vision and Pattern Recognition, 1994, pp. 593-600.

106

[29] M. Singh, and N. Ahuja, “Regression based bandwidth selection for seg-

mentation using parzen windows”, Proc. IEEE International Conference on

Computer Vision, 2003, pp. 2-9.

[30] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, 1995,

First edition.

[31] J. Wang, B. Thiesson, Y. Xu, and M. F. Cohen, “Image and video segmenta-

tion by anisotropic kernel mean shift”, Proc. European Conference on Com-

puter Vision, 2004.

[32] R. Wildes, D. Horvonen, S. Hsu, R. Kumar, W. Lehman, B. Matei, and W.

Zhao, “Video georegistration: algorithm and quantitative evaluation”, Proc.

International Conference on Computer Vision, 2001, pp. 343-350.

[33] Y. Wu, G. Hua, and T. Yu, “Tracking Articulated Body by Dynamic Markov

Network”, Proc. International Conference on Computer Vision, 2003, pp.

1094-1101.

107

