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ABSTRACT

Context-aware and Attentional Visual Object Tracking

Ming Yang

Visual object trackingj.e. consistently inferring the motion of a desired target framage se-
guences, is a must-have component to bridge low-level impemmessing techniques and high-level
video content analysis. This has been an active and frugiéarch topic in the computer vision
community for decades due to both its versatile applicatiarpracticee.g. in human-computer
interaction, security surveillance, robotics, medicahgimg and multimedia applications, and di-
verse impacts in theorg.g. Bayesian inference on graphical models, particle filterkernel
density estimation, and machine learning algorithms.

However, long-term robust tracking in unconstrained emvinents remains a very challeng-
ing task, and the difficulties in reality are far from beinghqaered. The two core challenges of
the visual object tracking task are the computational efficy constraint and the enormous unpre-
dictable variations in targets due to lighting changespaeétions, partial occlusions, camouflage,
quick motion and imperfect image qualitiet¢c. More critical, the tracking algorithms have to deal
with these variations in an unsupervised manner. All thgetavariations in on-line applications
are unpredictable, thus it is extremely hard, if not implolesito design universal target specific

or non-specific observation models in advance. Therefbesgt challenges call for non-stationary



target observation models and agile motion estimationdignas that are intelligent and adaptive
to different scenarios.

In the thesis, we mainly focus on how to enhance the gengelid reliability of object-level
visual tracking, which strives to handle enormous varraiand takes the computational efficiency
constraint into consideration as well. We first present atiepth analysis of the chicken-and-egg
nature of on-line adaptation of target observation modeéctly using the previous tracking re-
sults. Then, we propose two novel ideas to combat unprédxiéctariations: context-aware track-
ing and attentional tracking. In context-aware trackimg tracker automatically discovers some
auxiliary objects that have short-term motion correlatiath the target. These auxiliary objects
are regarded as the spatial contexts to enhance the taggtvabon model and verify the track-
ing results. The attentional tracking algorithms enhaheervbustness of the observation models
by selectively focusing on some discriminative regionsdeshe targets, or adaptively tuning the
feature granularity and model elasticity. Context-awaaseking aims to search for external infor-
mative contexts of targets, in contrast, attentional tiragkries to identify internal discriminative
characteristics of targets, thus they are complementaggcb other in some sense. The proposed
approaches can tolerate many typical difficult variatidghgs greatly enhancing the robustness of
the region-based object trackers. Besides single objextiig, we also introduce a new view to
multiple target tracking from a game-theoretic perspectwich bridges the joint motion estima-
tion and the Nash Equilibrium of a particular game and hasalircomplexity with respect to the
number of targets. Extensive experiments on challengiagwerld test video sequences demon-

strate excellent and promising results of the proposedctlggel visual tracking algorithms.
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CHAPTER 1

Introduction

Visual tracking in the computer vision community refershe efforts of consistently inferring
the motion of the desired targetsg. feature points, contours, regions of interest, and asteal
objectsetc, from image sequences captured by single or multiple casnestach is a fundamental
component to bridge low-level image processing techniqmeishigh-level video content analysis.
In particular, the task is often referred to as visual objestking to emphasize the cases where
targets bear some semantic meaning. Visual tracking has@aixtensive research interest since
the early 1970s. In the new century, the rapid growth of camguypower and the sharp drop of
storage cost, especially as video cameras become pervasos& more research efforts on visual
tracking. The popularity and significance of visual tragkin vision originates from its numerous
applications in practice and diverse impacts in theory.

Inference of the motion parameters of some targets fronoyielg. the trajectories, scale and
orientation, and joint pose configuration of the targetsansndispensable component in many
applications. To list a few typical applications in diffateareas: human-computer interactiery.
hand [L0 and face tracking99] for gaming, and eye gaze trackint](] for disability assistance;
security surveillanced3], e.g. airport surveillance, door access control, and home mongp
medical image processing,g. tracking cardiac borders in MRI images] or in echocardiog-
raphy [L19; multimedia applicationse.g. face and people tracking for video conferencirid][

lip tracking in audio-visual analysi$§]; activity and event analysi®.g. gesture trackingl0dg],



facial expression tracking3f]; and roboticse.g. autonomous vehicle and intelligent traffic con-
trol [ 76, 88, 38]. Most of the aforementioned applications heavily rely ond-duration, efficient
and robust tracking in an unconstrained environment, wisithe ultimate goal of visual tracking
research efforts.

Towards this end, numerous novel algorithms as well as aflotassical algorithms were
developed and applied to visual trackiregg. the Kalman filter H1], probabilistic data associa-
tion filtering (PDAF) [5, 78], multiple hypothesis tracking (MHT)7[, 1], Bayesian inference
on graphical models, particle filtering or sequential Motel&€§15, 20, 47, 106 (also known
as CONDENSATION in vision literaturetf]), subspace analysi®,[36, 61, 11, kernel-based
density estimationl5, 32, 22, 23, 21], variational analysisi9, and various machine learning
algorithms, such as exemplar-based pattern learnifig $upport vector machine (SVMY], rel-
evance vector machine (RVM).(1] and on-line boostingd9, 5, 2. In addition, tracking has
greatly benefited from and interacted with many relatedaresetasks in visiore.g.local feature
descriptor B4, 62, 68], object detectionq6] and recognition 24], image segmentatiorf], and
background modeling[7].

Although recent years have witnessed remarkable advarwoeatlintheory and practice, visual
tracking remains a challenging task and the diverse diffeessiin reality are far from being con-
guered. In fact, it is the set of difficulties that a task fatted shape its identity and scope. So the
foremost question is what are the core challenges that ctesize the identity of visual tracking
and distinguish it from other similar tasks? Most of the wiswacking algorithms are confronted
by two slightly contradictory challenges: the demands fanputational efficiency and the capa-
bility to handle the unpredictable variations of the tasg&@omputational efficiency is the inherent
constraint for tracking since real-time processing isl¥dathe successes of most online applica-

tions and even for off-line video analysis applications tuthe vast video data. Especially, when
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the motion parameters are in high dimensional space, itrie tonsuming to explore the large
solution space. Without this computational constrai@icking is no longer a stand-alone problem
from detection and recognition tasks. The other fundamehi@lenge is the dynamic nature of
the targets due to enormous and unforeseeable variatioaeal#orld scenarios. In unconstrained
environments, there are too many factors that may affecintlage evidence of the targees.g.
background may be cluttered or even contain some camouflggets as distractions. lllumina-
tion conditions may change evenly or unevenly so as to affectarget appearance, moreover,
partial occlusion, out-of-plane rotation, target defotio® and quick motion all may present se-
vere threats to long-term robust tracking. All these vaiet are unpredictable, and therefore it is
extremely hard, if not impossible, for a tracker to consiaéthe potential variations and identify
target specific or non-specific image invariants in advadadling further complexity, the visual
tracking algorithms have to deal with these variations iruasupervised and incremental man-
ner. After initialization, the trackers will have no supisian to verify the tracking results and can
hardly discern whether the appearance of the target is ainguog partial occlusion is happening,
so the estimation error could be accumulated. Besides ablkdrs are expected to be insensitive to
inaccurate target initialization and low image resoluttwrpoor quality. In summary, the demand
for computational efficiency and the dynamic nature of taeking scenario are the two core chal-
lenges that tracking algorithms have to address, which iatenguishable from object detection
and recognition tasks where the variations are expected tmered by the training samples and
the computation is not the topmost concern.

In the thesis, we mainly focus on how to enhance the gengelid reliability of object-level
visual tracking given no prior knowledge about the targ€ds.-line adaptation of target models

to follow the dynamic changes is a natural and straightfodvedoice to handle the unpredictable
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variations. But analyzed in an appearance-based subspa@ty framework, we find that di-
rectly updating target models with previous tracking resid a chicken-and-egg problem due to
the unsupervised nature of tracking. Therefore, we ingati several novel approaches adapt-
ing region-based target models for object-level trackongdmbat a target's dynamic appearance.
We propose two novel ideas: context-aware tracking anataiteal tracking. In context-aware
tracking, the tracker automatically discovers some aamyilobjects that have short-term motion
correlation with the target as the spatial contexts whiagherhance the target observation model
and provide additional verification. Inspired by psychatad) findings, the attentional tracking
algorithms augment the robustness of the observation mdyeselectively attending some dis-
criminative regions inside the targets, or adaptivelyngrthe feature granularity and model elas-
ticity. Context-aware tracking aims to leverage externfdrimative contexts of targets to verify
the tracking results, in contrast, attentional trackingstto identify internal discriminative char-
acteristics of targets to enhance the robustness of trgcitins they are complementary to each
other in some sense. These approaches are robust to quited#ffeult casesg.g. out-of-plane
rotation, complex partial occlusions, and inaccuratealiation, so as to achieve promising re-
sults on challenging real-world test sequences. Besidgtesiiject tracking, we also introduce
a new view to multiple target tracking from a game-theorpgcspective which bridges the joint
motion estimation and the Nash Equilibrium of a particulamg. The advantage of this multiple
target tracking algorithm is that it is decentralized and laear complexity with respect to the
number of targets.

The thesis is organized as follows. Related work are reviewe@hapter2 as well as the
Bayesian inference formulation of visual tracking. The kbit-and-egg nature of on-line adap-
tation is analyzed in Chapterin a subspace tracking algorithm. Mining auxiliary objefts

context-aware tracking and attentional tracking in termspatial selection, feature granularity
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and model elasticity adaptation are present in Chapterd Chapteb, respectively. At the end,
Chapter6 introduces the game-theoretic multiple target trackingadading remarks are given in

Chapter7.
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CHAPTER 2

Related Work

Countless tracking algorithms have been proposed in paatlds@and can be reviewed from
different perspectives and categorized with differertecia, for instance, in terms of the particular
targets of interest®.g. head ], pedestrian$3], or vehicles B€], etc; in terms of the modalities
and cues usea.g. appearance-basedl] or shape-based!f]; in terms of the target representa-
tions, e.g. subspace base@][or density based1[]; in terms of the difficulties that are focused
on, e.g. robust to scale changesd, lighting changesj1], or occlusions [7]; or in terms of the
theoretical basig.g. manifold [55, 56] or variational analysisiY], etc. We refer readers tal.[LJ
for a fairly comprehensive literature survey. In this cleaptve will first introduce the popular
technical tasks in the tracking area and then concentratieeoprobabilistic inference framework
and study the related tracking algorithms in terms of theatiom estimation strategies and the

likelihood model’s design philosophy.

2.1. Bayesian Inference Framework for Tracking

Historically, visual tracking is regarded as a generalurabf target tracking in radar applica-
tions where the estimation of the target’s 2D motion tragecin a cluttered environment is the
primary goal. This goal has led to many illuminative and sehworks in the 1960s and 1970s,
e.g. Kalman filters p1] where tracking was formulated as recursively estimatiidglién states
in discrete-time linear dynamical systems, probabilidata association filtering (PDAF)] and

multiple hypothesis tracking (MHT)7F] that estimates the data association probabilistically in
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noisy environment. These algorithms were quite successfddar target tracking and inspired
many visual tracking algorithms. Images can provide muchet observations which lead to
more versatile tracking tasks rather than point tracking radar signal. Thus, the goals of visual
tracking evolve from tracking the translation motion of iIggafeature pointssf, 18] and estimat-
ing the dense image point correspondences from the motitimedbrightness patterns in optical
flow [37, 63, 10, 81] to inferring the affine motions of the contours and shapés 19 39 and
the regions of interest®] 8, 15]. Besides tracking a single target, tracking multiple inelegent
targets simultaneously , 18, 64, 78, 47, 69, 115 34, 117, 115 54], which is complicated by the
coalescence phenomenon that multiple trackers are trappsthgle image evidence, is further
developed to the more ambitious task of estimation of thd joiotion configuration of articulated
objects p2, 20, 107, 44, 102, 12, 108, 77].

Despite the versatile formulations, the majority of traakialgorithms fall into the match-
and-search framework where searching a set of hypotheads te the one bearing the highest
similarity to the target model, and that one is selected adrtcking result. Usually, the target
is abstracted to certain concise representations whichbaayased on different modalitiesg.
appearance, color, and textwgte. Given the historical tracking results, some predictionstiie
current frame can be obtained with temporal correlationerira set of hypotheses are selected
either by analyzing the bottom-up image evidence or chgosie top-down model parameters.
The hypothesis yielding the best matching measurementettatiget model is picked up as the
tracking result, and so on and so forth.

In a more principled view, this procedure can be formulatea iprobabilistic Bayesian in-
ference framework, where the hidden states of the targetraadge observations are denoted by

X; = {x1,---,x,} andZ, = {z,,--- ,z}, respectively, and the tracking result is determined by
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the maximuma posteriori(MAP) estimation,
X = argmax p(X;|Zy). (2.1)
X

Since real-time processing is preferred in tracking, miggirdhms maximize tha posteriori
x; = argmax,, p(x;|Z,) in a recursive manner rather than optimizing the whole secgiethough
maximizing p(X;|Z,) is feasible at the cost of some latency. Further, by assuthi@dvarkov
properties in the time axis, tracking is well formulated asrderence problem on a hidden Markov
chain as represented by the graphical model in Eij.where we have(z,|x;, Z,_1) = p(z|x;)
andp(x;|X;_1) = p(x¢|x;_1) due to the chain structure and Markov property. Then,

p(Zt’Xu thl_)p(xtlztfl)
p(Zt | thl)

P(ze|x0) [, pOKe[Xe1)P(Xe1]| Zio)dy
p(zt’thl) .

P(Xt|zt)

(2.2)

Therefore p(x;|Z;) can be derived from(x;_,|Z,_,) recursively with the help of(x;|x;_;) and
p(z¢|x;) which are called aslynamic modehnd observation or likelihood modetespectively.

p(z|Z;_,) is regarded as a normalization factor unrelates,to

P(xIx )H !
P(ztlxt)
Zeq Ze Zes1

Figure 2.1. Markov chain representation of visual tracking.

Under this probabilistic formulation, the target and oliadon representations are encoded

in x;, andz,, respectively, which are closely coupled with the obséovamodelp(z;|x;) that
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determines the similarity measurement of a hypothesisnag#he target model. The dynamic
modelp(x;|x;_,) delineates the temporal correlation of the target stateadoessive frames. It is
often assumed to be a constant velocity model or a simple tmess model to indicate that the
target states will not change dramatically in consecutigenes. The dynamic model can help to
generate the hypotheses set and save some computationaypobtrhave fundamental impact on
the tracking performance.

Within this inference framework, the two essential and dssees in tracking are 1) the ob-
servation or likelihood model that encloses the targetasgmtation and similarity measurements,
and 2) the motion estimation strategy that determines haptionize or searcl; that maximizes
p(x;|Z;). These two issues are not independent but highly correlathith correspond to the
two core challenges of trackinge. enormous unpredictable variations and the computatidnal e
ficiency constraint, as mentioned in ChapierTherefore, we can review the existing approaches

from two threads by studying how they handle these two issues

2.2. Motion Estimation and Observation Model
2.2.1. Motion Estimation strategy

The motion estimation strategy to search for the optimaboally optimal hidden motion param-
etersx; to maximize thea posteriorip(x;|Z;), together with the similarity measurement which is
usually the basic computational unit, mainly determinesabmputational efficiency of a tracking
algorithm. A straightforward and effective method is tofpen local exhaustive search around
the prediction given by the dynamic model based on the pusvitacking results. This can be
done by searching a predefined range of motion parameéfei ffinding the mode in a matching
confidence map or occupance méap 18, 1, 114, 94] in coarse-to-fine or hierarchical ways||

This scheme implicitly assumes the target state’s tramsis smooth and only utilizes one mode
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of p(x;_1|Z;_,). However, evenly distributing the computation power indeerete neighborhood
around the prediction is not efficient and th@osteriorip(x,_|Z;_) seldom has only one mode
in reality. Therefore, the milestone CONDENSATION methdd,[46] proposed to represent
the a posterioridensity by weighted samples and propagate the conditiemadity by sequen-
tial Monte Carlo which is also well-known as particle filteginIn addition, a proposal density
similar as thea posterioridensity can well guide the importance sampling. The parfittering
method is capable of reserving multimodal densities andrsplhard optimization problems by
Monte Carlo simulation that has greatly boosted visual iragkesearchd0, 78, 41, 12, 118, 39).
However, when the target state involves many motion parameters to be optimized, 6 affine
motion parameters or joint motion configuration of artitethobjects, the high dimensional so-
lution space needs a large amount of samples to be coveréch widuces the curse of dimen-
sionality problem, and it is hard to know how many samplessafécient to approximate a high
dimensional density with multiple modes. Then, it would ffeceent and ideal if the optimum or
local optimum of the maximization qf(x;|Z;) could be solved analytically, by gradient descent
search §1, 15, 16, 13, 27] or by Expectation-maximization (EM) estimationh(3, 49, 90]. This
requires the similarity measurements to be differentiabita respect to the motion parameters,
but some parameters.,g.scale and rotation angle, can hardly satisfy this requirgraed need to
resort to local exhaustive search or sampling method. Agratew scheme to accelerate the mo-
tion estimation in searching the solution space is to botf@indexing algorithms from database
field, e.g.the KD-tree 12, 11] and locality sensitive search (LSH}J, 3], to pre-hash the feature

vectors for multiple queries/matching9, 11, 117.
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2.2.2. Target observation model design

Observation models are critical in tracking and are respts$or capturing the essential of tar-
gets and combating against variations. They define whagtigets are that the trackers are chas-
ing in feature space and contribute to the objective funetithat the motion estimators need to
optimize. Firstly, ideally some visual invariants are extee to be identified for the targets by
extracting efficient features based on single modadity, pixel intensities 7, 63], appearance
template B1], skin color [L03, edge-detection along curve normais], steerable filter responses,
kernel-weighted feature densityd] etc, a set of feature points or interest regioasl, 116 112,
114, 94], or by combining multiple cues3] 104, 78, 106. Although some features are robust to
certain variations, such as gradient orientations and ¢oétograms that are insensitive to illumi-
nation and in-plane rotation respectively, general iraratrfeatures against all possible variations
are extremely hard to find, if not impossible.

As a further step, observation models try to cover the ta&rgeriations by involving exem-
plars P3] or off-line training [4, 10(. Off-line training can learn more complex visual invarigan
but it requires collecting sufficient training samples fapeecific target and some variations such
as partial occlusion can hardly be covered by limited tregrsamples. These restrictions limit the
application scenarios of pre-learned observation models.

An intuitive question to ask is, as the target appearanamavitably dynamic, why do the
trackers use stationary and fixed observation models? fdnereecently more research efforts
have examined to how to adapt the observation model to fdl@warget variations. There are
mainly three ways to extend to non-stationary observatiodets,i.e., 1) on-line adaptation of
the observation model which means the parameters of olteervaodels are adaptive, including

on-line appearance modelsd 119, adaptive Gaussian color mixturgd], incremental subspace
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update 6, 80, 61, 56], transductive co-inferencé D3 104, 10€; 2) dynamic feature selection §,

9¢]; 3) online learning §9, 5, 28] which means a classifier is trained with the training sasple
collected on-line. On-line adaptation is capable of harglinexpected target variations but tends
to suffer from the drift problem. The robustness of the okaston model also can be enhanced by
incorporating multiple trackers and inferring the moticargmeters in a collaborative way, as in
multiple kernel tracking32, 22, 23, 21], part-based trackingl[.€], and fragment trackingl].

Another issue in observation model design is that most featused in observation models can
only focus on certain characteristics of targets, for edamnipe existences of certain local visual
patterns or coherence with certain overall feature skegistConsequently, successful tracking
methods for certain type of targets may not adapt to othgetareasily. Therefore, for generally
applicable trackers, matching need to be not only adaptitrerespect to target variations but also
flexible for distinctive targets. Specifically, for objdetrel tracking, two key aspects in designing
observation models shall be flexibles. the abstraction level of features, and the way to take into
account the geometrical structures of targets.

In the thesis, we will mainly concentrate on the line of reskan how to enhance the robust-
ness of the observation model for dynamic targets whileeastme time taking the computational
efficiency constraint into consideration. By analyzing tla¢une of on-line adaptation in tracking,
we propose two novel approaches, context-aware trackidg#antional tracking, by taking the
spatial context information of targets into account, anlédeely attending different discrimi-
native characteristics of targets. These new approackegugte different from the conventional
observation model adaptation in that no new features aggpocated or training samples are col-
lected for on-line learning but some correlated auxilidbjeats are identified or a subset of more

discriminative characteristics are selected from a riogpeamodel during tracking.
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CHAPTER 3

On-line Appearance Model Adaptation

Without any prior knowledge about the target, the appe@&@asually the only cue available
in visual tracking. However, in general the appearancesfee non-stationary which may ruin
the pre-defined visual measurements and often lead to m@d&ilure in practice. Thus, a nat-
ural solution is to adapt the observation model to the natiestary appearances or equivalently
to dynamically select the discriminant features. Howetlais idea is threatened by the risk of
adaptation drift that originates in its ill-posed natureless good constraints are imposed. In this
chapter, we present an in-depth analysis of on-line adapté&r appearance-based observation
models and show that it is a chicken-egg problem in naturéréictdy using the latest previous
tracking results to update the models. To alleviate the afstirift in on-line appearance model
adaptation, we propose to enforce three novel constranthé optimal adaptation: (1) negative
data, (2) bottom-up pair-wise data constraints, and (3ptadi@n dynamics, which are different
from most existing adaptation schemes. The general ad@apiaitoblem is substantialized as a
subspace adaptation problem which can be solved in a cfosed- Further, to avoid solving
eigenvalue decomposition for large matrices on-line, atpmal iterative algorithm for subspace

tracking is proposed and applied to test sequences in ayafiaon-stationary scenes.

3.1. The Nature of On-line Adaptation

Visual appearance is critical for tracking, since the targéracked or detected based on the

matching between the observed visual evidence (or measuatsjnand the visual appearance
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model. The visual appearances of an object may bear a maumfohe image space. Depending
on the features used to describe the target and on the vesiaiche appearances, such a man-
ifold can be quite nonlinear and complex. Therefore, themenrity in the appearances largely
determines the degree of difficulty of the tracking task.

In the observation models with fixed appearance templdiesnbtion parameters to be esti-
mated (denoted by) are the only variables that affect the appearance obsangatdenoted as
z). We denote the hypothesized image observations gieyz(x). Then the observation model
needs to measure the similarity ofandz(x), or the likelihoodp(z|x) = p(z|z(x)). If z is a
vector,i.e, z € R™, this class of observation models is concerned with thewdcs between two
vectors. Most tracking algorithms employ this type of olbadon models. There are cases where
the motion parameters of interest are not the only coniohub the appearance changes, but there
can be many other factors. We denote itA9x, ). For example, the illumination also affects the
appearancedl] (e.g, in tracking a face), or the non-rigidity of the target chasthe appearances
(e.g, in tracking a walking person), but we may not be interestac:covering too many delicate
non-rigid motion parameters. Thus, there are uncertaimighe appearances model itself, and the
observation model needs to integrate all these unceeaing.,

plaix) = [ plalx,0)p(O)d0 = | plali(x. ))p(61x)5.

0

In other words, given a motion hypothesis its hypothesized observatiatix) is no longer a
vector, but a manifold iIrR™, and the observation model needs to calculate the distanite o
evidencez to this manifold. Depending on the free parameteuch a manifold can be as simple

as a linear subspacg,[31], or as complex as a highly non-linear orig §3].
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Although the appearance manifolds exist, in most caseg ateequite complex. Learning the
manifold off-line is a good choice, but, in real applicagpme may not have the luxury of being
able to learn the manifolds of arbitrary objects for two mras we may not be able to collect
enough training data, and the applications may not allowoffi#éne processing. Thus, we need
to recover and update the appearance manifolds onliedp, 104, 61] during the tracking. In
general, we make a reasonable assumption that the manifaldheort time interval is lineaBp,
80]. The non-linear manifold is approximated by piece-wisedr subspaceéf] or mapped to
low dimensional manifold using non-linear mappirigfi The learned general subspace could
be updated to a specific one during the trackifdg.] The method of online feature selection,
e.g, in [14, 9§], can also be categorized to on-line adaptation, sincedlexi®d features span a
subspace. In these methods, model drift is one of the commdfumadamental challenges.

Although the appearance manifold of a target can be quiteotoand nonlinear, it is reason-
able to assume the linearity over a short time interval. ism ¢thapter, we assume the appearances
(or visual featuresz € R™ lie in a linear subspacé spanned by linearly independent columns
of a linear transformA. € R™*", i.e, z is a linear combination of the columns &f. We write
z = Ay. The projection ofz to the subspacR” is given by the least square solutionof Ay,

i.e.,

y = (ATA) ATz = Alz,

whereAT = (ATA)7!'AT is the pseudo-inverse @. The reconstruction of the projection Ri"
is given by:

z=AA"z =Pz,

whereP = AAT ¢ R™ ™ is called theprojection matrix Unlike the orthonormal basis, the

projection matrix is unique for a subspace. We can decomfiesélilbert spaceR™ into two
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orthogonal subspaces:ralimensional subspace characterizedtbgind its(m — r)-dimensional
orthogonal complement characterized®y = I — P.
Therefore, the subspagedelineated by a random vector proc¢sg$ is given by the following

optimization problem:
P* = arg minE(||z — Pz||*) = arg min E(||P*z||?).
P P

It is easy to prove that the optimal subspace is spanned bygheacipal components of the data
covariance matrix. This problem is well-posed since thepasfrom{z} are given, thus the
covariance matrix is known.

However, in the tracking scenario, the problem becomes:

{P{,x{} = arg minE(||P;z(x)|*), (3.1)

P,y

wherex;, is the motion parameters to be tracked. In this setting, wdaing a dilemma: ifx}
can not be determined, then neither &rand vice versa. Namely, given any tracking result, good
or bad, we can always find an optimal subspace that can bdsirexps particular result. Thus,
this is a chicken-and-egg problem, and this problem is evers@vsince no constraints on either
P or {x} are imposed. Therefore, this problem is ill-posed and theditation allows arbitrary
subspace adaptations.

From the analysis above, it is clear that constraints nedzetadded to make this problem
well-posed. A commonly used constraint is the “smoothne$she adaptationi.e., the updated

model should not deviate much from the previous one, and exasting methodsi[4, 36, 49, 80]
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solve this dilemma in the following manner:

x; = argminE(|[Pi,z(x)|])
(3.2)
P; = argminE(||[Pz(x;)|*).

:
In this adaptation scheme, at timehe data that are the closest to the subspace at the previous

time instant are found first, and then are used to update tispaage. This approach is valid only if

the following assumption holds: the optimal subspacde-at is also optimal for time. In reality,

this assumption may not necessarily be true, since a dat thait is the closest to the subspace

L, may not be the closest #, ;. Thus, we often observe that the model adaptation can npt kee

up with the real changes and the model gradually drifts aWéyen the data found based by

in fact deviate fronP; significantly, the adaptation is catastrophic. Althougk #pproach makes

the original ill-posed problem in E®.1well-posed, it is prone to drift and thus not robust.

3.2. Appearance Adaptation with Bottom-up Constraints

From the analysis in Se@.1, it is clear that we need more constraints than the adaptatio
dynamics constraint alone. In the tracking problem, at tinteefore the target is detected, all
the observation data are unlabelled dat, we can not tell whether or not a certain observation
should be associated (or classified) to the target appeasrispace. The adaptation dynamics
constraint is a top-down constraint, which does not provideh supervised information to the
data at time. Therefore, to make the adaptation more robust, we needaddentify and employ
bottom-up data-driven constraints, besides the smoatrowsstraint.

In this chapter, we propose to integrate the following thoeestraints:

e Adaptation smoothness constraint3he smoothness constraints are essential for the

tracking process, since the process of the data at tisteould take advantage of the
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subspace at time— 1. There are many ways to represent and use this type of corstra
The most common scheme as indicated in Seleenforces a very strong smoothness con-
straint. In our approach, we treat the constraint as a penddich can be balanced with
other types of constraints. The penalty is proportionahtdistance of two subspaces,

i.e., the Frobenius norm of the difference of the two projectiatnoes||P; — P;_|

Fa

e Negative data constraintgt the current time, although it is difficult to obtain the posi-
tive data {.e., the visual observations that are truly produced by thestjrgegative data
are everywhere. In fact, positive data are very rare in allg#t of possible observation
data. The negative data may help to constrain the targetagpee subspaces. We denote
the positive data at timeby z;", and the negative data hy;

e Pair-wise data constraintsGiven a pair of data points, it is relatively easier to deieem
whether or not they belong to the same class. Such pair-véitee @bnstraints are also
widely available. A large number of pair-wise constrain@yntead to a rough clustering
of the data. Based on the smoothness constraints, we camifetea set ofpossible

positivedata to constrain the subspace updating. The detail is in3S2d

3.2.1. Formulation

When processing the current framhethe following are assumed to be known: (1) the projection
matrix of the previous appearance subspRee;, (2) a set of negative data collected from the
current image frame{z, }, (3) a set of possible positive data identified based on tlrewise
constraints{z, }, (4) previous negative covariance mat€i¥ , and positive covariance matrix
C,.

An optimal subspace should have the following propertiee Megative data should be far

from their projections onto this subspace; the positivagabuld be close to their projections, and
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this subspace should be close to the previous one. Thereferimrm an optimization problem to
solve for the optimal subspace at current tilmne

argAInin Jo(Ay) = argAlrnin{E(Hzt+ — Pz ||?) + E(||Psz; ||°) + o||[P: — Piy||7], (3.3)

whereP, = A,A] is the projection matrix and: > 0 is a weighting factor. We denote by
C/ =E(z/z"), andC; = E(z;z, 7). Itis easy to show Ec.3is equivalent to the following:

argmin J;(A;) = argmin{tr(P;C; ) — tr(P,C/) + a||P; — P,_1||7.}, (3.4)
At At

wheretr(-) denotes the trace of a matrix.

3.2.2. An closed-form solution

Theorem 1. The solution to the problem in E&.4 is given byP, = UU?, whereU is
constituted by the eigenvectors that corresponds to thesmallest eigenvalues of a symmetric
matrix

A

C=C, —C/ +al —aP,_ ;.

The proof of this theorem is given in the Appendix A. Pleaseetivat the solution t@\, is not
unique, but the projection matrik; is. If we require thatA; is spanned by orthogonal vectors,
thenA, = U. Please also note the eigenvalue€afay be negative.

By considering the data in previous time instants, we can dseatting factor3 < 1, which
can down-weight the influence of the data from previous timEss is equivalent to the use of
exponentially-weighted sliding window over time. Thus, @& write:

t

C, = Z B *E(zyz) ) = BCi_y + E(zy2z]).

k=1
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This way, we can update bo@," andC; .

3.2.3. An iterative algorithm

Sec.3.2.2gives a closed-form solution to the subspace, but this isolivolves the eigenvalue
decomposition of an x m matrix C, wherem is the dimension of the visual observation vectors
and thus can be quite large. To achieve a less demanding tatiopy we develop an iterative
algorithm in this section, by formulating another optiniaa problem as:

argmin Jo(U) = argmin{E(||z] —UU” 2/ ||))+E(||[UU z; ||*)+a|[UUT -P,_,||3} s.t. UTU =1,
U U

(3.5)
whereU € R™*" is constituted by orthonormal columns. The gradient &f is given by:
VJ,(U) = &g{(JU) x (C; = Cf +al — aP, ,)U. (3.6)
To find the optimal solution otJ, we can use the gradient descent iterations:
U* «— U — v (U, (3.7)

during which the columns df* need to be orthogonalized after each update.
To speed up the iteration, we can also perform an approxamatWhen the subspace is to be
updated by the positive datd, the PAST algorithm 109 can be adopted for fast updating. When

the updating is directed by the negative dgtawe can use the gradient-based method in3E&g,.

3.2.4. Pair-wise constraints

Although the target can not be detected directly, the lowllewage features which distinguish the

target object from its neighborhood may give some hints att@itarget. Here we employ a graph
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cut algorithm BZ] to roughly cluster some sample appearances collectedhvita predicted target

regions. Then we may be able to find possible positive datanagdtive data from bottom-up.
Suppose the predicted region for the target is a rectangedéon centered dtu, v) with width

w and height.. We draw uniform samples.€., 15 x 15 image patches) to cover a rectangle region

(u £+ w,v £+ h). For each sample patch, the kernel-weight=d hue histogranh with 64 bins is

calculated. The affinity matrix, obtained based on the sinty of all pairs of these histograms, is:

S = [S,], whereS;; = exp { (plhi by) = “>2} , (3.8)

202

wherep(-) is the Bhattacharya coefficient, is the mean of all coefficients; is their standard
deviation. These sample patches can be groupedinicclusters by the eigenvalue decomposition
of the affinity matrix.

It is not necessary to have a perfect clustering, as obsemnvedr experiments. The image
region delineated by the cluster with the minimum méaxlistance to the previous target subspace
indicates the possible locations that the target may ptedarpractice, we can simply treat its
geometric centroid as the possible location of the targdithe corresponding appearance vector

as the possible positive datd.

3.2.5. Selecting negative data

The negative data should be selected carefully. Because ifig¢bative data are too far from the
target, the data point may already lie in the orthogonal dempnt of the target subspace, then
minimizing the projections of the negative data may not h&lpaddition, if the negative data are

too close to the target, they may lie partly in the target pabs such that the estimated target

subspace is pushed away from its true place. Our selectioregdtive data is heuristic based
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on the clustering in Se@.2.4 in the image regions spanned by all the negative clustees, w
find the locations whose appearances (or features) are ttldke previous target manifold, and

treat these appearance data as negativezgaita order to distinguish the target from the negative
clusters. This heuristic works well in our experiments, &uhore principled selection deserves

more investigation.

3.3. Experiments and Discussions
3.3.1. Setup and comparison baseline

In our experiments, we aim to recover the motion parameter {u,v, s}, where(u,v) is the
location of the target andis its scale. The corresponding appearance region is nizedatio a

20 x 20 window and rasterized to a feature vectoe R*. Since the target appearances during
tracking may become totally different from the first framlee remedy of always including the
initial appearance in the model4, 36] does not apply.

For comparison, we implemented a subspace updating trackdar to the method ingq],
where the nearest appearance observatiémthe previous target subspaee ; is used to update
the orthonormal basis of the subspace by using Gram-Sclamditiropping the oldest basis. We
refer to this method aklearest Updating The method is referred to &earest+Negativevhen
the positive data are collected by the nearest scheme anedfa¢give data are used in updating the

same way as in our approach. In all these methods, the aepapiplies everyt frames.

3.3.2. Impact of the positive and negative Data

In this quantitative study, we show that the use of negative ossible positive data do help.
We have manually annotated a video wibD frames, in which a head presentd&)° out-of-

plane rotation, and collect the ground truth appearance fdateach frame (denoted hy). The
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comparison is based on té& distance of the ground truth daza to the subspaces estimated by

various methods. A smaller distance implies a better method

1600 -

Nearest Updating 1600 - . Nearest+Negative
£ Our approach

Nearest+Negative

1400 1400 |-

1200 | 1200 H
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(a) Nearest Updatings. Nearest+Negative Updating (b) Nearest+Negative Updatings. Our approach

Figure 3.1.Comparison of the distances of the ground truth data to the updated sebspac
given by three schemes.

As shown in Fig3.1(a), the distance curve for thidearest+Negativecheme is slightly lower
than that folNearest Updatingshowing negative data can help to keep the adaptation away f
the wrong subspaces. We also observed in our experimenthéaegative data themselves may
not be able to precisely drive the adaptation to the rightggaWe compare the proposed method
with Nearest+Negativén Fig. 3.1(b), in which the curve of our approach is apparently lowanth
that of Nearest UpdatingThis verifies that the possible positive data from bottgmda help.

These two comparisons validate that the proposed approachae capable of following the
changes of the non-stationary appearances. Some samplesfeae shown in Fig.2, where the
top row is the results of the proposed method, the middle twaws the location of the possible
positive cluster and possible positive data is shown atdpdéft corner of each frame, and the
bottom row shows the results dfearest Updatingand the nearest data is shown at the top-left

corner as well.
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Figure 3.2. Tracking a head with80° rotation head180. avi ]. (top) our method, (mid-
dle) clustering, (bottomiNearest Updating

3.3.3. Impact of the clustering procedure

In this experiment, we compare our method witharest Updatingn the situation of partial oc-
clusion. We need to track a face, but the partial occlusiokes# difficult when the person drinks

and the face moves behind a computer.

Figure 3.3.Clustering performance ihiace. avi : top row shows the drift process of
Nearest Updatingiround frame 272; middle row lists 6 positive data at frame 272; bottom
row lists 6 positive data at frame 284.

When the face moves slowly behind the compulgarest Updatinglrifts and erroneously
adapts to a more stable appearan@s, a back portion of the computer. In Fig.3, the top row
illustrates this drift process in detail. The middle row iig.F3.3 presents 6 appearance samples
from the possible positive cluster in our method at the 2vfdame. Obviously, some of them

are not faces, since the clustering is quite rough. But ouristeriof selecting the centroid of the
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cluster does help and leads to a correct adaptation. Siynilhe bottom row shows the situation
of our method at the 284-th frame. As the person moves upwardnethod correctly follows the

face.

Figure 3.4.Tracking partial occlusion targef fce. avi ]. (top) our method, (middle)
clustering, (bottomNearest Updating

This also illustrates that a rough clustering is sufficiemtdur method which is more robust
than Nearest Updating Some sample frames are shown in R3g4, where the top row is our

method and the bottom row is that Mearest Updating

3.3.4. More test sequences with rotations and illuminationltanges

Fig. 3.5shows the results of tracking a head presertiitij out-of-plane rotation. The appearances
of different views of the head are significantly differentjish makes the tracking difficult and also
challenges the adaptation. Our experiment showsNeatest Updatingends to stick to the past
appearances and thus reducing the likelihood of includewg appearances. For example, when
the front face gradually disappears, this scheme is unakdelapt to the hairs to track the back
head. In all of our experiments, this scheme loses track heriace fades away. In contrast,

since the bottom-up informatiom €., the negative and possible positive data) hints the emgrgin
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appearances, our method can successfully track the hehdugh the bottom-up processing is

quite rough.

Figure 3.5. Tracking a head witl360° out-of-plane rotationfjead360. avi ]. (top) our
method, (bottom) clustering.

In general, 2D in-plane rotation also induces significar@ngjes to the target appearance. In
Fig. 3.6, the black background is similar to the panel of the watcthdhat the adaptation in
Nearest Updatingleviates from the true subspace and it drifts rapidly. Orctir@rary, although
the proposed method is also distracted at frame 444, it estalskcover quickly thanks to the help

from the pair-wise constraints.

Figure 3.6.Tracking a watch with in-plane rotationsdt ch. avi ]. (top) our method,
(bottom) clustering.

In Fig. 3.7, we demonstrate the performance of our algorithm for laligenination changes.
Nearest Updatingvill soon lose the face after the sudden lighting changesesall observations

are far from the target subspace thus the samples uséekrest Updatingo update the subspace
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Figure 3.7.Tracking a face with large illumination changed.i pht . avi ]. (top) our
method, (bottom) clustering.

are kind of random. While, in our method, selecting the cedwbthe positive clustering to update
the model ensures the the samples used are consistent.

Fig. 3.8 shows the results of tracking the head of a person walking@akenvironment. The
appearance of the head undergoes large changes, and teals@iscale changes. Our result
shows thatNearest Updatinglrifts to the background when the appearances of the blackhaa
the subspace has initially learned almost disappears.h#ipigens when the person moves towards

the camera. On the other hand, the proposed method can waoifkitably and stably in the case.

Figure 3.8. Tracking a headval ki ng. avi ]. (top) our method, (bottom) clustering.

3.3.5. Discussions

All the above experiments have validated the proposed approWhen the target model experi-
ences dramatic changes, we can explain the reason why ti®asesharing the same nature as

Nearest Updatingleteriorate in two aspects. First, these methods tend teradb the old model
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as much as possible and are reluctant to include the chaves the model changes completely
or the original features disappear, the updated model witl @vay from the true one eventually.
Second, when the drift starts, there is no mechanism in thetbods to force them back, thus
the drift is unstable and catastrophic. In contrast, sinaentethod utilizes the information from
bottom-up, it can be thought as feedbacks that makes ouroghetiable and avoids catastrophic
drift to a large extent. As a result, the proposed method eandre robust and stable to cope with
the adaptation drift.

In this chapter, we have investigated the on-line adaptaifcappearance-based observation
models. If no constraints are imposed, this problem isakgd. Instead of the commonly used
nearest updating scheme, we propose to impose both top-gimenthness constraints and the
bottom-up data-driven constraints from current obsergan©ur method balances three factors:
(1) distance of positive data to the subspace, (2) the pgrojecof the negative data, and (3) the
smoothness of two consecutive subspaces. The proposeddeh largely alleviate the risk of

adaptation drift and thus achieving better tracking pentamce.
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CHAPTER 4

Context-aware Visual Tracking

Many tracking methods face a fundamental dilemma in practicacking has to be compu-
tationally efficient but verifying whether or not the tracks following the true target tends to
be demanding, especially when the background is cluttemdébawhen occlusion occurs. This
dilemma originates from the opposite requirements for tigge likelihood models: on one hand,
the likelihood model should be simple for efficient motiotimsition and tracking; on the other
hand, it has to be sophisticated for comprehensive veiticatf the target. Due to the lack of a
good solution to this problem, many existing methods tengeteither computationally intensive
by using sophisticated image observation models, or efidiat vulnerable to false alarms. This
greatly threatens long-duration robust tracking. As aeradtive to the on-line adaptation idea,
this chapter presents a novel solution to this dilemma byidening the context of the tracking
scene. Specifically, we integrate into the tracking proeesst of auxiliary objects that are auto-
matically discovered in the video on the fly by data miningxiiary objects have three properties
at least in a short time interval: (1) persistent co-ocaweewith the target; (2) consistent motion
correlation with the target; and (3) easy to track. Regarttiege auxiliary objects as the contexts
of the target, the collaborative tracking of these auxlialjects leads to an efficient computation
as well as a strong verification. Our extensive experimeang lexhibited exciting performance in
challenging real-world testing cases.

In all the existing methods, the dynamic environment is tidloe granted as the adverse party

for the tracker, as it generates false positives, and maespatation has to be spent in separating
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the true target from the environment. However, the enviremincan also be advantageous to the
tracker if it contains objects that are correlated to thggarFor example, if we need to track a face
in a crowd, it is almost impossible to learn a discriminativedel to distinguish the face of interest
from the rest of the crowd. Why do we have to focus our attergidy on the target? If the person
(with that face) is wearing a quite unique shirt (or a hatgntincluding the shirt (or the hat) in
matching will surely make the tracking much easier and molbest. By the same token, if another
face is always accompanying the target face, treating themgeometric structure and tracking
them as a group will be much easier than tracking either ahth&Ve call this new approach
context-aware trackingCAT) as it takes into consideration the context of the targetshown in
Fig. 4.1

A target is seldom isolated and independent to the entimeestberefore there may exist some
objects that have short-term or long-term motion correfegito the targets (but are unknown to
the tracker beforehand). Thus, taking the advantage ottmtext information in an efficient way
can improve the robustness of the tracker as the spatiaéxtoptovides additional verification.

We represent the context of a target by a sedwfiliary objectsthat are automatically discovered

Figure 4.1.lllustration of context-aware trackingl” indicates the target anfl, means
the spatial context of the target. Traditional tracking methods focus thetiatieon the
target only, while context-aware tracking considers the target and itiglspantext within
a network.
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on the fly in an unsupervised fashion by using data miningrtiegles. A context-aware tracker is
able to discover a set of auxiliary objects and track thenukameously.

Auxiliary objects can be in various forms,g. solid semantic objects which bear intrinsic
relations to the target, or certain image regions that happdave motion correlation with the
target for a short period of time. They may reliably assectatthe target for a long duration, or
only for a short time interval, or may not exist at all. Thugsiimpossible to determine auxiliary
objects off-line in advance. They have to be discovered erflih For example, in Fig4.2, the
targets of interest are the heads in solid-yellow boxestlam@nage regions in dash-red boxes are
the auxiliary objects discovered automatically. We regodata mining techniques for discovering
auxiliary objects by learning their co-occurrence asdama and estimating affine motion models
to the target. Data mining methods originated from text rimfation processing and relational
databases’], and have found their uses in extracting video objegts §6, 57]. To the best of our
knowledge, the proposed approach presents an originahgitief combining visual tracking and

data mining in a collaborative tracking framework.

Figure 4.2. Some sample auxiliary objects to the target head.

This new approach has the following advantages. Firstig, domputationally efficient. Be-
cause the auxiliary objects by definition are those easyatktg.g. color regions), tracking them

does not incur significant computational costs. Secondbytputs more accurate tracking results.
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The new method tracks the target and the set of auxiliaryctdpes a random field in a collabora-
tive manner. Itis provably correct that the uncertaintyhef inotion estimation is reduced. Thirdly,
it also provides an effective verification, because thenledmotion and/or geometric correlations
among the target and the auxiliary objects serve as a stnoadoc verification. Last but not the
least, it is intelligent and robust. All the auxiliary objeand the motion correlation.€., the
random field) are automatically discovered on the fly.

In contrast to the previous on-line adaptation method$ierathan changing the target ob-
servation, we propose to enhance the observation model tipeudiscovery of some auxiliary
objects [L11] to help verify the target tracking results in a collaborativay. The new approach,
calledcontext-aware visual trackingr CVT, addresses the following three important issues (the

entire procedure of CVT algorithm is summarized in E@):

e Mining auxiliary objects (in Sec.4.1): the methods of extracting the candidates of auxil-
iary objects and mining the associations will be discusBedauxiliary object candidates,
multibody grouping is employed to discover the potentialtibady structure from mo-
tion and to estimate the affine motion models through sulespaalysis. This step not
only identifies a set of auxiliary objects, but also learnaradom field among them;

e Collaborative tracking (in Sec.4.2): both the target and the set of auxiliary objects
need to be tracked in CAT. Because they are not independeritatiieng is formulated
based on a random field and is achieved efficiently by the lvotitions among all the
individual trackers in the network where an individual &acinfluences other trackers as
well as receiving influence from others;

e Robust fusion (in Sec:4.3): for an individual tracker, there may exist inconsistency
among the influences it receives and its own image measutemeliandling inconsis-

tency is fundamental and critical to fuse auxiliary objeatkers and the target tracker.
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Figure 4.3.Block diagram of CAT algorithm. The sub-modules of auxiliary object min-
ing, collaborative tracking, and robust fusion are enclosed in dashngles.

4.1. Mining Auxiliary Objects
4.1.1. Auxiliary objects

Auxiliary objects (AOs) are the spatial context that carphéke target tracker. We abuse a little
bit the term “object”. In fact, it is not necessary for an AC® a semantic object. In the tracking
scenario, it refers to an informative image region or an ienfEgture that satisfies the following

three properties:

(1) frequent co-occurrence with the target;
(2) consistent motion correlation to the target;

(3) suitable for tracking.

Although this definition may cover a large variety of imaggioms or features, not all of them
are appropriate for balancing the complexity and gengral8ince the prior knowledge about
the target and the environments are in general not acces#ilid preferable to choose simple,
generic and low-level auxiliary objects, such as imageamgor feature points. Feature points are

geometrically significant and provide the most localizddimation. There are some outstanding
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work on invariant feature pointg,g.[84, 62, 66, 25]. Although feature points may be salient and
therefore suitable for object recognition, they are in gahgrone to occlusion, lighting and local
geometry changes. Thus they are not always stable andlesirabideo. In addition, extracting
invariant features needs a good amount of computation,hwhigkes it hard to achieve real-time
performance. Therefore, although the tracking of featoratp can be quite efficient, we generally
do not use feature points as auxiliary objects.

Instead, we choose to use significant image regions. Diftdrem localized image feature
points, image regions reflect the visual property of a nexghbod, and they tolerate more oc-
clusions and local geometry changes. More importantlygenagions, if selected properly, can
be reliably and efficiently tracked, for example, by the mshiit algorithm [L6]. Although tex-
ture regions may have invariants and can be very significamtcurrent implementation does not
use them because it takes more computation to spot them ¢hamnregions. Therefore, our cur-
rent treatment for data mining is to discover a set of colgrams that are temporally stable and

spatially correlated to the target in a video sequence imaapervised way.

4.1.2. ltem candidate generation

To follow data mining conventions make our discussion cl&ge define the following terms for

our video data mining task.

Definition 1. We denote artem candidatdy s which is a particular image feature obtained
by low-level image processing; aem by I which is a quantized item candidate invacabulary
V = {I,...,Ix} which is learned by clustering all item candidates; itemsetby I C V), set of

items; and a transaction by, the itemset within a neighborhodel
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In our implementation, an item candidate is a rough colonsayg with its motion parameters,
and an item is defined by = { H(I),x;}, whereH (I) is the average color histogram of the item
andx; is the motion parameters and respective covariances. Tloé c@ndidate AOs, denoted by
F, is a subset o, which are frequently co-occurrent with the target. Thedidate AOs that have
strong motion correlations to the target are identified adliavy objects.

The item candidates, i.e., the color segments in our case, are the inputs for mininghen
tracking scenario, efficient segmentation is more predetinan a delicate but expensive one since
exact boundaries of the segments are not necessary forgranuhtracking. In our current imple-
mentation, we employ the classical split-merge quad-toder segmentation/[5]. The image is
recursively split into the smallest possible homogenolsreegions, and then the adjacent regions
with similar appearances are merged gradually. The mostipent advantage of this method is
computational efficiency. Some segments are not apprepigattracking, so we employ some
heuristics to prune thene.g. segments that are too large (the area dyerof the entire image)
or too small (the area less th&n pixels), and concave segments (the area less tharof the
bounding box) are excluded. These kinds of item candidatesuitable for tracking. Figt.4

shows some typical segmentation results.

Figure 4.4.lllustration of the quad-tree color segmentation. (left) input frame, (middle)
over-segmentation, (right) pruned segmentation.
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4.1.3. Frequent item mining

Candidate auxiliary objects are the items that are frequentoccurrent with the target. To build
the vocabulary’ so as to construct the transactions for mining, we need totgpgethe item candi-
dates. In conventional mining applications, usually itendaidates can be collected and quantized
off-line by k-means or kNN clustering methods. But in thiskiag scenario, we have to do this in
an incremental way. The procedure is the following. The ceégments in each incoming frame
are matched to the items in the current vocabulary by the Btiziryya coefficient1[5] of the
histograms of the segments as the similarity measuremedregn,Teach color segmerniteg item
candidate) can be quantized and given a lakel, 74 to I, are items as shown in Fig.5. Af-
terwards, for each item, we form a transaction that conefstise item itself and the items within
its neighborhood. There are different choices of the neagitod. For example, we can use the
item itself (.e. use a 0 neighbor). The items inside the region of intereshah édrame construct a
transactionr, and a transaction database is built based/foconsecutive frames.

Given the transaction database, the items which have a loigitcurrent frequency will be
chosen as candidate auxiliary objects. Since the miningeifopned online, we need to take
into account the importance of the historical images. Wentam an)/-frame sliding window
(M = 100 in the experiments) and count the item frequefi¢y;,) = Zﬁ:thH BBy (1,,) with
the forgetting factors = 0.9 where B;(I,,) is a binary function and 1 indicatds appears in
frame:. If image segmentation does not end up with too many smathsetg, the frequent items
are good enough for identifying candidate auxiliary olgectf the segmentation tends to over-
segment and produces too many small segments, we canndteuSeneighbor for constructing
transactions, but use the nearby items to form transactmidentify co-occurrent patterns that

merge the adjacent small segments. This is another reastahifine for the image segmentation
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step to be imperfect. As illustrated in Fig}.5, though there are quite many color segments in each
frame, by counting their co-occurrent frequencies, afily= {14, I5} are identified as frequent
items, i.e. candidates of auxiliary objects. The rest of the problenpisiétermine whether a
candidate really bears a motion correlation to the targee i$sue will be discussed next.

Rough color
segmentation  Framet-M+1 Framet-M+2 Framet-1 Framet

Quant%d items;
ae-

A A
color segments
1 .
TransactionT TABC TABCD eee TABE TABGF

Frequent Items: AB

Candidate AO

!
Multibody

grouping: AO |,

Figure 4.5.lllustration of mining auxiliary objects. The target is denotediaand I 4

to I represent the items.€. the color segments)/4, and Ip are selected as candidate
auxiliary objects as they are frequently co-occurrent with the tadgeis identified as one
auxiliary object by multibody grouping since it has strong motion correlatidh. to

4.1.4. Mining by subspace analysis

Finding the frequent items only spots the candidate auyibajects that are frequently co-occurrent
with the target, but they do not necessarily exhibit strorgiom correlations to the target. For ex-
ample, in Fig4.5, I is less correlated to the targéthan/,. We need to check if these candidates
satisfy the motion correlation requirement of an auxiliabject. For each candidate, we can ini-
tialize a mean-shift tracker to find its correspondence@duccessive image frames. If this

tracker loses track for 4 frames in a row, we assert that gmsliclate is not suitable for tracking
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and remove it. Otherwise, we can form the motion trajectooier the frames for a set of candi-
date auxiliary objects. Then, we employ a noise subspadgsasienethod to discover the potential
multibody structure from motion and estimate the affine oothodels between the object pairs.

The motion correlation between two moving objects can bg gemplicated and non-linear,
but generally, linear motion models can be used as a gooa@pmation. We extend the simple
translational model in111] to a more general affine motion model. When the points on two
objects have an affine motion relation, they must reside imest subspace. Thus, identifying this
subspace will lead to the estimation of the affine motion rhode

Attime ¢, one candidate auxiliary objeft € F is represented ag = {u?,v?} " and{s¥, s?}
where(u?, v¥) are the coordinates of the centerfef and s}’ ands; are the scales, respectively.
Similarly the targefl” can be represented gs = {u},v/}" and{s¥,s’}. If Io andT co-occur
and have stable motion correlation, thncan be claimed as an auxiliary object. So the goal is to
evaluate whethef, andT have strong motion correlation in time winddiv— M + 1, ¢] given the
trajectories ofy; andx; within this time window.

Assume an affine motion model between candidate auxiliajgcoh, and the targel’ for the
period of framet — M + 1 to framet, which is specified by & x 2 matrix A; and a translation
vectorb, = {u?, v’} 7, as

Yt = AtXt + bt- (41)

Subtract the meagp, of y, andx; of x, in the time window|t — M + 1,¢] and take the noise into
consideration, the relation betweénand?’ can be expressed wigh = y; —y; andx; = x; — Xy,
as

yi = AX, +n, (4.2)

wheren is a zero mean white noise witinn'| = 1.
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If we stacky,; andx;, the covariance matri&C can be expressed as

C= E[@Z) 3% (4.3)
It is clear thatrank(C) < 2 if there is no noiseife. n = 0). This rank deficiency property

is important in detecting the subspace due to motion cdioelaln reality, becausa # 0, C is

likely to have a full rank. Since the noise is additive, it &g to prove that the 4D space spanned

by (y,,%/) is a direct sum of a signal subspace and a noise subspaceighhésibspace is up

to rank 2 and corresponds to the large eigenvalu€s, @ind the noise subspace corresponds to the

smallest eigenvalues.€. o). Therefore, we can check and threshold the eigenvaluetetdify

those subspaces.

Denote the estimated covariance matrix®yand the covariance matrix & by C*, and we

have
M s A C*A] + 0% ACY
~ Yi—i ~ ~ t t t
c=X (I )eraxi=| " b (4.9)
X t—1 C:BA;T Cz

Performing eigenvalue decomposition 6n

C = QAQ, (4.5)

we obtain the sorted eigenvalugs,, - - - , A\, } and orthonormal basi®. If there are more than 2
eigenvalue9\§ > ¢, this candidate is not an auxiliary object since its motind the target’s are

not in one subspace.

) ) > 2, the candidate is not an AO
#of {\] > 07} ) (4.6)

<=2, otherwise
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If the candidate is an auxiliary object, we can estimateffie@amatrix A; with the property that
the noise subspace is orthogonal to the signal subspacelad3tt®o eigenvectors correspond to

the noise subspace 6f are denoted as

431 441
432  q42

433 443

434 Qa4

which are orthogonal to arbitrary vectot A/, x,") in the signal subspace. Substitute them back

to C, and the2 x 2 matrix A; can be solved by

31 g1 33 {443
Al + = 0. 4.7)

q32 442 434 (a4
Then, the translation vectds,; is obtained withy, x, and A;. This method gives an effective
detection of auxiliary objects and efficient estimationtadit affine motion models.
Such a mining process is meaningful, because it has learnaddam field. We denote the
motion of the targef” by y and those of the auxiliary objects by, k = 1, ..., K, whereK is the
number of auxiliary objects. They constitute a random fidlte pair-wise potentialgy(xx,y)

are actually learned as a by-product of this mining procass,

_ (y—Akxk—bk)T(y—Akxk—bk)

Vro(Xk,y) < e 20% ) (4.8)

wheres? is derived from the small eigenvalues ©fin Eqg.4.3. In many cases, auxiliary objects
share almost the same motion as the targgft, the torso and the target head. Therefore, we can

use a Gaussian distribution to characterize those poleniibe mean of the Gaussian is given by
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A, andby, which is the affine motion model estimated for #th auxiliary object. Note from now

on, the subscript indicates the index of an auxiliary objestead of the time step.

4.2. Collaborative Tracking

It is clear that CAT is not tracking a single target, but a rand@eld. This random field
among auxiliary objects and the target is hidden and neells iaferred from image evidence.
We formulate this problem under a Markov network with a spk@ipology, as shown in Figt.6,
where we only assume pair-wise connections between thettargnd the auxiliary objeck;
and there are no connections among auxiliary objects. Eftttem is associated with its image
evidencez,. We denotéZ = {z;,k = 0,..., K}, whereK is the number of AOs ang, is the
observation ofy (i.e. the target). The core of tracking is to estimate the posterigy|Z) of the

target andh(xx|Z),k = 1,. .., K, for the auxiliary objects.

Figure 4.6. The star topology of a random field. The hidden motion parameter of the targe
is denoted ag with the image observatios,. The motion parameters of the auxiliary
objects are denoted &g with their respective observationg.

For such a graph with a star topology, a belief propagatigorahm with 2-step message
passing gives the exact estimates of the posteriors. Déygierz; |x;) the local likelihood and by
¢r(xx) the local prior such as the dynamics prediction priorsfpr Each pair of the target and
an auxiliary objeck, bears a pair-wise potential,(x;, y) learned in the subspace-based mining
process, as described in SEcLD. my,(y) represents the message passed fronkthauxiliary

object to the target anabo, (x;.) is the message from the target to ffib auxiliary object.
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At the first iteration step, the target receives all the messages,, from every auxiliary
objectx,, then propagates the message back to them at the secotiditefdis message passing
mechanism implies a collaborative way of tracking. Notibattif the target and the auxiliary
objects are independent, their independent motion es#Bvaep,. (xx|Z) < ¢k (xk)p(zk|xk), k =
1,..., K. The relation between the true estimates and independemiagss is simply captured

by a fixed-point equation of the messages:

p(y|Z) o po(y|Z) [ [ mro(), (4.9)
k
mao(y) = / P Z) o (3, y )l (4.10)
p(xk|Z) < pr(xk|Z)mor(xx) k=1,..., K, (4.11)
mon(xe) = [ 5u(312) T ma(y)dy. (4.12)
Y X \Xp

This suggests that we can use individual trackers for thgeetaand auxiliary objects. But these
sets of individual trackers are not independent, as theg teeeombine their local estimates and
the messages from others, and iterate. Such a collaboragebanism leads to a very efficient
solution to tracking the random field. Thus, even if our newrapch involves the tracking of a set
of auxiliary objects €.g. by mean-shift), the computation is manageable because @fticiency
of the collaborative way.

Compared with a single tracker for the target, the involveinoéruxiliary objects can reduce
the uncertainty of the motion estimation of the target and ttnake the tracking more confident.
We can prove this in a special case when setting both the fialtén, (|x; — y|) to be a Gaussian

N (uro, X1o) and the local likelihoogh(z,|x,) to be a GaussiatV (i, ﬁ]k) (we ignore the local
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prior without losing generality). Under this setting, tHesed-form belief propagation gives:

K
ot =30+ ) (Zk+ Zho) (4.13)
k=1
K
po = To(25" o + Y (2 + Zko) (e + 140)) (4.14)
k=1

where (o, 39) is the target’s posterior when tracking the random field. ¢f assume the local
priors to be Gaussian, this result still holds but ngy, i]k) refers to the local posterior.

Eq. 4.13makes it clear thaE, is always less thait, since these covariance matrices are
positive definite and different motion parameters are uetated. Therefore, the confidence of

the collaborative estimate of the target is higher thanphaduced by a single target tracker.

4.3. Inconsistency and Robust Fusion

The closed form analysis for the collaborative tracking barexplained in the view of infor-
mation fusion. When the connection potentials between tlgetand the auxiliary objects are
set to be extremely tight,e., the covariance ok, is a zero matri0, this belief propagation is
equivalent to the best linear unbiased estimator (BLUE)/faf they are extremely looseég. 3,0
approaches infinity, it becomes an independent estimatithherwise, it is similar to covariance
intersection $0].

However, there is a hidden assumption for this conclusien,the information from all the
sources must be consistent. In simple terms, they must mdes®agree with each other. But in
reality, this assumption may not be valid, when the estisyatem the individual trackers may be
completely different or inconsistent for many reasons. éf wge the above mentioned method to
fuse these inconsistent estimates, we may end up with anagstthat is completely wrong but of

a very high confidence. Such an adverse estimation makesse aad should be avoided. Thus,
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it is desirable to have a mechanism to detect the inconsigtiemd identify the outliers for a robust
fusion.

We define two Gaussian sourcesamsistentif the variance in the compatible function of
these two Gaussian sources approaches zero using EM éstim@anget. al.[40] gave a new
theorem to measure the inconsistency. We employ the faligwivo criteria that are very useful

for detecting the pair-wise inconsistency. The proofs aesg@nted in Appendix B.
Theorem 2. Considering two Gaussian sourc&g i, ;) and N (usq, 3o), whereu,, us € R",
the two sources are inconsistent if:
1 T -1 1
S = )T (B + B0) 7 — p2) 224 VG N (4.15)
whereC, is the2-norm conditional number df; + X,, and they are consistent if:
1 T -1
(= )T (B + B) 7 — p2) < 4 (4.16)
Although these are sufficient conditions in general cagey, are actually also necessary con-
ditions whenn = 1. These criteria enable simple and quick detection of p&gewnconsistency.
Then, the estimation that is inconsistent with all the atheill be regarded as an outlier. The
outlier can be the target or the AOs. If the target is an autiiee assert that the target is experi-
encing occlusion or drift, and suspend the mining procesptearily. In this case, we can give an
estimation of the target purely based on the predictions fitee auxiliary objects, and search for
the image evidence. If the outlier is an auxiliary object,swvaply exclude this auxiliary object for
fusion. After excluding the outliers, we perform belief pamation again on the rest of the network

and employ the target tracker to locate the target preci$&lyen the majority are not consistent

which means the target estimate can not be verified, a trgé&ilure is asserted.
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4.4. Experiments and Discussions

4.4.1. Experiment settings

We substantialized and implemented the proposed CVT atgoiit a head tracking system, where
the head tracker is a contour-based elliptical trackerairto [3] and initialized by the frontal face
detector £9, 58], and the auxiliary trackers are mean-shift trackers. &méixed number of edge
points along the ellipse are matched, the single head trackgite computationally efficient and
runs at over 50 fps. Although the single head tracker isiveligtrobust to illumination and view
changes, it is vulnerable to the clutter background, molilum and occlusions. In our experi-
ments, we compare the proposed CVT algorithm with the singgdelliracker in a large number of
real-world sequences captured in unconstrained envirntsmecluding both indoor and outdoor
scenes. These extensive experiments and exciting reswksdemonstrated the advantages of the
CVT algorithm. Furthermore, we apply the same CAT algorithrpeople tracking based on an
appearance-based torso tracker to exhibit the applitabilithe proposed idea to different types
of targets.

The motion parametey = {u, v, s*, s"} to be recovered includes the locatitm v) and the
scaless* ands”. The color segmentation and the mean-shift tracker workénrnormalized R-
G color space witl82 x 32 bins. Without code optimization, our C++ implementation of TCA
runs comfortably at around 10 fps on average on a Pentium 3fesktop for320 x 240 images

depending on the number of auxiliary objects discovered.

4.4.2. Quantitative experiments

For a quantitative evaluation, we manually labelled theugtbtruth of the sequencés d i n

yel | ow, danci ng girl andbi rt hday ki d for 1200, 1600 and 1460 frames respectively.
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The evaluation criteria of tracking error are based on tlaive position errors between the center
of the tracking result and that of the ground truth, and thetike scale normalized by the ground
truth scale. Ideally, the position differences should lmeiad0, and the relative scalds

As shown in Fig4.7, Fig.4.8and Fig.4.9, the position differences of the results in the CAT are
much smaller than that of the single head tracker and theuwekcales have much less fluctuations
aroundl. It demonstrates the advantages of the GAT, reducing the false alarm rate and the
estimation covariance. Note that at the end of the sequeintei n yel | ow, the single tracker
happens to track the head by chance after the drift. AlthdgICAT tracker loses track at around

frame 1100 for several frames, it is able to recover prompélyause of the auxiliary objects.

[ —— CVT tracker %r —— CVT tracker

i i
ffffff Single coutour tracker ';,1 \}

§

!
oF |
‘i
i
B
‘

Relative Distance
Relative Scale

) 1 T | ! g v'é
800 0 200 400 600 800 1000 1200

# of frames # of frames

Figure 4.7.Quantitative comparison: (left) position errors, (right) scale errdaisd[ i n
yel | ow, 1200 franes].

Some key frames are shown in Fig10®. The first row shows the results of the single head
tracker where the highlighted solid-yellow box indicatbs tocation of the head. The second
row shows the segmentation and mining results, where eadngectangle indicates an item
in the current frame. The numbers in blue at the corner shewtém labels of the candidate

auxiliary objects. The third row illustrates the fusionuks. Each blue box is the estimate of

1All the faces shown in this chapter were mosaicked aftersvéodprivacy protection.
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Figure 4.8. Quantitative comparison: (left) position errors, (right) scale errdisnEi ng
girl, 1600 franes].
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Figure 4.9.Quantitative comparison: (left) position errors, (right) scale errors,
[bi rthday kid, 1460 frames].

the head from different sourceisg the target or the auxiliary objects trackers). The white box
indicates that estimate is regarded as an outlier. The @arbox is the final result of the fusion.
The corresponding labels of the auxiliary objects are shattthe bottom-right corner. The final
tracking results of CAT are shown in tdeth row as highlighted solid-yellow box, and the dash-red

boxes are the auxiliary object trackers.
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4.4.3. Occlusion and drift

Fig. 4.10 samples the results on the sequekced i n yel | ow which is very challenging due
to a serious occlusion, target out-of-range and clutter. Mthe head moves outside the upper
boundary at frame 113, the single head tracker drifts toszfabsitive in the cluttered background
and is unable to recover. In contrast, the CAT tracker assieet®cclusion and keeps tracking
correctly. It freezes the head tracker temporarily andnitalizes it based on the predictions
provided by the auxiliary objects. When the kid is walkingniarit of the bush, the background is
so cluttered that it causes big troubles to the edge-baaekktr. On the other hand, CAT discovers
several auxiliary objects,e. the shirt and short pant, which are quite stable and prowadghly

correct estimates of the head location and rescue the haacatrfrom the drift at frame 736.

Figure 4.10.Frame # 50, 113, 124, 229, 736 and 866kafd i n yel | ow, 1200
franmes. (1st row) the head tracker, (2nd row) the mining results, (3rd rowfubmn
results,(4th row) the CVT tracker.
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4.4.4. Quick movement and camouflage

As shown in Fig4.1], the sequenceanci ng gi rl presents quick movements and camouflage.
All the girls are similar in terms of their appearances. TiBigxtremely difficult for a single
head tracker to work, but CAT comfortably handles such a ehgk. During the dancing, CAT
gradually discovers the spatial relations between theetdthe girl of interest) and the adjacent
contexte.g. other girls’ shirts, although such relations are only vatich short time interval. At
frame 757, the single head tracker is trapped by the shouoldgre girl and unable to recover.
At frame 758, the CAT tracker identifies this false alarm anlisphack the head tracker with the
help of the predictions of the AOs that are close to the trogeta At frame 1234, the girl of
interest suddenly bows down, CAT detects the tracking faiurd resumes tracking quickly. CAT
can comfortably track over 1600 frames for this highly dymasequence until the target moves

outside the left boundary for several seconds.

Figure 4.11.Frame # 67, 757, 758, 764, 1234 and 1372dahci ng girl, 1600
f ranes. (top) the head tracker, (bottom) the CVT tracker.

4.4.5. Scale and view changes

We show the tracking performance when the target undergogs kcale and view changes and
demonstrate the transition of the auxiliary objects in theuenceki d&dad (Fig. 4.12). For the

single head tracker, when the scale of the head becomesmatl & drifts to the torso of the kid



57

from frame 69 and fails the tracker. During the first 300 fraptbe dad walks with the kid with
quite stable motion correlation. This is discovered by CAd #re region of dad’s shirt is mined
as the auxiliary object to help track the kid’s head. When tneye close to the camera, the scale
and the view change dramatically so that the learned reldteiween dad’s shirt and the kid’s
head no longer holds. Fortunately, CAT spots that the hat @od guxiliary object at large scale
and guides the tracking. At the end of the sequence, the Beamhipletely occluded by the hat
for several seconds. Although this is impossible to regoR&T detects and reports the tracking

failure, while the single head tracker tends to drift to adgbositive without notice.

Figure 4.12.Frame # 52, 69, 70, 313, 555 and 616kofd&dad, 617 franes. (top)
the head tracker, (bottom) the CVT tracker.

4.4.6. Cluttered background

In sequencai rt hday ki d, the target head experiences large out-of-plane rotahorttze ap-
pearances change greatly, as shown in #i$y2 For the contour tracker, when the rear head is in
the dark background, no good observation is available arthamhead so the contour tracker drifts
to the torso and other elliptical regions, and is unable ¢tover. For the CAT tracker, with the help
of the auxiliary objects, the tracker either keeps trackimthe tough situations or recovers from

drifting in several frames. Note the auxiliary objects digered can be some objects with inherent
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relations with the target, such as the hat and short panisbspmething that happens to have tem-
porary relations, such as the refrigerator or the gift bokisTeal-world sequence demonstrates

the advantages of the auxiliary objects for long-duratracking.

Figure 4.13.Frame # 0, 72, 93, 170, 578, and 1455 lifrt hday ki d, 1460
f ranes. (top) the head tracker, (bottom) the CAT tracker.

As shown in Fig4.14(swi nmi ng boy), the background is quite cluttered due to the texture of
water and other people, which makes the single head trackmidss. The single head tracker is
easily distracted by the edges in the background and dvifty.aOn the other hand, CAT discovers
the two blue life buoys and the swimming hat and uses themeaauRiliary objects. When the
boy jumps towards his mother’s arms, CAT uses the life buoyselsas the orange box on the
bank to help locate his head accurately, which is difficulttf@ single head tracker. Note that at
the end of this sequence, the kid’s head is occluded by his’sno@ad and CAT switches to the
mom. This is reasonable because the auxiliary objects chdiffierentiate the two heads at the

same location.

4.4.7. More people tracking results

To demonstrate the generalization ability of the proposethod, we apply the context-aware
tracking algorithm to people tracking based on an appearbased torso tracker. As shown in

Fig. 4.15[26], when the person to track is occluded by his friends arouathé 56, the single
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Figure 4.14.Frame # 87, 131, 334, 526, 578 and 848 sofi ni ng boy, 900
f ranes. (top) the head tracker, (bottom) the CVT tracker.

torso tracker loses the target and drifts away. In contsaste the other pedestrians serve as the
temporary contexts, they can help the CAT tracker keep fatigwthe target. In addition, after
frame 135 the context information helps to prevent the #adtom drifting to the person next
to the target though both persons have very similar appeasanAnother example sequence is
shown in Fig.4.16 where an athlete in a marathon is tracked with natural inghthanges and

view changes are present.

Figure 4.15.Frame # 0, 40, 56, 68, 135, and 425 ohree past shop, 425
f r anes. (top) the torso tracker, (bottom) the CAT tracker.

4.4.8. Discussions

As demonstrated in a large number of challenging sequetiege, are two primary scenarios when
the auxiliary objects greatly help the tracking: 1) someileary objects have persistent relations

to the target and present fairly accurate estimates alththese relations may not be foreseen; 2)
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Figure 4.16.Frame #1, 72, 468, 504, 582, and 62%af at hon, 625 franes. (top)
the torso tracker, (bottom) the CAT tracker.

a number of auxiliary objects have transitional relatianthe target and the majority of them can
give rough correct estimates in a short time interval. Irciges of occlusion or drift, it is not likely
that all the auxiliary objects are occluded or all auxilitngckers lose track at the same time, since
the auxiliary objects may not be located in a close vicinityhe target. The mechanism of robust
fusion can identify the inconsistency induced by occlusiondrifts. There are some extremely
difficult casesg.g. the target is occluded for long time, and CAT fails reasonéelgause on-line
data mining may not be invoked at all. Or only a couple of aarlobjects discovered and they do
not agree with each other about the target motion, whichiegaphsufficient context information
to verify the tracking results. For these cases, the adgandé CAT is the ability to detect and
report the failure, and leave the system to other means initialization, while the single tracker
has no reliable mechanism to report the failure but keeg&itrg aimlessly and regardlessly.

We have proposed a novel solution to robust long-duratiecking by considering the context
of the target. By integrating an unsupervised data mininggutare, a set of auxiliary objects are
discovered on the fly which provide extra measurements teéettget and reduce the uncertainty
of the estimation. In addition, the learned motion correlesd among the auxiliary objects and the
target serve as a strong cue to verify the tracking resuhamalle short-term occlusion or tracking

loss. The auxiliary objects are automatically discovergbaut supervision and do not incur much
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extra computation, which makes the approach generallycgipé to a wide spectrum of tracking
scenarios.

For future directions, we will study the relation betweea ttumber of auxiliary objects dis-
covered and the confidence level of the verification. Anoimgortant issue to investigate is how
to compromise the need for a quicker initial mining proceduithin a shorter time window which
may find more auxiliary objects and a longer time window whicay find less auxiliary objects

but with a high reliability.
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CHAPTER 5

Attentional Visual Tracking

Long-duration tracking of general targets is quite chajleg for computer vision due to the
large uncertainties in a target’s visual appearance andrtbenstrained environments which may
be cluttered and distractive. However, tracking has neeenka challenge to the human visual
system. In contrast to the tremendous challenges encedniteideveloping tracking algorithms,
being able to persistently follow moving objects seems ta bery basic functionality in human
visual perception. It is so natural and intuitive that we nmmy¢ be aware of how complex it
is. Although the details in human perception on visual dyicarare still largely mysterious, the
studies in psychology, neuroscience and cognitive scgeehaee obtained substantial evidence and
interesting findings, based on which several hypothetlwabties have been proposed]. For
example, evidence shows that human visual perception esemnitly selective. Perceiving realistic
scenes requires a sequence of many different fixationsdhrthe saccadic movements of the eye.
Even when the eye is fixated on a particular location, thefadgsoal attentior(like the movements
of an internal eye or the so-called “mind’s eye”) selects @gidrmines what subset of information
of the retinal image gets full processing’]. This ability to engage in some flexible and selective
strategies for processing different aspects of visual fsetpenerally referred to agsual attention

In human visual attentiorspatial selections one important aspect in which human visual
perception system selectively samples the retinal imaglecancentrates the resources to only
process a restricted portion of information. Another intant aspect iproperty selectioim which

people sequentially perceive different properties oruesst of the same objecg.g. its color,
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its shape, its texture, and its structures. Psychologitdlcgnitive findings suggest that these
selective attention mechanisms are necessary and cfgidaiman visual tracking. An interesting
guestion is how we can take advantage of these studies ttogavere powerful visual tracking
algorithms.

This chapter presents new visual tracking approaches ¢flatts some findings of selective
visual attention in human perception. Recent studies fraanOls have indicated thaelective
attentionmay act in both early and late stages of visual processingrimér different conditions of
perceptual loadq(]. Early selectiormay be based on innate principles obtained through evaolutio
while late selectioris learned through experiences. By integrating these twexrgeh stages, we
develop and implement two attentional visual tracking (A\algorithms. One mainly reflects
the spatial selection mechanism by representing targeétsaypool of salient image patches and
dynamically attending to the discriminative subset of pagc The other represents targets with
Markov random fields (MRF) of interest features and tunes théching criteria to adjust the
emphases on the properties of local appearances and stuietwtomatically. These attentional
visual tracking algorithms adaptively focus on the disaniative characteristics of the targets and

achieve fairly prominent performances in tracking divieesi targets without any prior knowledge.
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5.1. Spatial Selection for Attentional Tracking

In this section, we propose a new visual tracking approaftbateng some aspects of spatial
selective attention by connecting the low-level matchimghie early attentional selection and the
high-level process to the late selection. Specifically, ébdy selection process extracts a pool
of attentional regionJARS) that are defined as the salient image regions that have lgcal-
ization properties, and the late selection process dyralyiicientifies a subset of discriminative
attentional regions (D-ARs) through a discriminative léagnon the historical data on the fly.
The computationally demanding process of matching of thepaBl is done in an efficient and
innovative way by using the idea in the locality-sensitiesthing (LSH) {3, 19, 3] technique.

The proposed spatially selective attentional visual tragkSS-AVT) algorithm is general, ro-
bust and computationally efficient. Representing the taoget pool of attentional regions makes
SS-AVT robust to appearance variations due to lighting geanpartial occlusions and small de-
formation. Spatial attentional selection of ARs allows S&FAo focus its computational resources
on more informative regions to handle distractive envirenia and targets with complex shapes.
Pre-indexing the features of ARs based on LSH enables fashingtin order to search a large
motion parameter space. In addition, SS-AVT can be used agiarnrtracking tool for tracking
general objects without any prior knowledge. These meatgelbeen shown in extensive results
on a variety of real-world sequences.

This work is different from some recent work on on-line sétatof discriminative features.[]
and other adaptive methods P8, 49, in that SS-AVT does not select global features but sgdgtial
distributes local attentional regions so as to enable adaroand a more robust selection. In ad-
dition, SS-AVT is also quite different from the fragmen&dking [1] where the target is evenly

divided into a fixed number of fragments in a pre-defined wa wo selection.
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5.1.1. Overview of spatial selection for attentional tracikng

Selective attention is crucial to visual perception, beeaihhe amount of information contained in
visual scenes is far more than what we can process at one tichthas the visual system has to
sample visual information over time by some inherentlya@le perceptual acts, including spatial
selection that directs the attention to a restricted regidhe visual field. Selective attention may
be made possible by two kinds of heuristics. One is basedmaterprinciples obtained through

evolution, and could be performed in the early stage of Vist@essing. The other one is learned
through experience and might happen later in visual praogsBoth are important in the human

visual system.

AR pool D-AR subset
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Figure 5.1. Spatial selection for attentional visual tracking.

As summarized in Fig5.1, the proposed attentional visual tracking reflects theseepeual

findings of spatial selection in visual attention. SS-AVEHamportant processes:

e Early attentional selection As the first step, it extracts informative and salient image

regions calledhttentional regiongARS) from images. This is a low-level process, as it is



66

only concerned on local visual fields. In this paper, we tilease image regions that have
good localization properties as ARs, and the AR is charasdiby its color histogram;

e Attentional region matching. Once a pool of ARs is extracted by the early selection pro-
cess, they will be used to process an incoming image to le#tieir matches. An inno-
vative method is proposed to conquer the large computdtamraands, by pre-indexing
the features of ARs. For each frame, the matching set of eacis ABRtained and used to
estimate a belief of the target location;

e Attentional fusion and target estimation. The beliefs of all the ARs are fused to de-
termine the target location. A subset of ARs have larger wgighthe fusion process,
because they are more discriminative. This subset of ARsi@&r@ by the late selection
process in the previous time frame;

e Late attentional selection This process reflects some higher level processing to learn
and adapt to the dynamic environments. Based on the collacteaty tracks of ARs, a
discriminative selection is performed to identify a sulifeinost discriminative ARs (or
D-ARSs) that exhibit the distinctive features of the targenfrthe environments. They will

have larger weights in the attentional fusion process abéxéframe.

5.1.2. Components in spatially selective attentional trdang

5.1.2.1. Early attentional selection.Visual information is so rich that the human visual system
has a selective attention mechanism to sample the infoomaiver time in processing. Early
attentional selection that is believed to act in the veryyestage of visual perception performs
the initial pre-filtering task, which should not involve ntubigher level processing such as object

recognition. Early selective attention is likely to be lhea innate principles of human perception,



67

e.g, to attend certain information that is evolutionarily adtageous. For example, moving objects
are generally important for survival and appear to play goartant role in early attention.

We describe a spatial selection method for this early atteak process. We call the selected
image region aattentional regiongARS). As discussed before, motion detection appears to play
an important role in early attention. Therefore, the s@aabdf attentional regions should be sensi-
tive to motion (.e., informative) but insensitive to noised., stable). Mathematically, any change
in the appearance of such an AR should correspond to a uniqtiermestimation, and the small
differences between two appearance changes should ndbldeaimatically different motion esti-
mates (.e., well-behaved).

In view of this, we choose to use the criterion and the regixtnaetion method described
in [23] that views the stability of an image region in motion estiimia from a system theory
perspective. The appearance change of an image regioraisdras measurement of the motion
and is viewed as the system states. For some image regign®omogeneous regions, the system
states (motions) arenobservablérom the measurementsg., the motions of these regions are not
fully recoverable from their appearance changes. Thug,dheuld not be attentional regions. In
addition, image regions that lead to unstable systeémssmall appearance changes that result in
dramatically different motion estimates, should not beratonal regions. Therefore, attentional
regions can be selected by finding those regions that genalsaervable and stable systems. It was
proved P 3] that because an image region is characterized by its fe&istogram, the stability of
the linear motion estimation system can be evaluated bykaingthe condition number of a matrix
that is only related to the properties of the correspondimgge region. A more stable system has
a lower condition number. Thus, in the proposed AVT algonittwe select the pool of ARs by

locating and extracting those salient image regions.
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Specifically, at the first framé,, given the target initialization rectangl®,, we evenly ini-
tialize N,,.. = 100 tentative ARs inside the target. With an efficient gradierdcget search
algorithm [23], the tentative ARs converge to positions where the cormedipg condition num-
bers are local minima. By removing the duplicated tentatiiRs Ahat have converged to the same
location and those that have large condition numbers, tleeteel AR pool is obtained and de-
noted by{r;,--- ,ry}. Their relations to the target are recorded for future taegdimation in
subsequent tracking. The numh®rof ARs is automatically determined by the early selection
process itself, depending on targetsy, we have observed/ = 60 ~ 70 for large and com-
plex objects andV = 30 ~ 40 for small and simple objects in our experiments. Then, tHerco
histograms of{ry,--- ,ry} are obtained as the feature vectégs,--- , px} with D bins,i.e,
pPi = {pi1,- - . Din}

As the color histograms on various image regions need tolbalated, the integral histogram
technique T4] can be applied to save computation. In AVT, we implement difiexd version of
an integral histogram that is able to retrieve histogranasfatrary locations in constant time, but
also consumes moderate memory when using high resolutlonfgstograms. Although the sizes
and shapes of different ARs are not necessarily identicdletable to process ARs in a uniform
way, we impose that all ARs be the same size and shape0 x 30 squares initially. An example

of the early selection of attentional region pool is showfiigp. 5.2

(a) initialization. (b) initial search positions of ARs(c) the pool of ARs.

Figure 5.2. Early selection of the attentional region pool.
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5.1.2.2. Attentional region matching.For each framd; at timet, to locate the correct target
position, all hypotheses in motion parameter space have ®valuated to find the best matches
to the ARs in the AR pool. Because the prior knowledge of the ndyos of the ARs is generally
unavailable, exhaustively searching the motion paransgi@ce can provide optimal performance.
Although this is computationally demanding, we have an waiige solution that significantly
reduces the computation to allow close to real-time perémoe. This solution is based on the
idea of the locality-sensitive hashing (LSH), a powerful database retrieval algorithm.

Each AR needs to examine a large number of motion hypothéséhis thesis, the motion
parameters include locatidn, v) and scales. Each motion hypothesis corresponds to a candidate
image region. For all target hypotheses, all image pateh@sath the same size as ARs within
the searching range of one AR constitute tdamdidate region seivhose D dimensional color
histograms are denoted &q;,--- ,qu }, whereM is the size of the set. Generally the candi-
date region set has thousands of entries. We employ the Bhattea coefficient to measure the
similarity of two histogramg andq, which is equivalent to Matusita metrié¢4] in L, distance

form
d(p,a) = > lvps = vall* (5.1)

Matching a feature vector can be translated to querying abdae for the nearest neighbor
points in the feature space. The worst case complexity isoably linear, but this is not good
enough. A significant speed-up can be achieved if the dagatms be pre-indexed. Locality-
sensitive hashing (LSH) proposed by Indyk and Motwati] [in 1998 and further developed
in [19] aims to solve the approximate Nearest Neighbor (NN) probie high dimensional Eu-
clidean space. LSH provides a probabilistic approximatethis problem by randomly hashing

the database witli, locality-sensitive hashing functions, and only the pointshe union of the
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hashing cells that the query point falling in are checkedniearest neighbors. This will lead to
computational savings comparing with checking all theiesatin the database. The idea is illus-

trated in Fig.5.3. We refer readers ta!j3, 19 for details.

Data point setP

Query pointq

Hashing cell, C , C,, C,, Near neighbors

Figure 5.3. lllustration of query with LSH.

LSH has been applied in texture analysis][and fast contour matching’f]. To the best
of our knowledge, LSH has not been used for on-line trackiei@te, although another database
technique (K-D Trees) has been used for off-line (non-datisecking [11] by hashing the whole
video sequence. When incorporating LSH into on-line vistadking, there is a fundamental dif-
ference from database applications. In database applisatihe indexing is done off-line and thus
the computational overhead of indexing is not a criticaligssIn our on-line tracking scenario,
on the contrary, the indexing overhead cannot be ignoredusecboth indexing the database and
retrieving the database are performed during the trackioggss. So computational costs of both
indexing and querying are critical. This turns out to be vemportant in the SS-AVT implemen-
tation.

Now we have two data sets: one for the AR pool with skand the other for theandidate
region setwith size M. Typically, N is within one hundred and/ is several thousands. The worst

case of complexity in matching (/N x M). As discussed before, this complexity can be further
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reduced by applying LSH. Because the overhead of indexingsieebe considered, which data
set should be chosen to be the database for LSH? If choosrzatididate set as the database, we
find that the indexing overhead is not worth the gain for atiehinumber of queries from the AR
pool. When we treat the AR pool as the LSH database, the cotignahgain is significant. The
detailed complexity analysis will be present in a later isectAfter querying all candidate regions
r. with feature vectors. using LSH, the near neighbors withihin Matusita distance of each AR

r; are obtained and denoted as matchingSset= {r.|d(p;,q.) < d;}.

5.1.2.3. Attentional fusion and target estimation.As described in the previous subsection, for
each ARr;, the attentional region matching process outputs a majgeh Based on the recorded
geometrical relation between this AR and the target (redatianslation and scale in our imple-
mentation), the belief of this AR is the probability disuition of target location(w, v;) of R,
givenr;'s matching set, denoted by(R;|r;), which is approximated based on the set of matched
candidater, € S,,.

To estimate the target location and scale, the beliefs dhalARs need to be fused. Because
some ARs may have a substantial spatial overlap in images bisleefs may be correlated. This
dependency may complicate the exact fusion process. Butmvepmoximate it by clustering the
significantly overlapped ARs and treating them as one, so egiace the dependency. By doing

this, we approximate the estimated distribution of targeationf?(Rt) by

N
p(Rt) ~ ZP(Rt|ri)P(ri)v (5.2)

whereN is the number of AR clusters, aritir;) represents the prior distribution ofin 7, which
is regarded as uniform. The mode of tﬁ’éRt) determines the tracking result 8;. This is a

voting process, as shown in Fig.4.
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Figure 5.4. Estimation of target location.

It can be proved that this approximation only holds wheéris large, because in this case the
matching likelihoods of the ARs tend to dominate while thetigh@orrelations tend to be less
critical. But this approximation is questionable wh&nis actually small. This is the limitation
of our current implementation, as it is not quite suitabletfacking very small targets when only
very few ARs are available and are largely correlated. Studyadially correlated information
fusion is out of the scope of the thesis.
5.1.2.4. Late attentional selectionAs described in previous sections, attentional selecton i
indispensable to the human perception of visual dynamiesldag duration tracking, the human
visual tracking system is able to adapt to changing enviemtshand to discriminate the small
differences of the target from the distractions. Tremesdmychological evidenc€ f] indicates
that visual tracking involves both early selection and &&kection. Late selection may be a series
of focused attention processes that are more proactiveraoti/eé higher level processing. For
instance, the camouflage objects in the background aroendrdpet may have similar appearances,
e.g, people in a crowd as shown in Fi§.9. When tracking objects with non-convex shapes, it
is inevitable to include some background regions in tangétlization as shown in Figh.11and

5.12
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Some ARs may be more distinctive and have a large discrimamatwer, so that they should
play a more important role in tracking. Thus, during thekmag, a subset of discriminative atten-
tional regions (or D-ARS) are selected through ranking thbilities of discerning target motion
from the background motion. We select the subset of D-ARsdasethe Principle of Mini-
mum Cross-Entropy (MCE)1[/], also called Maximum Discrimination Information (MDI).his
is tantamount to measuring discrimination informationA®n the case of using(R|r;) to ap-

proximateP(Rt), and the case of using it to approximate the distributionamiidground motion:

KL(P(Ri|r;)|| P(R)) — KL(P(R|r;)||P(B)), (5.3)

where P(B) is the distribution of nearby background motion. AssuR{&3) to be uniform, this

reduces to cross-entropy betweR(R,|r;) and P(R,):

~

H(ri, Rt) = H(P(Rt|rl), P(Rt)) (54)
= H(P(Rir;) + KL(P(Ryr)|[P(Ry))
= EP(Rt\I‘i)(_ log(p(Rt)))>
where H (-, -) stands for the cross-entropy of two distributions d@hd) is the entropy.When oc-
clusion happens, for thosg, = (), the cross-entropy is set to.

For each AR, the cross-entropy in a sliding temporal windowhof= 10 frames is averaged

with forgetting factors = 0.95. The average cross-entrop(r;, R,) of all ARs are sorted to rank
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their discriminative abilities:
~ At . A
H(r,Ry) =Y FH(P(Ry i), P(Ry)). (5.5)
j=0
The top-ranked ARs are identified as D-ARs and have larger wgeiglusion. In our implementa-
tion, we choose the tafh%. They will be used to estiman@(RtH) in the next frame. The D-ARs

are not fixed but dynamically changing with respect to thengea of the environment. Fi§.5

shows the top 10 D-ARs (as red rectangles) for two sequen&ditierent frames.

Figure 5.5. Examples of late selection of discriminative ARs.

5.1.2.5. Complexity analysis.In the SS-AVT algorithm, the computation costs for intedrish
togram calculation, fusion oP(R|r;), mode seek ofP(R,) are constant and relatively inex-
pensive. The most computationally intensive module isnétieal region matching. Exhaustive
matching will involveO (M N) times of D-dimensional vector comparison which is the basic com-
putational unit in our analysis.

When the data set is hashed by LSH witthashing functions, consider both indexing and
query costs, the complexity i9(M L + N L), where one hashing function is/a dimensional
inner product calculationlP]. Therefore, the complexity ratio is approximately

_OML+NL) ML+ NL
YT omnN) T MN

(5.6)
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In the tracking scenario, the number of entriglsin candidate set is much larger than the
number of ARsN. Usually, M is several thousands and is less than a hundred. Then, if we
choose to hash the candidate setcould be larger thaV which means no speedup since we
need to do indexing for every frame. So we hash AR pool Witelements, the complexity ratio
T~ (L/N + L/M) ~ L/N. Suppose there ar¥ = 100 ARs, empiricallyL = 20 hashing
functions are sufficient for querying the near neighborwnit/, = 0.1 at 0.9 probability. The
computation reduces to approximately= 1/5, if N = 36 andL = 10, 7 = 0.28. With this
efficient matching, we can search a larger portion of the omoparameter space.,g, in our
implementation[—20, 4-20] for (u, v) respectively and 3 scales ranging from5, 1.0, and1.05.
For large targets, we down-sample the candidate region setsturel/ < 3000. The algorithm is
implemented in C++ and tested on a Pentium-1V 3GHz PC. With maddeode optimization, the

program runs at0 — 15 fps on average fo352 x 240 image sequences.

5.2. Experiments of Spatial Selection
5.2.1. Settings

We test the proposed SS-AVT algorithm for a variety of chajlag real-world sequences includ-
ing 3 primary types: quick motion with occlusion, camouflagezironments, and objects with
complex shapes. Note that in these tests, there are alsoauadllighting changes. The targets
include pedestrian, people in crowd, wild animals, bicyerhel boatetc. The SS-AVT tracker is
compared with the Mean-shift trackert] in the same enhanced YCDbCr space with0 bins
(32 x 32 for Cb and Cr and 16 bins for Y when the pixel is too dark or too lig Since his-
tograms of many rectangular regions need to be calculatéegral histogram techniqué&{] is

a good implementation method to save some computationshiStegrams with a large number

of bins could well delineate the feature distributions, &lsb induce memory and computational
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costs. For instancd040 additional images need to be stored for integral histogralotugation,
this memory consumption is too large to afford. Thus, at trst fiame we sort th@040 bins and
keep the top 28 bins and employ thé28 dimensional vector to represent one attentional region.
This also saves considerable amount of computations intattel region matching with LSH.

Most of the video clips are downloaded frdgdoogle Video

5.2.2. Quantitative comparison

For the quantitative comparison, the evaluation critefikacking error are based on the relative
position error between the center of the tracking resultthatof the ground truth, and the relative
scale normalized by the ground truth scale. A perfect tragkixpects the position differences to
be around) and the relative scales closelto

We manually labeled the ground truth of the sequandeki ng for 650 frames. The walking
person, as shown in Fi§.7, is subjected to irregular severe occlusion when passihgndehe
bush. As indicated in quantitative comparison in g, SS-AVT performs extremely well, but

mean-shift loses track at frame 164 and never recovers.
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Figure 5.6. Quantitative comparison of relative position error and relative scaledokr
ing results of sequenc®l ki ng].
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5.2.3. More tracking results

As shown in Fig.5.8 sequencédor se Ri de involves very quick motion with occasional se-
vere occlusions. The top row shows SS-AVT tracking resuliene the first frame displays the
attentional region pool. The second row shows Mean-shaittkier's results. For SS-AVT tracker,
the target is displayed as red dash rectangle, and the miae¢ésed by more than one D-AR are
highlighted by increasing the luminance and the D-AR regiare surrounded by solid red lines.
When there are too few matches for ARs, occlusion is detectddisplayed with a white dash
bounding box. Mean-shift tracker drifts after a seriouslugion is present at frame 54, while

SS-AVT tracker is able to keep the track by a few attentioaegians.

Figure 5.7. Tracking Mal ki ng] for frame #1, 130, 164, 254 and 650, (1st row) SS-AVT
tracker (N=55), and (2nd row) Mean-shift tracker.

Figure 5.8. Tracking Hor se Ri de] for frame #1, 40, 54, 58 and 60, (1st row) SS-AVT
tracker (N=45), and (2nd row) Mean-shift tracker.
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Camouflage environmentsge., similar or even identical objects around the target, arg ve
challenging for tracking. We demonstrate SS-AVT’s advgasaby tracking one person in a crowd
(Fig. 5.9), and a zebra with similar texture nearby (FiglQ. The scale of Mean-shift tracker
becomes unstable when nearby background presents simi@rtistograms, while SS-AVT is

quite robust in camouflage environments due to the seleofiBrARS.

Figure 5.9. Tracking Mar at hon] for frame #1, 33, 48, 75 and 84, (1st row) SS-AVT
tracker (N=40), and (2nd row) Mean-shift tracker.

Figure 5.10. Tracking [Zebr a] for frame #1, 63, 118, 136 and 160, (1st) SS-AVT tracker
(N=57), and (2nd row) Mean-shift tracker.

Tracking objects with complex shapes is difficult in pragticSince it is not reasonable to
require initialization to give the accurate boundary of tiget, some background image regions
will be inevitably included in the target. As illustratedfing. 5.11and Fig.5.12, the ground and
some water are cropped in the targets. The ARs on the baclkdjesamot correlated to the target’s

motion, thus they have high cross-entropy and are excluded the D-AR subset. On the other
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hand, Mean-shift tracker tries to match the holistic coistdgram which is likely to be distracted
by the background regions. More tracking results on a wadégeneral objects, such as animals,

people and vehicles, are shown in Figl3 Fig.5.14 and Fig.5.15

| éj&i’.h H i
Figure 5.11. Tracking [Cheet ah] for frame #1, 50, 80, 130, and 185, (1st) SS-AVT
tracker (N=57), and (2nd row) Mean-shift tracker.

—
_ _ _ '

Figure 5.12. Tracking Boat ] for frame #1, 20, 60, 80 and 110 (1st), SS-AVT tracker
(N=56), and (2nd row) Mean-shift tracker.

In this section, we have proposed a novel and promisingitig@tgorithm inspired by findings
of human visual perception. Itis suitable for tracking gahebjects without any prior knowledge.
The target is represented by an attentional region poolwinimgs robustness against appearance
variations. Dynamically spatial selection of discrimimatattentional regions on the fly enables
the tracker to handle camouflage environments and objetiiscamplex shapes. In addition, by
introducing LSH to on-line tracking, the proposed SS-AV tasnputationally feasible. Our future

work includes 3 aspects: 1) extending our current SS-AVEkeato a general region tracking
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[Cheet ah2] forframe #1, 31, 68 82 and 102 (N=65)

Figure 5.13.More results of spatially selective attentional visual tracking on animals.

[NYC Bi cycl e2] and #1, 174, 253, 371 and 460 (N=22)

Figure 5.14.More results of spatially selective attentional visual tracking on people.
tool by taking more motion parameters into consideratigrin@antiating SS-AVT to particular
objects by building extensive attentional region pool fifiedent views, and 3) exploring property

selectiong.g, color, shape, and size, of attentional regions.
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[Tank] for frame #1, 76, 180, 205 and 220 (N=44)

Figure 5.15.More results of spatially selective attentional visual tracking on vehicles.

5.3. Granularity and Elasticity Adaptation for Attentional Visual Tracking

The particular implementation of attentional visual triagkin Sec.5.1is generally robust to
partial occlusions and camouflaged objects, but can bematefd by targets with large deformation
or rotations, since it implicitly enforces strict relatigeometrical relations among the attentional
regions. Another difficult is how to select the initial scaltef the attentional regions. Actually, in
most tracking methods, matching is largely simplified ang oray focus on certain characteristics
of targets, for example, the existences of certain localalipatterns or coherence with certain
overall feature statistics in appearance-based trackingsequently, successful tracking methods
for certain types of targets may not adapt to other targesised herefore, for generally applicable
trackers, matching needs to be flexible for distinctive étgsgand adaptive with respect to target
variations. In order to advance towards designing morergétrackers, adaptation of more aspects
of observation models need to be introduced and incorpobrata unified framework.

Specifically, for appearance-based tracking, there ar&éy@spects in designing observation
models: what is the abstraction level of features, and howake into account the geometrical

structures of targets. For example, in two extreme casegsethplate matching method@ ] uses
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local pixel intensities as features and employs sum of sgudifferences (SSD) as the matching
criterion that enforces rigid geometrical relations amaixgls, so it is suitable for small and

rigid targets but vulnerable to partial occlusions and deftions. On the other hand, kernel-
based tracking algorithmg }, 14, 327] represent targets by weighted histograms that delinbate t
overall statistics of targets’ appearances and largelgriggtheir geometrical layouts. Therefore
these algorithms can deal with non-rigid targets with sigffit sizes but are insensitive to some
motion parameters. In between of these two extreme casegy, oitger algorithms, such as “super
pixels” [116 117 or “bag-of-patches” approaches,[1, 114, 94], extract features from some

regions of interest on targets and consider their geonadétetations to different degrees.

Elasticity 4
(Structure ) | pag of feature points Mean-shift
®
L
[
bag of patches
SSD matching e
@ super pixels

Granularity
( Appearance )

Figure 5.16.lllustration of different tracking approaches in terms of their relativangra
larity and elasticity.

We refer to the two aforementioned dimensions as the fegtaraularity and modeklasticity.
Granularity is a measure of descriptions of componentstiakie up an object. We use the feature
granularity to indicate the abstraction level of featueg, whether features describe attributes
of a pixel, a blob region or a whole object. Elasticity refevsthe degree of flexibility. Here
we use the model elasticity to indicate the ability that thedel tolerates geometrical changes
among component®,.g. whether a model allows deformations inside targets or nbe féature

granularity focuses on the target appearance and the mlagdatey puts emphasis on its structure.
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Some typical tracking approaches are illustrated quadgytin Fig. 5.16in terms of their relative
feature granularity and model elasticity.

Humans also perceive different objects at different grarityl levels 30]. For objects full of
textures but without clear structures, human eyes may fooukeir local appearance characteris-
tics. For objects composed of several parts, both the appees of the parts and their structures
may attract attention. In addition, as the scales of objgtasmige or deformation/partial occlusion
occurs, the perception of target structure and local ajppearmay also change.

In this section, we propose another implementation of aiteal visual tracking in which tar-
gets are represented by Markov random fields (MRF) of a setaitainal regions based on affine
invariant features, where the feature granularity and rheldsticity can be explicitly adapted with
respect to targets’ appearances during tracking. Therfeaactors that delineate the local appear-
ances of interest regions are extracted in a multi-scaleneram hus, the scale ratio between the
patch sizes that are used to extract feature vectors andh#lnaateristic scales of interest regions
specifies the feature granularity. On the other side, thengéacal relations among the interest
regions,i.e. the structures of targets, are modelled in the pair-siterd@l functions whose pa-
rameters control the elasticity of the model. Thus, by updahe scale ratio and the parameters in
the potential functions to maximize the joint likelihoodtbé MRF, the tracker adaptively balances
the requirements of consistency with the local appearaaogstructures of targets. We refer this
algorithm as granularity and elasticity adaptive attemdiozisual tracking (GE-AVT).

The main differences of GE-AVT from SS-AVT are as follows: thg early selection of at-
tentional regions are based on affine invariant featurectlete 2) the attentional regions are
organized as a MRF model rather than a set; 3) in late selestage, certain properties of ob-
servation models are adjusted rather than spatial seteatidRs,i.e. the granularity of ARs and

the elasticity of the MRF model. The target observation modah be viewed as a unification of
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many previous tracking algorithms in the sense of how tormgaappearance-based features. In
addition, the adaptation of feature granularity and motiteity in this paradigm exhibits a new
way to update observation models to handle dynamical srgée proposed method can estimate
multiple motion parameters including translation, ratatand scaling, and handle partial occlu-
sion, deformable targets and camouflaged objects withimutifeed framework as demonstrated
by extensive experiments.

Local invariant features have been used in visual trackigigre. The proposed method is
different from some recent worki[4, 94, 89] where the target is represented by a constellation
of fixed-size {1 x 11) intensity patches extracted at Harris cornérs/]], or a bag of maximally
stable extremal regions (MSER)d], or an attributed relational graph of SIFT featurés]jwhere
the target model is adapted by eliminating and incorpoga@ilFT features and matched by graph

matching.

5.3.1. Target observation model

In GE-AVT, we employ a unified tracking paradigm where theeais represented by an MRF
model of attentional regions, and the feature granulanty the model elasticity can be explicitly
modelled in a parametric way. In this section, we first introelthe general tracking paradigm and
then describe the specific attentional regions based oreaffuariant feature detection and MRF
formulation in our implementation.

5.3.1.1. A unified tracking paradigm. Given the target initialization, we construct an MRF
based on the attentional regions within the target. ThedriddiriablesX = {x;} in the MRF
are the parameters of the attentional regions on the taaigetthe observable variables are the

parameterd = {z;} of detected attentional regions based on affine invariattfe detection in
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every frame. The adjacent attentional regions are linkgzhinwise cliques that encode their rel-
ative geometrical relations, as shown in Figl7. Then, by matching features extracted from the
attentional regions in successive frames, the motion ofalgets can be first coarsely estimated
based on the motion of each AR. Afterwards, we refine the tangeition parameters by searching
for the maximum a posteriori (MAP) estimatg X*|Z). We employ the scale ratio between the
sizes of image patches to extract features and the chastictscales of interest features to model
the feature granularity. The elasticity of the model is colfed by the parameters in the potential
functions. Assuming the tracking results are true reabnatof the MRF, we adapt the granularity

and elasticity to maximize the joint probability(X*). The entire paradigm is summarized in

Fig.5.18
Figure 5.17.Illustration of the MRF model.

Input frames Early selection AR matching and target estimation Tracking results
[ N
_ Interest region Feature Coarse motion Refinement by |,
I detection extraction ||| parameter estimation ‘| hypothesis testing i
L r - _ e ———

Feature granularity Model elasticity
adaptatoin adaptation Late selection

Figure 5.18.The proposed unified attentional tracking paradigm.
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With different types of attentional regions and strategiesxtracting features, the MRF-based
observation model in this tracking paradigm can substiz#ito different observation models. For
example, if we regard each pixel as an attentional regionesforce strict geometrical relations
among the pixels, this model degenerates to template trgckr if the entire object is an atten-
tional region and features are kernel-weighted histogydinen it turns to kernel-based tracking.
Additionally, the paradigm can well explain the “bag-oftgt@es” method where no geometrical
constraints are enforced in the MRF and the motions of taayetgestimated from the confidence
map or probabilistic occupance map generated from atteadtregion matching or outputs of clas-
sifiers.
5.3.1.2. Attentional region detection.For attentional regions in GE-AVT, salient image patches
that are stable in affine transforms are preferable sindertinaion parameters can be explicitly
estimated. There are many successful affine region detectethods §], and we select Harris-
Laplace interest regions mainly due to its computationtiehcy and the ability to yield rich
candidate regions.

The Harris-Laplace interest feature detectdr, [ 7] extracts points that are both local maxima
of the Harris cornerness measure in spatial domain and naagfnthe normalized Laplacian in
scale space. The cornerness is measured based on the semomehtnmatrixy of the image
gradient distribution in a neighborhood of a piXel, v}, as

L2({u,v},sp)  Lu,L,({u,v},sp)

,u({ua U}v ST SD) = 5%9(51) ® (57)
LuLv({u>U}75D> Lg({u’v}asD)

where L, ({u,v}, sp) and L, ({u, v}, sp) are image gradients after smoothed by a Gaussian ker-
nel with variancesp, a.k.a. the derivation scaled[/], and g(s;) indicates the Gaussian kernel to

integrate the gradients whose varianges referred as the integration scale or the characteristic
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scale p7] of this point. The two eigenvalues > )\, of i characterize the pixel intensity distribu-
tions in the neighborhood. Two large eigenvalues imply tioéiom of the image patch surrounding
this pixel may be phenomenal in all directiorigl], thus it is a stable corner. Each Harris corner
can be delineated by an ellipse regiBrcentered afwu, v} with the characteristic scalg and a
shape matrix; that are normalized by the larger eigenvalye

After extracting the ellipse® = {u,v, s;, i} whose centers are Harris corners, we calculate
the normalized Laplacian for those nested ellipses, tha'iand R are nested iR ¢ R. Note,
the centers are not necessarily the same for the nesteseslliphe regions that are local maxima
of the normalized Laplacias?,|L,.,({u, v}, sp) + L..({u,v}, sp)| are selected as the detected
interest regiong R}, - - - , RY .} where )" denotes the number of regions detected at frame

Please refer taj/] for details about Harris-Laplace interest point detediof6 7], the location
and shape of an interest region are iteratively refined ierotal reflect the gradient distributions
more accurately. As there is no guarantee of the convergamdehe computation load is not
affordable for tracking, we do not refine the interest region
5.3.1.3. MRF model formulation. Given the detected attentional regicis}, - - - , R}, } within
the initial target at frame = 0, we build the MRF including the hidden sites = {u;, v;, s, ii; }
that correspond td@z? and incorporate the target's motion parameters in the iaie- potential
functions.

The initial attentional region$RY, - -- , R}, } are regarded as a true realization of the MRF
and denoted agx{, - - - ,x%,,}. Then, the joint probability?(X) = P(xi, - --xay,) is expressed

by the Gibbs energy defined over pair-wise clique(sghs

P(X):%exp - Y Vixx) | (5.8)

(xi,x5)eC
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where Z, is the partition function and” is the pair-wise potential function(x;, x;) is a pair-
wise clique if the corresponding attentional regions arl The higher order cliques and the
dependencies among cliqgues with common attentional regio& ignored to enable the problem
tractable.

It is open and flexible to define the potential functibhto model the relative geometrical
relation between two attentional regions. To allow rotatmd scaling of targets, i we only
involve the difference of the anglé; betweenx; andx’, at framet against the reference an@%
betweenx! andx(;., and the target’s current rotation angi@’ , as

(07, — 67, — AG*)?

202 ’

Vixtxh) =

1) g

(5.9)

whereo is the assumptive variance of angle difference§, = 6, — 67;, which can control the

Y

elasticity of the MRFj.e. how rigid the relative geometrical relations among attamdl regions

are enforced. The anglg; between two adjacent attentional regions is calculatet! thig link

t_ it
connecting their centerse. 0;; = arctan(— Z?

t_ ot
u; j

). With these definitions, the partition functich
can be explicitly expressed & = (v/270)I°l where|C| is the number of pair-wise cliques. An
example of MRF model is illustrated in Fi§.19where the attentional regions are drawn as yellow

ellipses and the centers of those that are neighbors aexliwkh red lines.

Figure 5.19.An example of the MRF model initialization.
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Since histograms are generic and rotation invariant, foh edtentional region, we extract a
histogram of certain cues to describe its appearance. FarmgskH.aplace interest point, although
the characteristic scalg is available, how large area around the point should be usedttact
the features to insure good matching can not be determinfedebacking. Thus, we utilize a
scalarr to specify the scale ratio between the size of image patctl igsextract the histogram
and the characteristic scade. For eachx;, H(rx;) represents the histogram extracted from the
ellipse with the length of the major axis equalitg,. Therefore, the ratie controls the feature
granularity.

For an observation! of x;, we define the likelihood of individual attentional regioased on

the Bahattachaya coefficienbetween the corresponding histograms, as

P(z!|x;) = exp(1 — p(H(rxY), H(rz}))). (5.10)

Fixedr may not be appropriate for all tracking scenarios; seed to be adjusted during tracking.

5.3.2. Motion estimation

We estimate the motion parameters of the target with twosstdfrst, the attentional regions
detected in current frame are matched with the initial neglio the MRF so as to coarsely estimate
target’s motion parameterse. translation, scale and rotation angle, which mainly retieghe
resemblance of appearance. Then, a few more motion panaaetesampled guided by the coarse
estimates. The hypothesis that yields the highest joirtepias probability of the MRF is regarded
as the tracking result, which takes both appearance ancistes into consideration.

5.3.2.1. Coarse motion estimationFor every incoming frame, we perform Harris-Laplace inter-

est points detector to locate the attentional regioRs - - - , R',. } at current frame in an enlarged
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region surrounding the previous tracking result. If onerdibnal region is matched to an initial
attentional regionx!, we regard it as an observation of the hidden =jtand denote it by!. The
matching can be achieved by a classifigr4d], instead, we directly threshold the Bhattacharya

coefficientp with the scale ratio by a threshold’, as
p(H(rx¥), H(rz!)) > T. (5.11)

This matching is not necessarily a one-to-one mapping.

Incremental estimation of the motion parameters of targegecially for the rotation angle,
is not reliable since the estimation error could be accutadlaThus, we estimate the target mo-
tion Aut, Avt, Ast, AG" with respect to the target initialization. These motiongmaeters are first

coarsely estimated bgwu;, Avj, Asf;, A¢;; of individual observationg; and each pair of; and

f ,
z; within a clique.

The translationg\u! = (u! — u?) andAv} = (v! — vY) are cast in a 2D histogram. The scale

7

factor and the rotation angle are estimated through 1Ddpiato of those of the detected pair-wise

cliques(y;, y}),
t ot t ot
Ast — ’{uivvi}_{uj7vj}|

7 Hud o} — {ug o}

(5.12)

NG = 0L — 60, (5.13)

The modes of the distributions of these motion parametersgmt coarse motion estimation
for the targetj.e. Aut, Avt, Ast, Aft. The histograms of attentional regions’ motion parameters
are similar to the confidence map or occupance map used indbpgtches” approaches and the
geometrical relations among the attentional regions havdeen taken into account. Then, we
employ these rough estimates to guide fine sampling of tangébns and evaluate the posteriors

to refine the motion estimation.
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5.3.2.2. Motion parameter refinement.As the interest region detection and matching may con-
tain errors, we further refine the coarse motion estimate’s Avt, Ast, AGt by sampling a few
more motion parameters around them and evaluating theseHeges.

Given the observationZ = {z;,--- ,zm} Within a hypothesis target region, the MAP esti-
mation X* = argmax P(X|Z) presents the upper bound of the posterior of these obsengati
Z. With the Markovian properties and the field model structie;|X) = P(z;|x;), the joint

posterior can be expressed as

P(X|Z) « P(Z|X)P(X)

= P(X) H P(z]x;). (5.14)

The joint probability P(X) is calculated with Eg5.8 and Eq.5.9 that utilize the hypothesis
Aft as a parameter. The likelihood of individual interest regi(z;|x;) is defined in Eq5.10
Then, the hypothesis whose optimal labellXg yields the highest posterid?(X*|Z) is regarded

as the tracking result.

5.3.3. Granularity and elasticity adaptation

In calculatingP(z;|x;) with Eq.5.10and P(X) with Eq.5.8and5.9, the scale ratio to control
the feature granularity andto control the elasticity of the MRF play important role ineattional
region matching and MAP estimation. Pre-defined fixeaind o are not likely to assure good
matching for different targets and challenging situatismsh as partial occlusions and camouflage
objects nearby. Thus, we adapt them in every frame to magithiz posteriors of tracking results.

The updated parametersands! at framet are used in motion estimation at next frame 1.
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5.3.3.1. Feature granularity adaptation. We update the scale ratio by searchitig- Ar until
local maximum of P(Z*|X*") = []. P(z!|x';). Note, here locations and shapeszpfand x";
are given, only* affects P(Z*|X*"). This is equivalent to maximize the sum of the Bhattacharya

coefficients of all observed attentional regiafisn the tracked target, as
r'" = argmax Z p(H(r'xy), H(r'zl))). (5.15)

The histogramsH (r'x?) are pre-calculated and stored at tracking initializatidfo reduce
the computation overhead of adaptation, we perform locadlignt search around + Ar with
r® = 2 andAr = 0.1 in our experiments. Thus, the feature granularity is uptlateording to
the appearance changes. If the target is rigid and stalde, matching can be obtained with large
ratior. If partial occlusion or deformation happen, smathay be appropriate.
5.3.3.2. Model elasticity adaptation.The parameter in the pair-site potential functions controls
the elasticity of the MRF. To enabte match the degree of deformation of the target, we solve it
by maximize the likelihood of the current tracking resut, a

dln P(X"|o)

o ~ 0. (5.16)

Plug in the partition functior¥,, and the potential energy in E§.9to P(X;|o), we have

100

. 1
P(Xjlo) = A= exp | — Z
(xf*x5)

V(xt, x")
(Vamo) 2

1 AGY. — AGTH?
= —exp| — Z ( 2 )
( 27r0')|0‘ o 202
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Solving Eq.5.16 we obtain the assumptive varianeé of angle differences given the current
tracking result,

o =G > (Al - A0 (5.17)
(xt7 xt})ed

The optimals? is the variance of the observed angle differences. So, ifdladive geometrical
relations of the detected interest regions are stabilés small, on the other hand; increases

when deformations occur.

5.4. Experiments of Granularity and Elasticity Adaptation

We evaluate the proposed GE-AVT for a variety of real-woddwences that present deforma-
tions, partial occlusions, and camouflage objects. In theisthaplace interest point detector, up
to 12 different integration scales are tested dependindgp@size of the target. The features used
to match the attentional regions are 2D histograms in noze@RG space witB4 x 24 bins and
the corresponding matching threshold for the Bhattachaogdficient is set tdl’ = 0.75. The
proposed tracker is implemented with C++ which runs at 2-ath& per second on a Pentium-IV
3GHz desktop. The computation load is jointly determinedh®ynumber of scales in the interest
feature detector and the number of attentional regionstiste

To exhibit the generality of the proposed method, for ddférsequences, we compare the per-
formance with three trackers: a Mean-shift tracker that ateploys 2D histograms in normalized-
RG space witl24 x 24 bins, a template tracker where the image regions are naredktio grey-level
patches and compared with SSD, and a “bag-of-patches’drachng the same set of interest re-
gions but ignoring their geometrical relations. Althoudjlese 3 trackers can deal with different
kinds of tracking scenarios, we demonstrate the proposédatiean overcome some difficulties

to them within the unified tracking paradigm.
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5.4.1. lllustration of tracking results

The tracking results are displayed in three rows in BigQ At the first row, the initialization of the
MRF model is shown in the first image where the cliques are dnaitnred lines, and followed
by the interest region detection results where the matckgims are drawn as yellow ellipses
while the non-matched ones are light blue ellipses. Notdahgth of the major axis in drawing
is the product of the scale ratid and the interest region’s characteristic scale Our tracking
results are illustrated at the second row where the targetlisated by a blue dash bounding box
and the pixels covered by matched attentional regions afdighted with red boundaries. The
comparison tracking results are shown at the third row.

In sequencesi dewal k], the size of target is small which is suitable for the tenwlaacker.
However, when a bicycler is passing by the pedestrian framér 140, the template tracker is
easily distracted, shown in the third row of Fig2Q In our tracker, as the attentional regions on

the upper body of the pedestrian remain stable, the traekeget along with the distractions.

Figure 5.20.Tracking [Si dewal k] for frame #1, 140, 145, 152 and 163, (1st row) ini-
tialization and interest region detection, (2nd row) the proposed tra8ke) the template
tracker.
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5.4.2. Partial occlusions

The sequenceFpce] first used in [L] presents different degrees of partial occlusions. Laogdes
ratior may jeopardize the interest region matching when partielusgons occur. From Ficgh.21
we can observe that in our method the scale reitis adapted to follow the changing of degree
of occlusion. r* decreases to about 1.2 at frame 285 and increasgésmuen the book moves
away. For the mean-shift tracker, when partial occlusiqupleas, the scale estimation is no longer

reliable and can hardly recover. Some representative Bameshown in Figh.22

30
2.8
26
24
221
20+
1.8+
16+
141+
1.2+
1.0

—— Scale ratio r

Scale ratior

0 100 200 300 400 500 600
# of frames

Figure 5.21.Scale ratio*! for sequenceHace].

5.4.3. Deformable objects

For sequencedock fi ght], when the target cock experiences large deformation adame
240, ¢! in the potential functions increases considerably, as sBhowig. 5.23 This means the
structure or the relative geometrical relations amongrterést regions are largely ignored. Thus,
the target is located mainly by matching its appearance. Wneicock pauses fighting at frame
250, its structure helps the proposed tracker to locatestiget and estimate the scale more accu-

rately than the Mean-shift tracker.
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Figure 5.22.Tracking [Face] for frame #1, 285, 345, 585 and 599, (1st row) initialization
and interest region detection, (2nd row) the proposed tracker (3adfdlan-shift tracker.

25 . .
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Variance of angle differences

0 100 200 300 400
# of frames

Figure 5.23.0! for sequenceCock fi ght].

5.4.4. Camouflaged objects

If the appearance of the target is distinctive in the scebag-of-patches” approaches may work
well, however, they are usually vulnerable when camouflagesimilar or even identical objects,

presents close to the target. As shown in E@5 when the camouflage package moves close
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Figure 5.24.Tracking [Cock fi ght] for frame #1, 229, 241, 250 and 410, (1st row)
initialization and interest region detection, (2nd row) the proposed tr§8kel) the Mean-
shift tracker.

to the target from frame 640, the scale estimation in the flmg-of-patches” tracker becomes
unstable and it gradually drifts to the wrong target. In oppr@ach, though interest regions de-
tected on the camouflage package have similar appearahegsre excluded since their relative

positions are not consistent with the MRF model.

5.4.5. More tracking results

More test results on sequences with in-plane rotation aalé shanges are shown in Fig26and
Fig.5.27.

In this section, we have introduced a new perspective ontexdgarget observation models in
terms of the feature granularity and model elasticity in died tracking paradigm, where targets
are represented by MRFs of attentional regions. By employinguki-scale scheme to extract
features from attentional regions and adjusting the patens¢hat regulate the target geometri-

cal layout, the proposed method automatically tunes thergbon model’s focus on a target's
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Figure 5.25.Tracking [Package] for frame #1, 640, 702, 740 and 792, (1st row) ini-
tialization and interest region detection, (2nd row) the proposed tra8ke) (he “bag-of-
patches” tracker.

Figure 5.26.Tracking Box] for frame #1, 215, 405, 510 and 598, (1st row) initialization
and interest region detection, (2nd row) the proposed tracker.

appearance and structure. Future work will include ingesitbn about how to adapt the feature

granularity of individual attentional regions and the puig functions for each clique.

5.5. Discussion on Attentional Tracking

The core strategy of attentional tracking is to construggally redundant target representation
at initialization, thus during tracking the tracker canustjts attention to more discriminative parts

or properties of the target. This is fundamentally differieam directly updating the observation
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Figure 5.27.Tracking Ki d] for frame #1, 10, 40, 45 and 60, (1st row) initialization and
interest region detection, (2nd row) the proposed tracker.

model with the tracking results or on-line learning sincensw features are introduced to the
observation models after initialization but more agile chatg methods are employed. There are
several issues open to different implementations: howlextattention regions at early selection
to represent the target, how to organize the attentionabmegand how to adapt the focus of
matching criteria of the trackers at late selection, as a&the computation costs.

In our implementations, SS-AVT extracts a pool of atterdioregions whose motions can be
estimated reliably to represent the targets. Since altidteal regions have the same si26é & 30
at initialization), we can utilize LSH technique to accalkerthe matching. The relative geometrical
relations between attentional regions are implicitly assd to be stationary. The pros are that the
target representation is quite robust to partial occlusmrcamouflage objects and efficient, but the
cons are that the sizes of the attentional regions are rextteel in a principled way so it is hard to
handle large scale changes especially when the targets aobamd the sizes get smaller, and the
strict requirement of the geometrical structure makesritl ba deal with objects with deformation
or rotations.

Onthe other hand, GE-AVT extracts attentional regionsgigimultiple scale scheme based on
affine invariant feature point detection, thus the charastte scales and the rotation angles of the

attentional regions can be estimated, which enables thketrdo infer more motion parameters.
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In addition, the attentional regions are organized in a MRElehgo the matching scheme can
be more flexible. But the main drawback is that the affine imrdrpoint detection is sensitive
to reflections, illumination conditions and view changésréfore a large portion of attentional
regions may not yield good matching. More robust attenticegion extraction methods and more
flexible matching scheme deserve further investigationushpghe attentional tracking algorithm

to be more robust and practical.
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CHAPTER 6

Game-Theoretic Multiple Target Tracking

Multiple target tracking (MTT) is a challenging task whemsar targets are present in close
vicinity. The challenge is rooted in the difficulty of estitiey the motions of multiple targets
cannot be treated independently if they are present in alicseity. Especially, if their visual
observations (or visual evidence) are mixed, it is gengnadry difficult to figure out the right
associations of these observations to the individual tarfieat implies a general segmentation
problem). To handle this difficulty, the motions of multiglergets have to be jointly estimated
from the mixed visual observations.

This joint estimation problem can be performed in a cergealifashion by formulating a joint
observation model, as treated in many existing methoesd4, 78, 47, 41, 69, 91, 117, 54]. Be-
cause the joint observation model evaluates hypothesesnvinpotion states, these methods lead
to complicated centralized MTT trackers that generallydntesearch a rather high dimensional
solution space.

This chapter brings a new view to MTT from a game-theoretisjpective, bridging the joint
motion estimation and the Nash Equilibrium ojame Instead of designing a centralized tracker,
MTT is decentralized and a set of individual trackers is usadh of which tries to maximize its
visual evidence for explaining its motion as well as genegainterference to others. Modelling
this competitive behavior, a specigdmeis designed so that the difficult joint motion estimation
is achieved at the Nash Equilibrium of this game where noviddal tracker has incentives to

change its motion estimate. We substantialize this noea id a solid case study where individual
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trackers are kernel-based trackers. An efficient best resspapdating procedure is designed to find
the Nash Equilibrium. The power of this game-theoretic M§Bhown by promising results on

difficult real videos.

6.1. Interference Model for Kernel-based Trackers

In this section, we introduce a new analytical interferentzdel for kernel-based trackers,
which is a key component in formulating the game-theoreticTMT his interference model takes

both target appearances and spatial relations into caasiole.

6.1.1. Joint likelihood maximization

Denote the motion parameters for tile target byd;. Its corresponding support is denoted<by
i.e. the set of pixelx, } within the region of target. Thus, the motions of a number of targets
can be estimated by maximizing the joint likelihood,

N
O* = argmax P(U Qi)61,--+ ,0n). (6.1)
(01,08 )

If no occlusion is preseni,e. €, N Q; = 0,Vi,5 < N. This joint optimization can be done
independently:

07 = argmax P(€;]0;), Vi< N. (6.2)
0.

k3

If occlusion is present,e. ; N Q; # 0,3i,5 < N, we can assign the pixels in the overlapped
regions to different targets probabilistically, thus
N

©* = argmax H P10y, ,0n), (6.3)
{61, 0N} 11



103

where(); is the probabilistic support of targét This is equivalent to an energy minimization
problem:

N
©" = argmin — Y In P(Qi]6;, -+, Oy). (6.4)
RN —

6.1.2. Kernel-based likelihood

Specifically, for a kernel-based tracker, a target is represl by a kernel weighted feature his-
togram [L5]. The motion parameters are denoted&oy% {y,h}, wherey is the location of the
kernel center and is its scale. Denote hy,, the 2D pixel location and, 2 |[*==¥{|. The kernel
functionk(z?2) used is the Epanechnikov kernel:

Lot d+2)(1—22), 2<1
ooy = ) B0

n

: (6.5)
0, otherwise

whered = 2 andc, is the area of the unit circle. The negative derivative ofkbmel is denoted
by g(=2) £ —K/(:2).

Following the notations in1[5], for a single tracker without interference, the model of&dti
is described by ad/-bin histogramq; = {¢im }m=1... v, and the target hypothesis py(y;) =
{Pim(yi) Ym=1, a1,

Piny) = > k(HX”h—:”ma[b(xn)—mJ, (6.6)

Xn EQZ'

whered|[-] is the Kronecker delta function and the functign) maps the pixel locatior,, to a bin
indexm. The Bhattacharyya coefficiepty;) is employed to measure the similarity between a

target hypothesis and the model

p(yi) =/ Dim (Y1) im- (6.7)

m=1
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Since the distance from the hypothesis histoggatty;) to the model histogramy; can be de-
fined asd(y;) = /1 — p(y:), the likelihood model for tracker (in Eq. 6.2) without considering

interference can be formulated as:

P(QZ\HZ) X elip(yi). (68)

6.1.3. Kernel-based interference model

Due to partial occlusion, we need to consider the interfegesmmong theV targets,i.e. €2; N
Q; # 0,3i,j < N. The observation model for trackers no longer solely determined lyy but
the joint motion configuration of all trackers (which is dés by {y;,y_;} = {yi,--- ,y~} tO
highlight other trackers’ interference with trackirin view of this, we generalize the kernel-based

histogram model by,

pinlyey) =5 3 {kuﬁh—‘i”rr?)é[b(xn)—m«

v Xn eQz

qtm(xn%(uxnh—jyz ?)

& — }, (6.9)
S i e 2 )

whereC; < 1is a normalization term. The probability that the pixglis within €2; is approxi-

mated by

G ()R =212
S G G R 222 2)
M

whereg;,,,(x,) = >, _; ¢im[0(b(x,,) —m)] is the histogram bin value for pixel, in the target

(6.10)

modelq;. Please note when using Epanechnikov kernel with a finitpaupif one tracker has
no overlap with others, Ec6.9 degenerates to E@.6. To avoid numerical problems, we set

¢im = € > 0,Ym < M, wheree is a very small value, to guarantee non-zero hjngx,) and

Qjm(xn)-



105

Thegeneralized Bhattacharyya coefficientlefined ag(y;, y_;) = Z%zl Dim (¥ir Y—i) Gim-

Then, the likelihood model for targewith interference is formulated as:
P(inl’ .. 79N) o el PYiy-i) (6.11)

This interference model takes both the appearance sitgikard spatial relations into account.
For examples, as shown in case A in FdL, if the bin values of the pixels in the overlap region are
larger in a target model than in the other, then those pixels have higher weights ir6Ed. On
the other hand, if the pixels in the overlap region are eguikkbly for both target models as in the
case B, then the pixels close to the center of one target shadl tigher probability to be counted
in its model. Furthermore, since E.10is less than 1, this interference model down-weights

those pixels that are in the overlapped regions of diffetirmakers and have ambiguous identities.

Tam O

P, ) < P(x, ian) Pie,in€d ) < P(xﬂinQJ_) Px,inQ)) > P(xﬂinQJ_)

Case A Case B

Figure 6.1. lllustration of two cases for the interferenczdel.

6.2. Game-theoretic Multiple Target Tracking

Based on the interference model, we can formulate the joirttome@stimation (Sec6.2.J)
and construct a game (Seéx2.2 whose N.E. corresponds to a local optimum of the joint mmotio

estimation and can be efficiently solved (S&é2.3. The algorithm is summarized in Sex2.4
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6.2.1. Joint motion estimation

Assuming that the scales remain constant when multipletai@pproach to each other, based on
the interference likelihood model (E.11), the minimization of the joint energy (in E§.4) is

equivalent to:

{y1,yn}

N
max J1(Y1>"',YN) = Zﬁl(yzay—z) (612)
=1

Maximizing the joint likelihood is equivalent to optimizyrthe joint kernel locations of all targets
that maximize the sum of the generalized Bhattacharyya cosfts.
Denote the initial locations of the trackers by?, y°.}. Then, performing Taylor expansion

W.Lt. D (y9, ¥°,) and plugging Eg6.9into p;(y:,y ), pi(y:, y_:) can be approximated by

i(yi,y Z VDim (Vi Y—i)Gim

M
1 R N dim )
0 0
o= Dim (Y3 Y2i)@im + Dim(Yir Y—i)y | 5~ (6.13)

1 M
= 57;: Vim0, y

| Xn—Yi

2
i 2)
—. b

2021 DR P

j=1im

wherew;(x,,) is determined by the initial status of trackey;,,(y?, y°,) and the model histogram

q; of target,

M
= 3" 6[b(xa) — m] W (6.14)

m=1

Since only the second term in E§.13is related to the variabléy;,y_;} given the initial

locations, we can ignore the terms.jnthat are not affected by, --- ,y~}. Then we redefine
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the objective function and have:

N
YN
max  Jo(y1,- - ,¥N) = E ri(yi y—i), (6.15)
=1

{yl?“' 7yN}

wherer;(y;, y_;) corresponds to the individual matching of trackés the second term in E§.13):

a1 wi (X ) ([]2224]%)
rilyi, y_i) 2 B (6.16)
2Cz oy N qjm (Xn)k (H7JH2)
i ]+ E'—l . - Jy
T=LIF G (xn )(|| 2222 |12)
SinceV.J, w.rt. to {yy,--- ,yn} is intractable, we further approximate it with a lower bound
Jg < JQ:
A N
max J. S = 0 Y—i)s 6.17
PR 3(y1 yN) Z (yi ( )
where
i N w (X ) ([] =224 ]7)
iy y-i) = 20, qjm(xn) Xn=¥j 12\ (6.18)
1+Z] 1,77t qim (xn) k<| . H )

This proximation means that the pixels in the occlusionaegiare further down-weighted as

N QJm nk(Hxniyj‘P) qu n n — Yi2
1/<1+ > R ”H)) 1/<1+ > N hj ||)>. (6.19)

j= 1j¢zq j= 1J¢ZQZm

This is reasonable, since we don't explicitly recover thelasion relations among the targets and

a natural choice is to reduce their contributions to the higid histograms.

6.2.2. Game construction and formulation

Although it is natural to design a game to model the competiatmong multiple trackers, the
construction of the game cannot be arbitrayy. based on intuitions or heuristics, because the

equilibrium of the game may not necessarily be a solution TorMFor example, if we formulate
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a naive non-cooperative gam¥, {R?}, {p:(y:,y_:)}], where the players correspond to the indi-
vidual trackers, the strategy for each player is the mogipre R?, and its utility p;(y;,y_;) is
the generalized Bhattacharyya coefficient. This naive ganaable to assure a social optimal
behavior (that corresponds to a good joint solution to M BEgause each tracker will try to solely
increase its own utility. Special care has to be taken in #raegyconstruction.

A local optimum{y;,--- ,yn} of Js(yi, - ,yn) 2 Tot(Y1, -+, ¥n) IS @ good solution to
MTT. The solution must satisfy the Karush-Kuhn-Tucker (KKcbnditions,

artot(}’la T >YN)
Jy;

|{yﬂ1«,.“7y7\]} =0, Vi<N. (6.20)

Thus, the N.E. of the game we construct must also satisfyethesditions. In view of this, we
design a gamé/ = [N, {R?*}, {ri¢(yi, y_i)}]. Atthe N.E.{y7,--- ,yi} of this gameY player:

and its optimal strategy;, we haver,;(y:,y*,) > rit(yi, ¥*,), Vy;, by definition of N.E.. Since
Ttor IS CONNUOUSYV y, 740t (¥i, Y™ ;) [y» = 0, Vi, is held at N.E.. Consequently, the N.E. also satisfies
the KKT conditions of/;. Therefore, this construction of the game is plausible, magimizing

J3 is equivalent to finding the N.E.. Fortunately, this can beexb efficiently by a decentralized

best response updating, as described below.

6.2.3. Finding a Nash Equilibrium

To find a N.E., we design a decentralized synchronous schenpiate the best response for each
tracker. Namelyyi, assuming all the other trackers’ locations; are given, we find the begt,

that maximizes the utility;(y;,y_;), i.e. to solveVy, r..(y:, y—i) = 0. The justification of this
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iterative process can be found in S6@. We haveyi,

vylrtot(y'wy ) vylrz(Yza + Zvylrj yj7y ) - 0 (621)
J#i

Eq.6.21can be solved in a closed-form. To make the derivation cleadenote

A WilXn
Dii(%n) 2 i { Xn) . (6.22)
1+Z] 1J¢qumxn (|| hj || )
A wi(xn) k(=57 1%)
5i(%n) = Ay e (6.23)
(L + 22000 ajm (%) Fo(| [ |2 )2’
Then, we have
—Yi
Vyzn(y” z h2 anz Xn h ||2>(Xn - yi), (624)
Z Q 7
and fori # j, we have,
~ 1 Xn —Yi
Vy. 7y, y-j) = C Ch2 Z nji(xnmmTHQ)(Xn —¥i)- (6.25)

L QN0 ¢

Please notg; merely influences;(y;,y_,) through the overlapped regidx, € ©; N €;}

and g(||=5*

?) is uniform for Epanechnikov kernelVy,7;(y;, y_;) acts as a force of thgth
tracker that pushes away tkté tracker.
Plugging Eq6.24and Eq6.25t0 EQ.6.21, we can solve the begt giveny _; in a closed form.

To make things clear, we define two more coefficient$x,,) andw;;(x,,) for pixel x,, € €,

A 1 yz

i

12), ¥, € i, (6.26)

Wi (Xn)
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o | e ) x, e g,

0 X,L%QZQQ]

(6.27)

w;i(Xp)

We have,

VYthOt Yi, Y 1 Z VYLTJ y]’ )

N
anZwﬁ(x ZZwﬂ x,) = 0. (6.28)

Qi z .7 1
Therefore, considering the interference of the taigetll the others targets and given the locations

of other targets, the begt that maximizes the utility is

N
i— Xnp Wi Xy
v, = 21 2, Xl (%) Vi (6.29)

S Y, wii(xn)

For each framd®, whenN trackers approach to each other, we can iteratively updaie=
1,---, N by EQ.6.29 This iterative process reaches an equilibrium that aelsieMocal optimum
of the joint motion estimation.

A geometrical explanation is the following. We can vigwas a combination of forceg;.;
which is the solution t&v,7;(y;,y—;) =0 as

>, XnWji(Xn)

i — . (6.30)
T g, wi(Xn)

yi—; acts as trackej’'s counter force to trackerwhen considering;’s interference irr;(y;, y_;).

This can be visualized in Fig..2
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Figure 6.2. lllustration of force combination fgt.

6.2.4. Algorithm summary

We summarize our game-theoretic MTT algorithm. If a subs$etmgets approach each other,
and their hypotheses are overlapped (the distances less thaeshold), we generate a game and
use the algorithm in Fig6.4 to search for the N.E. If one target is isolated from othersuse

Mean-shift tracker. The procedure is summarized in €i§.

Input : Framel®, target modelgq;}, and initial states of the set of individual trackers
000 = {y" D p"Nfori=1,... N
Output: Tracking result®® = {y'” n{"V fori =1,--- N'.

(1) Divide trackers into different groups if they are in @os&cinity.

(2) For each group of trackers, if it has more than one traickdre group, generate a
game and call the algorithm in Fi§.4, otherwise call Mean-shift tracket .

(3) For each individual tracker, searbﬁ) with discrete scale factod.95,1,1.05}
to maximize its generalized Bhattacharyya coeffici@st, y_.).

Figure 6.3. Procedure of game-theoretic MTT.

6.3. Game Theoretic Analysis

In the gamez we have constructed, the utility function of each playethis jpint matching
Tiot (Vi Y—i) = va 7(yi,¥—:), which forces an individual tracker to take other track@ruences

into consideration rather than only focusing on its ownrese V.7 (y;, y—;), i.e. the sensitivity
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Input : Framel/, target model q;}, and initial states of the set of individual trackers
{y),h;}fori=1,--- N.
Output: Target Iocatlons{yz, i=1,---, N} at the equilibrium.

(1) For each tracker, determine; and calculate;(y;,y_;) by Eq.6.9.

(2) In order to calculat&/,,7;(y;, y_;) in EQ.6.24 for each pixek,, € ;, calculate
e w;(x,) by Eq.6.14
e 7;(x,) by Eq.6.22
e w;(x,) by Eq.6.26
(3) In order to calculat& 7;(y;, y—;) in EQ.6.25(note switch subscripgtandy), for
trackerj # i,€; N Q; # 0, for each pixek,, € ; N, calculate
e 1;;(x,) according to Eg6.23
e w;;(x,) according to Eq6.27.
(4) For tracker, calculatey; giveny_; by Eq.6.29

(5) Ifall {y; Vi =1,--- , N} are stationary, exit; otherwise go to Step 1.

Figure 6.4. Algorithm for finding N.E. in game-theoretic MTT

of trackerj’s matching w.r.t trackei’s motiony;, can be regarded as a price trackerharges
trackeri and counter reacts tp throughy,. ;.

To analyze whether the Nash Equilibrium can be achieved éy#st response updating for
gameG = [N, {R?*}, {ri:(y1, -+ ,yn)}], we resort to the following definition and theorem in the

supermodular game theoryd, 97].

Definition 2. A gameG = {N, S, {f;}} is a supermodular (submodular) game if the Sedf
feasible joint strategies is a sublattice, and each utiiityction f; is supermodular (submodular)

function onS.

Theorem 3. In a supermodular (submodular) garee= {N, S, {f;}}, (a) there exists at least
one Nash Equilibrium; (b) if each player starts from any fééesistrategy and uses best response

updating, then the joint strategies will eventually coneestg a Nash Equilibrium.
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For details about supermodular games, we refer the reanl®isapter 4 in$2] and Chapter 7
in[97].

Based on the supermodular game theory, to show the best sesppdating can reach a N.E.,
a sufficient condition includes 1) the solution of Eg21is a best response ¢t given fixedy _;,
and 2) the gamé&' is a supermodular/submodular game. Condition 1 is satisfiee s, (y;,y_:)
is concave ory; in that the Epanechnikov kernel functiéns non-negative and strictly concave.
The details are given in the first part of Appendix C. The caadiR can be satisfied in certain
Q;,i = 1,--- , N where each utility function is submodular function, whia@nde checked as a

by-product in the best response updating as given in thenggzart of Appendix C.

6.4. Experiments and Discussions

We demonstrate the proposed game-theoretic MTT by usirty $yotthesized and real video
(downloaded fronGoogle Vided. The basic individual tracker is a Mean-shift trackerdwsit x 32
2D histogram in the Hue-Saturation space. To purely evaltis performance of the proposed
method, we do not incorporate motion dynamic prior, objextedtors, and background subtrac-
tion, although it is easy to incorporate them. The methodniglemented in C++ and tested on
Pentium IV 3GHz PC. Empirically, the best response updatonyerges very quickly within 3-
10 iterations, so the computations are almost the same &is timaultiple independent Mean-shift

trackers.

6.4.1. Example of best response updating

First, we show an example of the best response updatingackitrg the hands and the face in a
sign language video. The first 4 images in Fidg show the positions of the hands and the face at

the first 3 iterations and at the last iteration during the besponse updating. We observe that the



114

sum of generalized Bhattacharyya c:oefficieE%z1 p(yi, y_i;) monotonically increases as shown
in the last graph. But the individualy;, y_;) may be up and down. This is a rather difficult case

because the hands and the face share the same skin tonesniatbod, the competition ends up

at an equilibrium that gives a good estimation of them.

generalized Bhattacharyya coefficient
6 2 m o omoN w

Figure 6.5. lllustration of best response updating procedure: iteration #0, 128 an

6.4.2. Synthesized video

We synthesize two videos in which there are 3 different targed 5 identical targets, respec-
tively. The backgrounds include random noise and 10-20 Ista@jets that are wandering ran-
domly. Frame samples are shown in Fige. The trackers are drawn in different colors and a red
dash ellipse indicates the group of trackers that are enlgaghe game. The final motiop; are
drawn at the centers of the targets. From the test resuéi;dimpetition among the targets leads

to an equilibrium and largely avoids the coalescence proble

Figure 6.6. Tracking synthesized video: (1st row) 3 different targets for frahels, 42,
427, and 500; (2nd row) 5 identical targets for frame #1, 13, 19,20, 2
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6.4.3. Real video

We further test the proposed approach in real sign languadesports videos. These are very
challenging tests for MTT. The hand gesturing in sign lagguaideo (Fig.6.7) is fast and the
hand shape is deformable. Since the color of the hands arfddbeare quite similar, when the
hands moving in front of the head, it is very likely that indepgent trackers will fail as shown
in the 2nd row of Fig6.7. On the contrary, in our method, the interference from tle taacker
to the hands tends to push the hands away from the face, wheetihygalleviates coalescence

phenomenons.

Figure 6.7.Tracking si gn | anguage] for frame #1, 171, 172, 305, and 325, (1st row)
game-theoretic MTT trackers and (2nd row) multiple independent trackers

Sports video is another large category where the athletesrgty wear similar uniforms and
may have very complicated interactions. Therefore tragki@ople in sports video is a very diffi-
culttask. We show the tracking results kdrd soccer,free styl e soccer andvol | eybal |
in Fig. 6.8 The proposed method can follow people with complicatedusoens. The comparison
to the results of independent trackers are shown below suitsg where one single target often

traps multiple trackers.
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Figure 6.8.(1st row) tracking ki d soccer] for frame #40, 64, 79, 101, 109; (3rd
row) tracking free styl e soccer] for frame #1, 100, 250, 280, and 300; (5th row)
tracking fvol | eybal | ] for frame #1, 15, 40, 50, and 120.

6.4.4. Discussions

In this chapter we have introduced a new view of game theattyegstudy of multiple target track-

ing. The competition of individual trackers is formulatesl & game and we bridge the solution
to the joint motion estimation and the Nash Equilibrium of tpame. Consequently, the maxi-
mization of the joint likelihood can be decentralized. Th&Nof this game can be solved by an
efficient iterative procedure in a closed form. The propasethod achieves promising results in

tracking quasi-identical targets in both synthesized aadlvideo sequences.
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CHAPTER 7

Conclusions

In this thesis, | mainly summarize my work on object-levedual tracking and present the
context-aware and attentional visual tracking algorittiorsa single target, and a game-theoretic
multiple target tracking algorithm. The proposed alganghmainly focus on how to handle the
large variations of targets in real-world video sequendi&sently in order to enhance the gener-
ality and reliability of visual tracking algorithms. Sindee target variations are unpredictable and
tracking algorithms have to deal with them in an unsupedvisay, adaptive target observation
models with flexible matching criteria are critical to thesess of a tracking algorithm.

Using subspace tracking as an example, we reveal thatlgticgatating the observation model
with the latest previous tracking results is a chicken-egdplem in nature without any bottom-up
constraints. In viewing of this, we propose two novel ideasithance and adapt non-stationary
observation models: context-aware tracking and atteatitvacking. In context-aware tracking,
the tracker mines some auxiliary objects automaticallyhasspatial contexts of the target which
have short-term strong motion correlation with the targfeese context information can provide
additional verification of the tracking results. This is aageal method to improve long-term robust
tracking, which is effective to deal with the short-termahdation of the target observation model
due to severe occlusion, targets moving out of image boyndad the distraction of camouflage
objects. Further, we present two implementations of atieat visual tracking, where the targets
are represented by a rich pool of attentional regions tlestable in motion estimation. In spa-

tially selective attentional tracking, a discriminativugbset of attentional regions are dynamically
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selected to locate the target, while, in granularity andteldy adaptive attentional tracking, the
scales of the attentional regions and the relative geooa¢trélations among the attentional re-
gions are tuned to enhance the robustness of the observatidel. This rich and redundant target
representation is more tolerant to small target variatthresto lighting changes and deformation,
irregular partial occlusion, and inaccurate target ih#&ion. The spatial selection or granularity
and elasticity adaptation do not rely on adjusting the illial attentional region model or induc-
ing new features during the tracking, which largely avolgsc¢hicken-and-egg problem in on-line
adaptation. The context-aware and attentional visuakimngalgorithms bring novel insights to the
visual tracking area and achieve exciting and promisingeerpental results on real-world video
sequences in unconstrained environments.

Multiple target tracking poses additional difficulties iraptice and need to be addressed even-
tually when tracking is applied to real applications. Theirmehallenges are the coalescence
problem when targets with similar appearances approadtaaty other and the high computa-
tion complexity due to the joint motion estimation. In th@posed game-theoretic multiple target
tracking algorithm, we formulate the problem as a game wimeligidual tracker competes against
each other for the visual evidence while also induces ieterfces to the others. By designing an
interference model for kernel-based trackers, the joinioncestimation is solved by seeking the
Nash Equilibrium in a particular submodular game using besgponse updating, which has linear
complexity with the number of targets.

Visual object tracking is a fundamental problem in compuigion and deserves more research
efforts. For the future research, we will continue pursuintglligent robust visual tracking algo-
rithms for theoretical study and practical systems. On lieetetical aspect, how to integrate the
proposed context-aware tracking and attentional trackffigiently requires further investigation.

The AVT algorithm adjusts the “visual attention” inside ttaggets to achieve robust matching,
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while CAT algorithm resorts to external contexts in the s¢eme temporally motion correlated
regions, to verify the results. How to scalably and autocadlif fuse these two strategies in a
principled way remains open. In terms of practical systesigie how to infer more motion pa-
rametersg.g. the aspect ratio, how to extract invariant image featurel tigh repeatability as
the attentional regions, and how to utilize the prior knagle about the target and scene, are of

great importance to a practical application.
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Appendix
Appendix A

Lemma 1. The solution of the following problem:

mjntr(ATCA), st., ATA =1, (7.1)
whereA € R™*", andC = ZZ" € R™ ™, is given by the eigenvectors that corresponds tarthe

smallest eigenvalues @f.

Proof: Itis easy to figure it out. Actually this is the same as theopfor the procedure in PCA.
Based on the Lemma, the proof of Theorem 1 is given by the fatigwPerforming SVD oA,
we haveA, = UXVT whereU € R™*", 3 € R™", V € R"™". ltis easy to seeP, = UU".

Then the optimization problem in E§.4is equivalent to:

argmin J3(U) = argmin{tr(UTC; U)—tr(UTC/U)+a|[UUT-P, |2}, st U'U=L
U U
The Lagrangian is given by:

L(U) = J3(U) + AN(UTU - 1).
LetU = [ey, ..., e,], and we have:

OL

50 2(C; — C)e +2a(ee’ — P, j)e+2)e

= 2(C; — Cf +al —aP;_1)e+ 2)e.



121

Thus,e is an eigenvector of = C, — C/ + oI — aP,_,. The minimization problem is solved

by finding ther eigenvectors that correspond to themallest eigenvalues 6. Q.E.D.

Appendix B

Definition of inconsistency in a two-node Gaussian Markov netork

The theorem of inconsistency between two Gaussian sountetha proofs were first proposed
by Ganget. al.[4(]. We consider to define the inconsistency in a two-node Gaunddarkov
network, as shown in Figr.1, where the two observation nodes are Gaussian random sector
z; ~ N(pp,X1) andzy ~ N(ug, o) With uy, us € R™. Therefore, the compatible functions

between observation nodes and the hidden nodes are Gaussjan

1 1 T —1
T —5(zi—x;) B (zi—x)
X, Zj) = ——————e 2 i ) 7.2
o ) (2m)"| 3] (7:2)

Assumex; can be predicted by a functiohof x,, the compatible or the potential function xf

andx, can be expressed as a Gaussian

exp {_ (o1 = f (x2)) | (1= f (x2)) }

2
201,

Y(x1,%x2) = (7.3)
V (2m)"oTy
exp {_ (X1—A12X2—,u122);(xl—A12X2—,u12) }
. E , (7.4)

which indicates ifx; and f(x2) can be regarded as being generated from one common model and
0%, is the scalar variance. Whgris nonlinear, we linearize it by Taylor expansiae,, 1.1» = f(0)
andA, = M\XFO is then x n Jacobian. So we only consider the linearized relatior;of

)

andx, in Eq.7.4.
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Figure 7.1. Two-node Markov network.

The variancer}, indeed models the uncertainties between the estisaatnd the neighbor-
hood estimate\ ;5xs + p112. ASsumeA ;; and i, are known, given all théz,, z,} , the estimate
of 0%, is a natural indicator of whethet; and A ,x, + p12 should be consensuse,, if o2, is
very small, then they should be in consensus singe, x») is approaching to an impulse delta
function, and vice versa.

The Bayesian MAP inference af, and the ML estimate af,, can be obtained by the follow-

ing Bayesian EM algorithm/3], i.e.,

1
X1 = (El_l + —21)_1
I12
1
X (B7'z+ 0—2(A12X2 + f112)) (7.5)
12
1
oly = ﬁ(xl — Apxo — o) (%1 — Aqoxs — f112) (7.6)

Fixing o2, the E-Step in Eq7.5 obtains the MAP estimate of; by fixed-point iteration.
Fixing x; andxs, the M-Step in EqQ7.6 maximizesp(x, Xz2|012, 21, Z2) W.I.t. 015. Combining the
two steps together also constitutes a fixed-point iterdton?,.

We measure the consistency of two observation souwcesdz, by examining if their es-
timatesx; andx, are in consensus,e. if x; is predictable fromx, through a linear relation
A 5%y + 12 With small variancer?,. Therefore, whem,; andz, are consistent, the estimate of

x; and A9xs + 12 Will show a consensus.e., they will be almost the same. In this case, from
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Eq. 7.6, the estimate of?, will always approach to zera,e. zero is the only fixed-point. On
the contrary, if they are inconsistent, the estimat&0adnd A 1,x5 + 1110 may deviate from each
other,i.e., the convergent results ef, may be non-zero. This indicates that there exist non-zero
fixed-points foro?,. These motivate us to define the inconsistency of two Gaussiarces as

follows.

Definition 3. If zero is the only fixed-point for?, in the Bayesian EMi.e. in Eq. 7.5 and
Eq.7.6, {z, X} and{z,, .} are consistentif there exist non-zero fixed-points fot,, they are

inconsistent

Proof of inconsistency criterion

Given the aforementioned definition of inconsistency fay @aussian sources in two-node Markov
network, we propose a sufficient condition to check the cayemst value ofr%, as stated in The-
orem2. The basic idea of the proof is to check if E46 has non-zero solutions. With some
manipulations we express E@.6 as a functionf'(¢%,) in Eq.7.12 Then, we show if the con-
dition numberC, of 3, + 3, satisfies Eq4.15in Theorem2, there exist two positive numbers
0 < ko < ky such thatF'(k;) < 0 andF'(k2) > 0, which indicates there is a non-zero solution. If

C, satisfies Eq4.16 F(o7,) < 0 for all 6%, > 0, thus there is no non-zero solution for Ed

PROOF. Fixing o%,, the fixed-point iteration in E(/.5is guaranteed to obtain the exact MAP
estimate on the joint posterior Gaussian. For simplificatbnotation, we denotg&, = Aoxy +

p12 andzy = A 192y + p1o. DefineP = X, + X, andS = P + ¢%,1. The convergent result in the
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E-Step in Eq7.5is the same as,

X1 _ (57%21 + 22)8_1Z1 + 218_122 . (77)
5\(2 EQS_lzl + (0%2:[ + 21)8_122
Embedding it to the M-Step in EF.6, we have
2 1 2 2 5 \VTg—-1g-1 S
Oly = 5012012(z1 —29) STST (71 — Z9). (7.8)

To prove Theoren®, since zero is a solution off, for Eq. 7.8, we only need to analyze the

existence of non-zero solutions &, for

1 . e .
ﬁafz(zl —2,)'S87'87 (2 —25) — 1 =0. (7.9)
P is the sum of two covariance matrices so ireésl positive definite Thus there exists an or-

thonormal matrixQ such that® = QD,Q", where

D, = diag[o}, o5, ..., 0]

ren

is the eigen-matrix witlv? > o3 > ... > 02 > 0 andC, = Z—i Then we haves = QD,Q",
where

DS = dzag[a% + 0—%27 O—S + O—%Qa s 70721 + O_%Q]'
FurthermoreS—! = Q"D 'Q where

1 1 1

D! = diag|
S 2 2 2 20700 9 2
Ul—|—012 (72—|-0'12 O’n—l-(712

].
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We also denot& = Q(z; — 22) = [Z1,2,...,2,). Then, we can simplify the expressions in
Eq.7.9and Eq4.15in Theorem?2 (Sec.4.3) as,

n

1 R 1 o? z

EO'%Q(Zl —59) S7(z1 — %) = - ZZI (o2 fgl (7.10)
! 25) P~ ok 7.11
E(Zl_z2) (z1 — 22) Z—Q (7.11)

Z

From Eq.7.10 we express Ed/.9as a function?'(-) of o2, and only need to analyze the solution

of o2, for

Flo2)=-S 2% . — —  _ _1=0. (7.12)

2 0'.2 o
n g; 12
-1 i 2+ 0%12 + =5

Now we proceed to prove the conclusions in Theofem

Denote the left-hand side of E4.15in Theorem2 asd and plug Eqg.7.11in, thus Eq.4.15

means

Wheno?, = k; = (d — 2)o?, for anyi, we have

1 1 1
94 4% 24+0+d-2 d
T12 a;
Thus,
Ie=232 1
Flk)< =) .- —1=0.
(k) n o d

Wheno?, = ky = +/oio2, for anyi,
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thus

Since0 < ky < ky and F'(-) is continuous, there must existig such thatk, < k3 < k; and
F(k3) = 0. This proves that the inequality E4.15in Theorem2 holds can indicate a non-zero
solution for Eq.7.9, namely there exists at least one non-zero fixed pointfoin the Bayesian
EM, which means the two Gaussian sources are not in consansasding to our definition of
inconsistency. Thus, the first claim in Theor@ns proved.

Eqg.4.16means! = % Yo Z—z < 4, then we have

a;

1 e 32 1 d
F(o2 <—§ S 1==—-1<0
<012)_ni:1 o2 4 4

for all 6%, > 0. Therefore, there does not exist a non-zero solution for7/EtR. Eq.4.16in

Theorem2 is proven.

Appendix C

Proof that Eq. 6.29is a best response

To show EQ.6.29is the best response @f given fixedy_;, we need to show the solution
of Eq. 6.21is a global optimum ofr,,(y;,y_;). We prove this by showing,,(y:,y_:) =

ijzl 7i(y1, -+ ,yn) IS cONcave.

Denotey; = {u;,v;}, giveny_; are fixed,7;(y;) = 7i(w;,v;) andr;(y;) = 7j(u;,v;). Note

g(]|*5*| %) is positive and uniform for Epanechnikov kernel. From E®4and Eq.6.25 we
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have

(9&(%, Ui) . 87*2(%, Ui> 87”1 u“ Uz B
anavi N 0’ 8u18ul N avzavz Zw“ X”

a":j(uiavi) o ij(ui,vi) 87“] umvz _
ou;0v; 0 ou;0u;  Ov0v; Zwﬂ (%n).

So in the Hessian matrix (Eév:l 7;(ui, v;), the elements on the diagonal ar@jvzl > q, Wii(Xn)

and 0 for elements off the diagonal, it is negative definitéctwiindicates it is concave ovet, =

{ui,v; }.

Conditions for G being a submodular game

To show a game is supermodular (submodular) game we neeauotbk joint strategy space is
defined on a sublattice and all utility functions are supeatabar (submodular) functions on the
joint strategy space. Any non-empty compact subs@&’ois a sublattice oR™ [97]. So the first

requirement is satisfied in our garée For the second condition, we have this theorémj:[

Theorem 4. Let X € R"and f : X — R. The functionf is supermodular iff it satis-
fies increasing (decreasing) differences &n If f is twice differentiable,f is supermodular iff

> 0, or submodular iff; 2 f - <0, V4, 5.

8% x
. = . . er(y’b 1) afl(yhy—z) 8772()% aT’L yz ’L)
Denotey; = {u;,v;}. We need to examing- G T ombe 8%8”] , and BoBu; for
- - Yi Y z) 87%()’27}'772) 87“1(}'1 81“1 Yi,
1 # j. In addition, we need to checfﬁ8 B ovbu au](?v andw for 5,1 # 1.

Whether these conditions hold depends on{thgi = 1,--- , N} and can be checked analytically.
We observe the constructed gares submodular when the occlusion regions are small and the
kernel centers are not occluded. Each term can be derivedBiep 6.24and Eq.6.25 thus these

conditions can be checked as a by-product in the best respmuasting giveq2;,i = 1,--- , N}.
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