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ABSTRACT

Context-aware and Attentional Visual Object Tracking

Ming Yang

Visual object tracking,i.e. consistently inferring the motion of a desired target from image se-

quences, is a must-have component to bridge low-level imageprocessing techniques and high-level

video content analysis. This has been an active and fruitfulresearch topic in the computer vision

community for decades due to both its versatile applications in practice,e.g. in human-computer

interaction, security surveillance, robotics, medical imaging and multimedia applications, and di-

verse impacts in theory,e.g. Bayesian inference on graphical models, particle filtering,kernel

density estimation, and machine learning algorithms.

However, long-term robust tracking in unconstrained environments remains a very challeng-

ing task, and the difficulties in reality are far from being conquered. The two core challenges of

the visual object tracking task are the computational efficiency constraint and the enormous unpre-

dictable variations in targets due to lighting changes, deformations, partial occlusions, camouflage,

quick motion and imperfect image qualities,etc.More critical, the tracking algorithms have to deal

with these variations in an unsupervised manner. All the target variations in on-line applications

are unpredictable, thus it is extremely hard, if not impossible, to design universal target specific

or non-specific observation models in advance. Therefore, these challenges call for non-stationary
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target observation models and agile motion estimation paradigms that are intelligent and adaptive

to different scenarios.

In the thesis, we mainly focus on how to enhance the generality and reliability of object-level

visual tracking, which strives to handle enormous variations and takes the computational efficiency

constraint into consideration as well. We first present an in-depth analysis of the chicken-and-egg

nature of on-line adaptation of target observation models directly using the previous tracking re-

sults. Then, we propose two novel ideas to combat unpredictable variations: context-aware track-

ing and attentional tracking. In context-aware tracking, the tracker automatically discovers some

auxiliary objects that have short-term motion correlationwith the target. These auxiliary objects

are regarded as the spatial contexts to enhance the target observation model and verify the track-

ing results. The attentional tracking algorithms enhance the robustness of the observation models

by selectively focusing on some discriminative regions inside the targets, or adaptively tuning the

feature granularity and model elasticity. Context-aware tracking aims to search for external infor-

mative contexts of targets, in contrast, attentional tracking tries to identify internal discriminative

characteristics of targets, thus they are complementary toeach other in some sense. The proposed

approaches can tolerate many typical difficult variations,thus greatly enhancing the robustness of

the region-based object trackers. Besides single object tracking, we also introduce a new view to

multiple target tracking from a game-theoretic perspective which bridges the joint motion estima-

tion and the Nash Equilibrium of a particular game and has linear complexity with respect to the

number of targets. Extensive experiments on challenging real-world test video sequences demon-

strate excellent and promising results of the proposed object-level visual tracking algorithms.
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CHAPTER 1

Introduction

Visual tracking in the computer vision community refers to the efforts of consistently inferring

the motion of the desired targets,e.g. feature points, contours, regions of interest, and articulated

objectsetc., from image sequences captured by single or multiple cameras, which is a fundamental

component to bridge low-level image processing techniquesand high-level video content analysis.

In particular, the task is often referred to as visual objecttracking to emphasize the cases where

targets bear some semantic meaning. Visual tracking has gained extensive research interest since

the early 1970s. In the new century, the rapid growth of computing power and the sharp drop of

storage cost, especially as video cameras become pervasive, boost more research efforts on visual

tracking. The popularity and significance of visual tracking in vision originates from its numerous

applications in practice and diverse impacts in theory.

Inference of the motion parameters of some targets from video, e.g. the trajectories, scale and

orientation, and joint pose configuration of the targets, isan indispensable component in many

applications. To list a few typical applications in different areas: human-computer interaction,e.g.

hand [105] and face tracking [99] for gaming, and eye gaze tracking [120] for disability assistance;

security surveillance [33], e.g. airport surveillance, door access control, and home monitoring;

medical image processing,e.g. tracking cardiac borders in MRI images [75] or in echocardiog-

raphy [119]; multimedia applications,e.g. face and people tracking for video conferencing [71],

lip tracking in audio-visual analysis [53]; activity and event analysis,e.g. gesture tracking [108],
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facial expression tracking [39]; and roboticse.g. autonomous vehicle and intelligent traffic con-

trol [76, 88, 38]. Most of the aforementioned applications heavily rely on long-duration, efficient

and robust tracking in an unconstrained environment, whichis the ultimate goal of visual tracking

research efforts.

Towards this end, numerous novel algorithms as well as a lot of classical algorithms were

developed and applied to visual tracking,e.g. the Kalman filter [51], probabilistic data associa-

tion filtering (PDAF) [6, 78], multiple hypothesis tracking (MHT) [79, 18], Bayesian inference

on graphical models, particle filtering or sequential Mote Carlo [45, 20, 47, 106] (also known

as CONDENSATION in vision literature [46]), subspace analysis [9, 36, 61, 110], kernel-based

density estimation [15, 32, 22, 23, 21], variational analysis [39], and various machine learning

algorithms, such as exemplar-based pattern learning [93], support vector machine (SVM) [4], rel-

evance vector machine (RVM) [101] and on-line boosting [69, 5, 28]. In addition, tracking has

greatly benefited from and interacted with many related research tasks in vision,e.g. local feature

descriptor [84, 62, 68], object detection [96] and recognition [24], image segmentation [83], and

background modeling [87].

Although recent years have witnessed remarkable advance inboth theory and practice, visual

tracking remains a challenging task and the diverse difficulties in reality are far from being con-

quered. In fact, it is the set of difficulties that a task facesthat shape its identity and scope. So the

foremost question is what are the core challenges that characterize the identity of visual tracking

and distinguish it from other similar tasks? Most of the visual tracking algorithms are confronted

by two slightly contradictory challenges: the demands for computational efficiency and the capa-

bility to handle the unpredictable variations of the targets. Computational efficiency is the inherent

constraint for tracking since real-time processing is vital for the successes of most online applica-

tions and even for off-line video analysis applications dueto the vast video data. Especially, when
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the motion parameters are in high dimensional space, it is time consuming to explore the large

solution space. Without this computational constraint, tracking is no longer a stand-alone problem

from detection and recognition tasks. The other fundamental challenge is the dynamic nature of

the targets due to enormous and unforeseeable variations inreal-world scenarios. In unconstrained

environments, there are too many factors that may affect theimage evidence of the targets,e.g.

background may be cluttered or even contain some camouflage objects as distractions. Illumina-

tion conditions may change evenly or unevenly so as to affectthe target appearance, moreover,

partial occlusion, out-of-plane rotation, target deformation, and quick motion all may present se-

vere threats to long-term robust tracking. All these variations are unpredictable, and therefore it is

extremely hard, if not impossible, for a tracker to considerall the potential variations and identify

target specific or non-specific image invariants in advance.Adding further complexity, the visual

tracking algorithms have to deal with these variations in anunsupervised and incremental man-

ner. After initialization, the trackers will have no supervision to verify the tracking results and can

hardly discern whether the appearance of the target is changing or partial occlusion is happening,

so the estimation error could be accumulated. Besides, the trackers are expected to be insensitive to

inaccurate target initialization and low image resolutionor poor quality. In summary, the demand

for computational efficiency and the dynamic nature of the tracking scenario are the two core chal-

lenges that tracking algorithms have to address, which are distinguishable from object detection

and recognition tasks where the variations are expected to be covered by the training samples and

the computation is not the topmost concern.

In the thesis, we mainly focus on how to enhance the generality and reliability of object-level

visual tracking given no prior knowledge about the targets.On-line adaptation of target models

to follow the dynamic changes is a natural and straightforward choice to handle the unpredictable
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variations. But analyzed in an appearance-based subspace tracking framework, we find that di-

rectly updating target models with previous tracking results is a chicken-and-egg problem due to

the unsupervised nature of tracking. Therefore, we investigate several novel approaches adapt-

ing region-based target models for object-level tracking to combat a target’s dynamic appearance.

We propose two novel ideas: context-aware tracking and attentional tracking. In context-aware

tracking, the tracker automatically discovers some auxiliary objects that have short-term motion

correlation with the target as the spatial contexts which can enhance the target observation model

and provide additional verification. Inspired by psychological findings, the attentional tracking

algorithms augment the robustness of the observation models by selectively attending some dis-

criminative regions inside the targets, or adaptively tuning the feature granularity and model elas-

ticity. Context-aware tracking aims to leverage external informative contexts of targets to verify

the tracking results, in contrast, attentional tracking tries to identify internal discriminative char-

acteristics of targets to enhance the robustness of tracking, thus they are complementary to each

other in some sense. These approaches are robust to quite a few difficult cases,e.g. out-of-plane

rotation, complex partial occlusions, and inaccurate initialization, so as to achieve promising re-

sults on challenging real-world test sequences. Besides single object tracking, we also introduce

a new view to multiple target tracking from a game-theoreticperspective which bridges the joint

motion estimation and the Nash Equilibrium of a particular game. The advantage of this multiple

target tracking algorithm is that it is decentralized and has linear complexity with respect to the

number of targets.

The thesis is organized as follows. Related work are reviewedin Chapter2 as well as the

Bayesian inference formulation of visual tracking. The chicken-and-egg nature of on-line adap-

tation is analyzed in Chapter3 in a subspace tracking algorithm. Mining auxiliary objectsfor

context-aware tracking and attentional tracking in terms of spatial selection, feature granularity
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and model elasticity adaptation are present in Chapter4 and Chapter5, respectively. At the end,

Chapter6 introduces the game-theoretic multiple target tracking. Concluding remarks are given in

Chapter7.
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CHAPTER 2

Related Work

Countless tracking algorithms have been proposed in past decades and can be reviewed from

different perspectives and categorized with different criteria, for instance, in terms of the particular

targets of interests,e.g. head [8], pedestrian [33], or vehicles [38], etc.; in terms of the modalities

and cues used,e.g. appearance-based [31] or shape-based [45]; in terms of the target representa-

tions, e.g. subspace based [9] or density based [15]; in terms of the difficulties that are focused

on, e.g. robust to scale changes [13], lighting changes [31], or occlusions [12]; or in terms of the

theoretical basis,e.g.manifold [55, 56] or variational analysis [39], etc.. We refer readers to [113]

for a fairly comprehensive literature survey. In this chapter, we will first introduce the popular

technical tasks in the tracking area and then concentrate onthe probabilistic inference framework

and study the related tracking algorithms in terms of their motion estimation strategies and the

likelihood model’s design philosophy.

2.1. Bayesian Inference Framework for Tracking

Historically, visual tracking is regarded as a generalization of target tracking in radar applica-

tions where the estimation of the target’s 2D motion trajectory in a cluttered environment is the

primary goal. This goal has led to many illuminative and seminal works in the 1960s and 1970s,

e.g. Kalman filters [51] where tracking was formulated as recursively estimating hidden states

in discrete-time linear dynamical systems, probabilisticdata association filtering (PDAF) [7] and

multiple hypothesis tracking (MHT) [79] that estimates the data association probabilistically in
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noisy environment. These algorithms were quite successfulin radar target tracking and inspired

many visual tracking algorithms. Images can provide much richer observations which lead to

more versatile tracking tasks rather than point tracking ina radar signal. Thus, the goals of visual

tracking evolve from tracking the translation motion of sparse feature points [84, 18] and estimat-

ing the dense image point correspondences from the motion ofthe brightness patterns in optical

flow [37, 63, 10, 81] to inferring the affine motions of the contours and shapes [45, 119, 39] and

the regions of interests [9, 8, 15]. Besides tracking a single target, tracking multiple independent

targets simultaneously [79, 18, 64, 78, 47, 69, 115, 34, 117, 115, 54], which is complicated by the

coalescence phenomenon that multiple trackers are trappedby single image evidence, is further

developed to the more ambitious task of estimation of the joint motion configuration of articulated

objects [52, 20, 107, 44, 102, 12, 108, 77].

Despite the versatile formulations, the majority of tracking algorithms fall into the match-

and-search framework where searching a set of hypotheses leads to the one bearing the highest

similarity to the target model, and that one is selected as the tracking result. Usually, the target

is abstracted to certain concise representations which maybe based on different modalitiese.g.

appearance, color, and textureetc. Given the historical tracking results, some predictions for the

current frame can be obtained with temporal correlation. Then a set of hypotheses are selected

either by analyzing the bottom-up image evidence or choosing the top-down model parameters.

The hypothesis yielding the best matching measurement to the target model is picked up as the

tracking result, and so on and so forth.

In a more principled view, this procedure can be formulated in a probabilistic Bayesian in-

ference framework, where the hidden states of the target andimage observations are denoted by

X̄t = {x1, · · · ,xt} andZ̄t = {z1, · · · , zt}, respectively, and the tracking result is determined by
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the maximuma posteriori(MAP) estimation,

X̄∗t = argmax
X̄t

p(X̄t|Z̄t). (2.1)

Since real-time processing is preferred in tracking, most algorithms maximize thea posteriori

x∗t = argmaxxt
p(xt|Z̄t) in a recursive manner rather than optimizing the whole sequence, though

maximizingp(X̄t|Z̄t) is feasible at the cost of some latency. Further, by assumingthe Markov

properties in the time axis, tracking is well formulated as an inference problem on a hidden Markov

chain as represented by the graphical model in Fig.2.1, where we havep(zt|xt, Z̄t−1) = p(zt|xt)

andp(xt|X̄t−1) = p(xt|xt−1) due to the chain structure and Markov property. Then,

p(xt|Z̄t) =
p(zt|xt, Z̄t−1)p(xt|Z̄t−1)

p(zt|Z̄t−1)
(2.2)

=
p(zt|xt)

∫

xt−1
p(xt|xt−1)p(xt−1|Z̄t−1)dxt−1

p(zt|Z̄t−1)
.

Therefore,p(xt|Z̄t) can be derived fromp(xt−1|Z̄t−1) recursively with the help ofp(xt|xt−1) and

p(zt|xt) which are called asdynamic modeland observation or likelihood model, respectively.

p(zt|Z̄t−1) is regarded as a normalization factor unrelated toxt.

x
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Figure 2.1.Markov chain representation of visual tracking.

Under this probabilistic formulation, the target and observation representations are encoded

in xt and zt, respectively, which are closely coupled with the observation modelp(zt|xt) that
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determines the similarity measurement of a hypothesis against the target model. The dynamic

modelp(xt|xt−1) delineates the temporal correlation of the target states insuccessive frames. It is

often assumed to be a constant velocity model or a simple smoothness model to indicate that the

target states will not change dramatically in consecutive frames. The dynamic model can help to

generate the hypotheses set and save some computations but may not have fundamental impact on

the tracking performance.

Within this inference framework, the two essential and coreissues in tracking are 1) the ob-

servation or likelihood model that encloses the target representation and similarity measurements,

and 2) the motion estimation strategy that determines how tooptimize or searchx∗t that maximizes

p(xt|Z̄t). These two issues are not independent but highly correlated, which correspond to the

two core challenges of tracking,i.e. enormous unpredictable variations and the computational ef-

ficiency constraint, as mentioned in Chapter.1. Therefore, we can review the existing approaches

from two threads by studying how they handle these two issues.

2.2. Motion Estimation and Observation Model

2.2.1. Motion Estimation strategy

The motion estimation strategy to search for the optimal or locally optimal hidden motion param-

etersx∗t to maximize thea posteriorip(xt|Z̄t), together with the similarity measurement which is

usually the basic computational unit, mainly determines the computational efficiency of a tracking

algorithm. A straightforward and effective method is to perform local exhaustive search around

the prediction given by the dynamic model based on the previous tracking results. This can be

done by searching a predefined range of motion parameters [8], or finding the mode in a matching

confidence map or occupance map [5, 28, 1, 114, 94] in coarse-to-fine or hierarchical ways [4].

This scheme implicitly assumes the target state’s transition is smooth and only utilizes one mode
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of p(xt−1|Z̄t−1). However, evenly distributing the computation power in thediscrete neighborhood

around the prediction is not efficient and thea posteriorip(xt−1|Z̄t−1) seldom has only one mode

in reality. Therefore, the milestone CONDENSATION method [45, 46] proposed to represent

the a posterioridensity by weighted samples and propagate the conditional density by sequen-

tial Monte Carlo which is also well-known as particle filtering. In addition, a proposal density

similar as thea posterioridensity can well guide the importance sampling. The particle filtering

method is capable of reserving multimodal densities and solving hard optimization problems by

Monte Carlo simulation that has greatly boosted visual tracking research [20, 78, 41, 12, 118, 39].

However, when the target statext involves many motion parameters to be optimized,e.g.6 affine

motion parameters or joint motion configuration of articulated objects, the high dimensional so-

lution space needs a large amount of samples to be covered, which induces the curse of dimen-

sionality problem, and it is hard to know how many samples aresufficient to approximate a high

dimensional density with multiple modes. Then, it would be efficient and ideal if the optimum or

local optimum of the maximization ofp(xt|Z̄t) could be solved analytically, by gradient descent

search [31, 15, 16, 13, 22] or by Expectation-maximization (EM) estimation [103, 49, 90]. This

requires the similarity measurements to be differentiablewith respect to the motion parameters,

but some parameters,e.g.scale and rotation angle, can hardly satisfy this requirement and need to

resort to local exhaustive search or sampling method. Another new scheme to accelerate the mo-

tion estimation in searching the solution space is to borrowthe indexing algorithms from database

field, e.g. the KD-tree [42, 11] and locality sensitive search (LSH) [43, 3], to pre-hash the feature

vectors for multiple queries/matching [29, 11, 112].
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2.2.2. Target observation model design

Observation models are critical in tracking and are responsible for capturing the essential of tar-

gets and combating against variations. They define what the targets are that the trackers are chas-

ing in feature space and contribute to the objective functions that the motion estimators need to

optimize. Firstly, ideally some visual invariants are expected to be identified for the targets by

extracting efficient features based on single modality,e.g. pixel intensities [37, 63], appearance

template [31], skin color [103], edge-detection along curve normals [45], steerable filter responses,

kernel-weighted feature density [15] etc., a set of feature points or interest regions [5, 1, 116, 112,

114, 94], or by combining multiple cues [8, 104, 78, 106]. Although some features are robust to

certain variations, such as gradient orientations and color histograms that are insensitive to illumi-

nation and in-plane rotation respectively, general invariant features against all possible variations

are extremely hard to find, if not impossible.

As a further step, observation models try to cover the target’s variations by involving exem-

plars [93] or off-line training [4, 100]. Off-line training can learn more complex visual invariants

but it requires collecting sufficient training samples for aspecific target and some variations such

as partial occlusion can hardly be covered by limited training samples. These restrictions limit the

application scenarios of pre-learned observation models.

An intuitive question to ask is, as the target appearances are inevitably dynamic, why do the

trackers use stationary and fixed observation models? Therefore, recently more research efforts

have examined to how to adapt the observation model to followthe target variations. There are

mainly three ways to extend to non-stationary observation models,i.e., 1) on-line adaptation of

the observation model which means the parameters of observation models are adaptive, including

on-line appearance models [49, 118], adaptive Gaussian color mixture [65], incremental subspace
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update [36, 80, 61, 56], transductive co-inference [103, 104, 106]; 2) dynamic feature selection [13,

98]; 3) online learning [69, 5, 28] which means a classifier is trained with the training samples

collected on-line. On-line adaptation is capable of handling unexpected target variations but tends

to suffer from the drift problem. The robustness of the observation model also can be enhanced by

incorporating multiple trackers and inferring the motion parameters in a collaborative way, as in

multiple kernel tracking [32, 22, 23, 21], part-based tracking [116], and fragment tracking [1].

Another issue in observation model design is that most features used in observation models can

only focus on certain characteristics of targets, for example, the existences of certain local visual

patterns or coherence with certain overall feature statistics. Consequently, successful tracking

methods for certain type of targets may not adapt to other targets easily. Therefore, for generally

applicable trackers, matching need to be not only adaptive with respect to target variations but also

flexible for distinctive targets. Specifically, for object-level tracking, two key aspects in designing

observation models shall be flexible,i.e. the abstraction level of features, and the way to take into

account the geometrical structures of targets.

In the thesis, we will mainly concentrate on the line of research on how to enhance the robust-

ness of the observation model for dynamic targets while at the same time taking the computational

efficiency constraint into consideration. By analyzing the nature of on-line adaptation in tracking,

we propose two novel approaches, context-aware tracking and attentional tracking, by taking the

spatial context information of targets into account, and selectively attending different discrimi-

native characteristics of targets. These new approaches are quite different from the conventional

observation model adaptation in that no new features are incorporated or training samples are col-

lected for on-line learning but some correlated auxiliary objects are identified or a subset of more

discriminative characteristics are selected from a rich target model during tracking.
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CHAPTER 3

On-line Appearance Model Adaptation

Without any prior knowledge about the target, the appearance is usually the only cue available

in visual tracking. However, in general the appearances areoften non-stationary which may ruin

the pre-defined visual measurements and often lead to tracking failure in practice. Thus, a nat-

ural solution is to adapt the observation model to the non-stationary appearances or equivalently

to dynamically select the discriminant features. However,this idea is threatened by the risk of

adaptation drift that originates in its ill-posed nature, unless good constraints are imposed. In this

chapter, we present an in-depth analysis of on-line adaptation for appearance-based observation

models and show that it is a chicken-egg problem in nature if directly using the latest previous

tracking results to update the models. To alleviate the riskof drift in on-line appearance model

adaptation, we propose to enforce three novel constraints for the optimal adaptation: (1) negative

data, (2) bottom-up pair-wise data constraints, and (3) adaptation dynamics, which are different

from most existing adaptation schemes. The general adaptation problem is substantialized as a

subspace adaptation problem which can be solved in a closed-form. Further, to avoid solving

eigenvalue decomposition for large matrices on-line, a practical iterative algorithm for subspace

tracking is proposed and applied to test sequences in a variety of non-stationary scenes.

3.1. The Nature of On-line Adaptation

Visual appearance is critical for tracking, since the target is tracked or detected based on the

matching between the observed visual evidence (or measurements) and the visual appearance
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model. The visual appearances of an object may bear a manifold in the image space. Depending

on the features used to describe the target and on the variances of the appearances, such a man-

ifold can be quite nonlinear and complex. Therefore, the complexity in the appearances largely

determines the degree of difficulty of the tracking task.

In the observation models with fixed appearance templates, the motion parameters to be esti-

mated (denoted byx) are the only variables that affect the appearance observations (denoted as

z). We denote the hypothesized image observations givenx by ẑ(x). Then the observation model

needs to measure the similarity ofz and ẑ(x), or the likelihoodp(z|x) = p(z|ẑ(x)). If z is a

vector,i.e., z ∈ R
m, this class of observation models is concerned with the distance between two

vectors. Most tracking algorithms employ this type of observation models. There are cases where

the motion parameters of interest are not the only contribution to the appearance changes, but there

can be many other factors. We denote it byẑ(x, θ). For example, the illumination also affects the

appearance [31] (e.g., in tracking a face), or the non-rigidity of the target changes the appearances

(e.g., in tracking a walking person), but we may not be interested in recovering too many delicate

non-rigid motion parameters. Thus, there are uncertainties in the appearances model itself, and the

observation model needs to integrate all these uncertainties,i.e.,

p(z|x) =

∫

θ

p(z|x, θ)p(θ|x)dθ =

∫

θ

p(z|ẑ(x, θ))p(θ|x)dθ.

In other words, given a motion hypothesisx, its hypothesized observation̂z(x) is no longer a

vector, but a manifold inRm, and the observation model needs to calculate the distance of the

evidencez to this manifold. Depending on the free parametersθ, such a manifold can be as simple

as a linear subspace [9, 31], or as complex as a highly non-linear one [4, 93].
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Although the appearance manifolds exist, in most cases, they are quite complex. Learning the

manifold off-line is a good choice, but, in real applications, we may not have the luxury of being

able to learn the manifolds of arbitrary objects for two reasons: we may not be able to collect

enough training data, and the applications may not allow theoff-line processing. Thus, we need

to recover and update the appearance manifolds online [49, 95, 104, 61] during the tracking. In

general, we make a reasonable assumption that the manifold at a short time interval is linear [36,

80]. The non-linear manifold is approximated by piece-wise linear subspace [55] or mapped to

low dimensional manifold using non-linear mapping [60]. The learned general subspace could

be updated to a specific one during the tracking [56]. The method of online feature selection,

e.g., in [14, 98], can also be categorized to on-line adaptation, since the selected features span a

subspace. In these methods, model drift is one of the common and fundamental challenges.

Although the appearance manifold of a target can be quite complex and nonlinear, it is reason-

able to assume the linearity over a short time interval. In this chapter, we assume the appearances

(or visual features)z ∈ R
m lie in a linear subspaceL spanned byr linearly independent columns

of a linear transformA ∈ R
m×r, i.e., z is a linear combination of the columns ofA. We write

z = Ay. The projection ofz to the subspaceRr is given by the least square solution ofz = Ay,

i.e.,

y = (ATA)−1ATz = A†z,

whereA† = (ATA)−1AT is the pseudo-inverse ofA. The reconstruction of the projection inRm

is given by:

z̄ = AA†z = Pz,

whereP = AA† ∈ R
m×m is called theprojection matrix. Unlike the orthonormal basis, the

projection matrix is unique for a subspace. We can decomposethe Hilbert spaceRm into two



23

orthogonal subspaces: ar-dimensional subspace characterized byP and its(m − r)-dimensional

orthogonal complement characterized byP⊥ = I−P.

Therefore, the subspaceL delineated by a random vector process{z} is given by the following

optimization problem:

P∗ = arg min
P

E(||z−Pz||2) = arg min
P

E(||P⊥z||2).

It is easy to prove that the optimal subspace is spanned by ther principal components of the data

covariance matrix. This problem is well-posed since the samples from{z} are given, thus the

covariance matrix is known.

However, in the tracking scenario, the problem becomes:

{P∗t ,x∗t} = arg min
Pt,xt

E(||P⊥t z(xt)||2), (3.1)

wherext is the motion parameters to be tracked. In this setting, we are facing a dilemma: if{x}

can not be determined, then neither canP, and vice versa. Namely, given any tracking result, good

or bad, we can always find an optimal subspace that can best explain this particular result. Thus,

this is a chicken-and-egg problem, and this problem is even worse since no constraints on either

P or {x} are imposed. Therefore, this problem is ill-posed and the formulation allows arbitrary

subspace adaptations.

From the analysis above, it is clear that constraints need tobe added to make this problem

well-posed. A commonly used constraint is the “smoothness”of the adaptation,i.e., the updated

model should not deviate much from the previous one, and mostexisting methods [14, 36, 49, 80]
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solve this dilemma in the following manner:















x∗t = arg min
xt

E(||P⊥t−1z(xt)||2)

P∗t = arg min
Pt

E(||P⊥t z(x∗t )||2).
(3.2)

In this adaptation scheme, at timet, the data that are the closest to the subspace at the previous

time instant are found first, and then are used to update the subspace. This approach is valid only if

the following assumption holds: the optimal subspace att− 1 is also optimal for timet. In reality,

this assumption may not necessarily be true, since a data point that is the closest to the subspace

Lt may not be the closest toLt−1. Thus, we often observe that the model adaptation can not keep

up with the real changes and the model gradually drifts away.When the data found based onPt−1

in fact deviate fromPt significantly, the adaptation is catastrophic. Although this approach makes

the original ill-posed problem in Eq.3.1well-posed, it is prone to drift and thus not robust.

3.2. Appearance Adaptation with Bottom-up Constraints

From the analysis in Sec.3.1, it is clear that we need more constraints than the adaptation

dynamics constraint alone. In the tracking problem, at timet before the target is detected, all

the observation data are unlabelled data,i.e., we can not tell whether or not a certain observation

should be associated (or classified) to the target appearance subspace. The adaptation dynamics

constraint is a top-down constraint, which does not providemuch supervised information to the

data at timet. Therefore, to make the adaptation more robust, we need to also identify and employ

bottom-up data-driven constraints, besides the smoothness constraint.

In this chapter, we propose to integrate the following threeconstraints:

• Adaptation smoothness constraints.The smoothness constraints are essential for the

tracking process, since the process of the data at timet should take advantage of the
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subspace at timet− 1. There are many ways to represent and use this type of constraints.

The most common scheme as indicated in Sec.3.1enforces a very strong smoothness con-

straint. In our approach, we treat the constraint as a penalty which can be balanced with

other types of constraints. The penalty is proportional to the distance of two subspaces,

i.e., the Frobenius norm of the difference of the two projection matrices||Pt −Pt−1||2F ;

• Negative data constraints.At the current timet, although it is difficult to obtain the posi-

tive data (i.e., the visual observations that are truly produced by the target), negative data

are everywhere. In fact, positive data are very rare in all the set of possible observation

data. The negative data may help to constrain the target appearance subspaces. We denote

the positive data at timet by z+
t , and the negative data byz−t ;

• Pair-wise data constraints.Given a pair of data points, it is relatively easier to determine

whether or not they belong to the same class. Such pair-wise data constraints are also

widely available. A large number of pair-wise constraints may lead to a rough clustering

of the data. Based on the smoothness constraints, we can determine a set ofpossible

positivedata to constrain the subspace updating. The detail is in Sec. 3.2.4.

3.2.1. Formulation

When processing the current framet, the following are assumed to be known: (1) the projection

matrix of the previous appearance subspacePt−1, (2) a set of negative data collected from the

current image frame,{z−t }, (3) a set of possible positive data identified based on the pair-wise

constraints,{z+
t }, (4) previous negative covariance matrixC−t−1 and positive covariance matrix

C+
t−1.

An optimal subspace should have the following properties. The negative data should be far

from their projections onto this subspace; the positive data should be close to their projections, and
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this subspace should be close to the previous one. Therefore, we form an optimization problem to

solve for the optimal subspace at current timet:

argmin
At

J0(At) = argmin
At

{E(||z+
t −Ptz

+
t ||2) + E(||Ptz

−
t ||2) + α||Pt −Pt−1||2F}, (3.3)

wherePt = AtA
†
t is the projection matrix andα > 0 is a weighting factor. We denote by

C+
t = E(z+

t z+T
t ), andC−t = E(z−t z−T

t ). It is easy to show Eq.3.3 is equivalent to the following:

argmin
At

J1(At) = argmin
At

{tr(PtC
−
t )− tr(PtC

+
t ) + α||Pt −Pt−1||2F}, (3.4)

wheretr(·) denotes the trace of a matrix.

3.2.2. An closed-form solution

Theorem 1. The solution to the problem in Eq.3.4 is given byPt = UUT , whereU is

constituted by ther eigenvectors that corresponds to ther smallest eigenvalues of a symmetric

matrix

Ĉ = C−t −C+
t + αI− αPt−1.

The proof of this theorem is given in the Appendix A. Please note that the solution toAt is not

unique, but the projection matrixPt is. If we require thatAt is spanned byr orthogonal vectors,

thenAt = U. Please also note the eigenvalues ofĈ may be negative.

By considering the data in previous time instants, we can use aforgetting factorβ < 1, which

can down-weight the influence of the data from previous times. This is equivalent to the use of

exponentially-weighted sliding window over time. Thus, wecan write:

Ct =
t
∑

k=1

βt−kE(zkz
T
k ) = βCt−1 + E(ztz

T
t ).
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This way, we can update bothC+
t andC−t .

3.2.3. An iterative algorithm

Sec.3.2.2gives a closed-form solution to the subspace, but this solution involves the eigenvalue

decomposition of am ×m matrix Ĉ, wherem is the dimension of the visual observation vectors

and thus can be quite large. To achieve a less demanding computation, we develop an iterative

algorithm in this section, by formulating another optimization problem as:

argmin
U

J2(U) = argmin
U

{E(||z+
t −UUTz+

t ||2)+E(||UUTz−t ||2)+α||UUT−Pt−1||2F} s.t.UTU = I,

(3.5)

whereU ∈ R
m×r is constituted byr orthonormal columns. The gradient ofJ2 is given by:

∇J2(U) =
∂J2(U)

∂U
∝ (C−t −C+

t + αI− αPt−1)U. (3.6)

To find the optimal solution ofU, we can use the gradient descent iterations:

Uk ←− Uk−1 − µ∇J2(U
k−1), (3.7)

during which the columns ofUk need to be orthogonalized after each update.

To speed up the iteration, we can also perform an approximation. When the subspace is to be

updated by the positive dataz+
t , the PAST algorithm [109] can be adopted for fast updating. When

the updating is directed by the negative dataz−t , we can use the gradient-based method in Eq.3.6.

3.2.4. Pair-wise constraints

Although the target can not be detected directly, the low level image features which distinguish the

target object from its neighborhood may give some hints about the target. Here we employ a graph
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cut algorithm [82] to roughly cluster some sample appearances collected within the predicted target

regions. Then we may be able to find possible positive data andnegative data from bottom-up.

Suppose the predicted region for the target is a rectangularregion centered at(u, v) with width

w and heighth. We draw uniform samples (i.e., 15×15 image patches) to cover a rectangle region

(u ± w, v ± h). For each sample patch, the kernel-weighted [15] hue histogramh with 64 bins is

calculated. The affinity matrix, obtained based on the similarity of all pairs of these histograms, is:

S = [Sij], whereSij = exp

{

(ρ(hi,hj)− µ)2

2σ2

}

, (3.8)

whereρ(·) is the Bhattacharya coefficient,µ is the mean of all coefficients,σ is their standard

deviation. These sample patches can be grouped into3−5 clusters by the eigenvalue decomposition

of the affinity matrix.

It is not necessary to have a perfect clustering, as observedin our experiments. The image

region delineated by the cluster with the minimum meanL2 distance to the previous target subspace

indicates the possible locations that the target may present. In practice, we can simply treat its

geometric centroid as the possible location of the target and the corresponding appearance vector

as the possible positive dataz+
t .

3.2.5. Selecting negative data

The negative data should be selected carefully. Because if the negative data are too far from the

target, the data point may already lie in the orthogonal complement of the target subspace, then

minimizing the projections of the negative data may not help. In addition, if the negative data are

too close to the target, they may lie partly in the target subspace such that the estimated target

subspace is pushed away from its true place. Our selection ofnegative data is heuristic based
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on the clustering in Sec.3.2.4: in the image regions spanned by all the negative clusters, we

find the locations whose appearances (or features) are closeto the previous target manifold, and

treat these appearance data as negative dataz−t in order to distinguish the target from the negative

clusters. This heuristic works well in our experiments, buta more principled selection deserves

more investigation.

3.3. Experiments and Discussions

3.3.1. Setup and comparison baseline

In our experiments, we aim to recover the motion parameterx = {u, v, s}, where(u, v) is the

location of the target ands is its scale. The corresponding appearance region is normalized to a

20 × 20 window and rasterized to a feature vectorz ∈ R
400. Since the target appearances during

tracking may become totally different from the first frame, the remedy of always including the

initial appearance in the model [14, 36] does not apply.

For comparison, we implemented a subspace updating trackersimilar to the method in [36],

where the nearest appearance observationzi to the previous target subspacePt−1 is used to update

the orthonormal basis of the subspace by using Gram-Schmidtand dropping the oldest basis. We

refer to this method asNearest Updating. The method is referred to asNearest+Negativewhen

the positive data are collected by the nearest scheme and thenegative data are used in updating the

same way as in our approach. In all these methods, the adaptation applies every4 frames.

3.3.2. Impact of the positive and negative Data

In this quantitative study, we show that the use of negative and possible positive data do help.

We have manually annotated a video with300 frames, in which a head presents a180o out-of-

plane rotation, and collect the ground truth appearance data for each frame (denoted byz∗t ). The
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comparison is based on theL2 distance of the ground truth dataz∗t to the subspaces estimated by

various methods. A smaller distance implies a better method.
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(a)Nearest Updatingvs. Nearest+Negative Updating (b) Nearest+Negative Updatingvs. Our approach

Figure 3.1.Comparison of the distances of the ground truth data to the updated subspaces
given by three schemes.

As shown in Fig.3.1(a), the distance curve for theNearest+Negativescheme is slightly lower

than that forNearest Updating, showing negative data can help to keep the adaptation away from

the wrong subspaces. We also observed in our experiments that the negative data themselves may

not be able to precisely drive the adaptation to the right places. We compare the proposed method

with Nearest+Negativein Fig. 3.1(b), in which the curve of our approach is apparently lower than

that ofNearest Updating. This verifies that the possible positive data from bottom-up do help.

These two comparisons validate that the proposed approach are more capable of following the

changes of the non-stationary appearances. Some sample frames are shown in Fig.3.2, where the

top row is the results of the proposed method, the middle row shows the location of the possible

positive cluster and possible positive data is shown at the top-left corner of each frame, and the

bottom row shows the results ofNearest Updatingand the nearest data is shown at the top-left

corner as well.
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Figure 3.2.Tracking a head with180
o rotation [head180.avi]. (top) our method, (mid-

dle) clustering, (bottom)Nearest Updating.

3.3.3. Impact of the clustering procedure

In this experiment, we compare our method withNearest Updatingin the situation of partial oc-

clusion. We need to track a face, but the partial occlusion makes it difficult when the person drinks

and the face moves behind a computer.

Figure 3.3.Clustering performance inface.avi: top row shows the drift process of
Nearest Updatingaround frame 272; middle row lists 6 positive data at frame 272; bottom
row lists 6 positive data at frame 284.

When the face moves slowly behind the computer,Nearest Updatingdrifts and erroneously

adapts to a more stable appearance,i.e., a back portion of the computer. In Fig.3.3, the top row

illustrates this drift process in detail. The middle row in Fig. 3.3 presents 6 appearance samples

from the possible positive cluster in our method at the 272-th frame. Obviously, some of them

are not faces, since the clustering is quite rough. But our heuristic of selecting the centroid of the
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cluster does help and leads to a correct adaptation. Similarly, the bottom row shows the situation

of our method at the 284-th frame. As the person moves upward,our method correctly follows the

face.

Figure 3.4.Tracking partial occlusion target [face.avi]. (top) our method, (middle)
clustering, (bottom)Nearest Updating.

This also illustrates that a rough clustering is sufficient for our method which is more robust

than Nearest Updating. Some sample frames are shown in Fig.3.4, where the top row is our

method and the bottom row is that ofNearest Updating.

3.3.4. More test sequences with rotations and illumination changes

Fig.3.5shows the results of tracking a head presenting360o out-of-plane rotation. The appearances

of different views of the head are significantly different, which makes the tracking difficult and also

challenges the adaptation. Our experiment shows thatNearest Updatingtends to stick to the past

appearances and thus reducing the likelihood of including new appearances. For example, when

the front face gradually disappears, this scheme is unable to adapt to the hairs to track the back

head. In all of our experiments, this scheme loses track whenthe face fades away. In contrast,

since the bottom-up information (i.e., the negative and possible positive data) hints the emerging
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appearances, our method can successfully track the head, although the bottom-up processing is

quite rough.

Figure 3.5.Tracking a head with360
o out-of-plane rotation [head360.avi]. (top) our

method, (bottom) clustering.

In general, 2D in-plane rotation also induces significant changes to the target appearance. In

Fig. 3.6, the black background is similar to the panel of the watch such that the adaptation in

Nearest Updatingdeviates from the true subspace and it drifts rapidly. On thecontrary, although

the proposed method is also distracted at frame 444, it is able to recover quickly thanks to the help

from the pair-wise constraints.

Figure 3.6.Tracking a watch with in-plane rotations [watch.avi]. (top) our method,
(bottom) clustering.

In Fig. 3.7, we demonstrate the performance of our algorithm for large illumination changes.

Nearest Updatingwill soon lose the face after the sudden lighting change, since all observations

are far from the target subspace thus the samples used inNearest Updatingto update the subspace
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Figure 3.7.Tracking a face with large illumination changes. [light.avi]. (top) our
method, (bottom) clustering.

are kind of random. While, in our method, selecting the centroid of the positive clustering to update

the model ensures the the samples used are consistent.

Fig. 3.8shows the results of tracking the head of a person walking in areal environment. The

appearance of the head undergoes large changes, and there are also scale changes. Our result

shows thatNearest Updatingdrifts to the background when the appearances of the black hair that

the subspace has initially learned almost disappears. Thishappens when the person moves towards

the camera. On the other hand, the proposed method can work comfortably and stably in the case.

Figure 3.8.Tracking a head [walking.avi]. (top) our method, (bottom) clustering.

3.3.5. Discussions

All the above experiments have validated the proposed approach. When the target model experi-

ences dramatic changes, we can explain the reason why the methods sharing the same nature as

Nearest Updatingdeteriorate in two aspects. First, these methods tend to adhere to the old model
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as much as possible and are reluctant to include the changes.When the model changes completely

or the original features disappear, the updated model will drift away from the true one eventually.

Second, when the drift starts, there is no mechanism in thesemethods to force them back, thus

the drift is unstable and catastrophic. In contrast, since our method utilizes the information from

bottom-up, it can be thought as feedbacks that makes our method stable and avoids catastrophic

drift to a large extent. As a result, the proposed method can be more robust and stable to cope with

the adaptation drift.

In this chapter, we have investigated the on-line adaptation of appearance-based observation

models. If no constraints are imposed, this problem is ill-posed. Instead of the commonly used

nearest updating scheme, we propose to impose both top-downsmoothness constraints and the

bottom-up data-driven constraints from current observances. Our method balances three factors:

(1) distance of positive data to the subspace, (2) the projections of the negative data, and (3) the

smoothness of two consecutive subspaces. The proposed method can largely alleviate the risk of

adaptation drift and thus achieving better tracking performance.
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CHAPTER 4

Context-aware Visual Tracking

Many tracking methods face a fundamental dilemma in practice: tracking has to be compu-

tationally efficient but verifying whether or not the tracker is following the true target tends to

be demanding, especially when the background is cluttered and/or when occlusion occurs. This

dilemma originates from the opposite requirements for the image likelihood models: on one hand,

the likelihood model should be simple for efficient motion estimation and tracking; on the other

hand, it has to be sophisticated for comprehensive verification of the target. Due to the lack of a

good solution to this problem, many existing methods tend tobe either computationally intensive

by using sophisticated image observation models, or efficient but vulnerable to false alarms. This

greatly threatens long-duration robust tracking. As an alternative to the on-line adaptation idea,

this chapter presents a novel solution to this dilemma by considering the context of the tracking

scene. Specifically, we integrate into the tracking processa set of auxiliary objects that are auto-

matically discovered in the video on the fly by data mining. Auxiliary objects have three properties

at least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion

correlation with the target; and (3) easy to track. Regardingthese auxiliary objects as the contexts

of the target, the collaborative tracking of these auxiliary objects leads to an efficient computation

as well as a strong verification. Our extensive experiments have exhibited exciting performance in

challenging real-world testing cases.

In all the existing methods, the dynamic environment is taken for granted as the adverse party

for the tracker, as it generates false positives, and most computation has to be spent in separating
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the true target from the environment. However, the environment can also be advantageous to the

tracker if it contains objects that are correlated to the target. For example, if we need to track a face

in a crowd, it is almost impossible to learn a discriminativemodel to distinguish the face of interest

from the rest of the crowd. Why do we have to focus our attentiononly on the target? If the person

(with that face) is wearing a quite unique shirt (or a hat), then including the shirt (or the hat) in

matching will surely make the tracking much easier and more robust. By the same token, if another

face is always accompanying the target face, treating them as a geometric structure and tracking

them as a group will be much easier than tracking either of them. We call this new approach

context-aware tracking(CAT) as it takes into consideration the context of the target, as shown in

Fig. 4.1.

A target is seldom isolated and independent to the entire scene, therefore there may exist some

objects that have short-term or long-term motion correlations to the targets (but are unknown to

the tracker beforehand). Thus, taking the advantage of thiscontext information in an efficient way

can improve the robustness of the tracker as the spatial context provides additional verification.

We represent the context of a target by a set ofauxiliary objectsthat are automatically discovered

T

I2

I1

I3

T

Figure 4.1. Illustration of context-aware tracking.T indicates the target andIk means
the spatial context of the target. Traditional tracking methods focus their attention on the
target only, while context-aware tracking considers the target and its spatial context within
a network.



38

on the fly in an unsupervised fashion by using data mining techniques. A context-aware tracker is

able to discover a set of auxiliary objects and track them simultaneously.

Auxiliary objects can be in various forms,e.g. solid semantic objects which bear intrinsic

relations to the target, or certain image regions that happen to have motion correlation with the

target for a short period of time. They may reliably associate to the target for a long duration, or

only for a short time interval, or may not exist at all. Thus, it is impossible to determine auxiliary

objects off-line in advance. They have to be discovered on the fly. For example, in Fig.4.2, the

targets of interest are the heads in solid-yellow boxes, andthe image regions in dash-red boxes are

the auxiliary objects discovered automatically. We resortto data mining techniques for discovering

auxiliary objects by learning their co-occurrence associations and estimating affine motion models

to the target. Data mining methods originated from text information processing and relational

databases [2], and have found their uses in extracting video objects [85, 86, 57]. To the best of our

knowledge, the proposed approach presents an original attempt of combining visual tracking and

data mining in a collaborative tracking framework.

Figure 4.2.Some sample auxiliary objects to the target head.

This new approach has the following advantages. Firstly, itis computationally efficient. Be-

cause the auxiliary objects by definition are those easy to track (e.g.color regions), tracking them

does not incur significant computational costs. Secondly, it outputs more accurate tracking results.
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The new method tracks the target and the set of auxiliary objects as a random field in a collabora-

tive manner. It is provably correct that the uncertainty of the motion estimation is reduced. Thirdly,

it also provides an effective verification, because the learned motion and/or geometric correlations

among the target and the auxiliary objects serve as a strong cue for verification. Last but not the

least, it is intelligent and robust. All the auxiliary objects and the motion correlation (i.e., the

random field) are automatically discovered on the fly.

In contrast to the previous on-line adaptation methods, rather than changing the target ob-

servation, we propose to enhance the observation model by on-line discovery of some auxiliary

objects [111] to help verify the target tracking results in a collaborative way. The new approach,

calledcontext-aware visual tracking, or CVT, addresses the following three important issues (the

entire procedure of CVT algorithm is summarized in Fig.4.3):

• Mining auxiliary objects (in Sec.4.1): the methods of extracting the candidates of auxil-

iary objects and mining the associations will be discussed.For auxiliary object candidates,

multibody grouping is employed to discover the potential multibody structure from mo-

tion and to estimate the affine motion models through subspace analysis. This step not

only identifies a set of auxiliary objects, but also learns a random field among them;

• Collaborative tracking (in Sec.4.2): both the target and the set of auxiliary objects

need to be tracked in CAT. Because they are not independent, thetracking is formulated

based on a random field and is achieved efficiently by the collaborations among all the

individual trackers in the network where an individual tracker influences other trackers as

well as receiving influence from others;

• Robust fusion (in Sec:4.3): for an individual tracker, there may exist inconsistency

among the influences it receives and its own image measurements. Handling inconsis-

tency is fundamental and critical to fuse auxiliary object trackers and the target tracker.



40

Mining auxiliary objects

Robust fusionCollaborative tracking

Input

frames

Target

tracker

Auxiliary

trackers

Quad-tree

color

segmentation

Incremental

clustering

Frequent item

    mining

Belief

propagation

Outlier

removal

Belief

propagation

Target

tracker

tracking

results

Multibody

grouping

Figure 4.3.Block diagram of CAT algorithm. The sub-modules of auxiliary object min-
ing, collaborative tracking, and robust fusion are enclosed in dash rectangles.

4.1. Mining Auxiliary Objects

4.1.1. Auxiliary objects

Auxiliary objects (AOs) are the spatial context that can help the target tracker. We abuse a little

bit the term “object”. In fact, it is not necessary for an AO tobe a semantic object. In the tracking

scenario, it refers to an informative image region or an image feature that satisfies the following

three properties:

(1) frequent co-occurrence with the target;

(2) consistent motion correlation to the target;

(3) suitable for tracking.

Although this definition may cover a large variety of image regions or features, not all of them

are appropriate for balancing the complexity and generality. Since the prior knowledge about

the target and the environments are in general not accessible, it is preferable to choose simple,

generic and low-level auxiliary objects, such as image regions or feature points. Feature points are

geometrically significant and provide the most localized information. There are some outstanding
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work on invariant feature points,e.g.[84, 62, 66, 25]. Although feature points may be salient and

therefore suitable for object recognition, they are in general prone to occlusion, lighting and local

geometry changes. Thus they are not always stable and reliable in video. In addition, extracting

invariant features needs a good amount of computation, which makes it hard to achieve real-time

performance. Therefore, although the tracking of feature points can be quite efficient, we generally

do not use feature points as auxiliary objects.

Instead, we choose to use significant image regions. Different from localized image feature

points, image regions reflect the visual property of a neighborhood, and they tolerate more oc-

clusions and local geometry changes. More importantly, image regions, if selected properly, can

be reliably and efficiently tracked, for example, by the mean-shift algorithm [16]. Although tex-

ture regions may have invariants and can be very significant,our current implementation does not

use them because it takes more computation to spot them than color regions. Therefore, our cur-

rent treatment for data mining is to discover a set of color regions that are temporally stable and

spatially correlated to the target in a video sequence in an unsupervised way.

4.1.2. Item candidate generation

To follow data mining conventions make our discussion clear. We define the following terms for

our video data mining task.

Definition 1. We denote anitem candidateby s which is a particular image feature obtained

by low-level image processing; anitem by I which is a quantized item candidate in avocabulary

V = {I1, . . . , IN} which is learned by clustering all item candidates; anitemsetby I ⊂ V, set of

items; and a transaction byτ , the itemset within a neighborhoodR.
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In our implementation, an item candidate is a rough color segment with its motion parameters,

and an item is defined byI = {H(I),xI}, whereH(I) is the average color histogram of the item

andxI is the motion parameters and respective covariances. The set of candidate AOs, denoted by

F , is a subset ofV, which are frequently co-occurrent with the target. The candidate AOs that have

strong motion correlations to the target are identified as auxiliary objects.

The item candidatess, i.e., the color segments in our case, are the inputs for mining. Inthe

tracking scenario, efficient segmentation is more preferred than a delicate but expensive one since

exact boundaries of the segments are not necessary for mining and tracking. In our current imple-

mentation, we employ the classical split-merge quad-tree color segmentation [48]. The image is

recursively split into the smallest possible homogenous color regions, and then the adjacent regions

with similar appearances are merged gradually. The most prominent advantage of this method is

computational efficiency. Some segments are not appropriate for tracking, so we employ some

heuristics to prune them,e.g. segments that are too large (the area over1/2 of the entire image)

or too small (the area less than64 pixels), and concave segments (the area less than1/2 of the

bounding box) are excluded. These kinds of item candidates are suitable for tracking. Fig.4.4

shows some typical segmentation results.

Figure 4.4. Illustration of the quad-tree color segmentation. (left) input frame, (middle)
over-segmentation, (right) pruned segmentation.
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4.1.3. Frequent item mining

Candidate auxiliary objects are the items that are frequently co-occurrent with the target. To build

the vocabularyV so as to construct the transactions for mining, we need to quantize the item candi-

dates. In conventional mining applications, usually item candidates can be collected and quantized

off-line by k-means or kNN clustering methods. But in this tracking scenario, we have to do this in

an incremental way. The procedure is the following. The color segments in each incoming frame

are matched to the items in the current vocabulary by the Bhattacharyya coefficient [16] of the

histograms of the segments as the similarity measurement. Then, each color segment (i.e. item

candidate) can be quantized and given a label,e.g. IA to IG are items as shown in Fig.4.5. Af-

terwards, for each item, we form a transaction that consistsof the item itself and the items within

its neighborhood. There are different choices of the neighborhood. For example, we can use the

item itself (i.e. use a 0 neighbor). The items inside the region of interest in each frame construct a

transactionτ , and a transaction database is built based onM consecutive frames.

Given the transaction database, the items which have a high co-occurrent frequency will be

chosen as candidate auxiliary objects. Since the mining is performed online, we need to take

into account the importance of the historical images. We maintain anM -frame sliding window

(M = 100 in the experiments) and count the item frequencyf(In) =
∑t

i=t−M+1 β
t−iBi(In) with

the forgetting factorβ = 0.9 whereBi(In) is a binary function and 1 indicatesIn appears in

framei. If image segmentation does not end up with too many small segments, the frequent items

are good enough for identifying candidate auxiliary objects. If the segmentation tends to over-

segment and produces too many small segments, we cannot use the 0 neighbor for constructing

transactions, but use the nearby items to form transactionsto identify co-occurrent patterns that

merge the adjacent small segments. This is another reason that it is fine for the image segmentation
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step to be imperfect. As illustrated in Fig.4.5, though there are quite many color segments in each

frame, by counting their co-occurrent frequencies, onlyF = {IA, IB} are identified as frequent

items, i.e. candidates of auxiliary objects. The rest of the problem is to determine whether a

candidate really bears a motion correlation to the target. The issue will be discussed next.

Frame tFrame t-1Frame t-M+2Frame t-M+1
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Figure 4.5. Illustration of mining auxiliary objects. The target is denoted asT andIA

to IG represent the items (i.e. the color segments).IA andIB are selected as candidate
auxiliary objects as they are frequently co-occurrent with the target.IA is identified as one
auxiliary object by multibody grouping since it has strong motion correlation toT .

4.1.4. Mining by subspace analysis

Finding the frequent items only spots the candidate auxiliary objects that are frequently co-occurrent

with the target, but they do not necessarily exhibit strong motion correlations to the target. For ex-

ample, in Fig.4.5, IB is less correlated to the targetT thanIA. We need to check if these candidates

satisfy the motion correlation requirement of an auxiliaryobject. For each candidate, we can ini-

tialize a mean-shift tracker to find its correspondences in the successive image frames. If this

tracker loses track for 4 frames in a row, we assert that this candidate is not suitable for tracking
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and remove it. Otherwise, we can form the motion trajectories over the frames for a set of candi-

date auxiliary objects. Then, we employ a noise subspace analysis method to discover the potential

multibody structure from motion and estimate the affine motion models between the object pairs.

The motion correlation between two moving objects can be very complicated and non-linear,

but generally, linear motion models can be used as a good approximation. We extend the simple

translational model in [111] to a more general affine motion model. When the points on two

objects have an affine motion relation, they must reside in a linear subspace. Thus, identifying this

subspace will lead to the estimation of the affine motion model.

At time t, one candidate auxiliary objectIO ∈ F is represented asxt = {ux
t , v

x
t }⊤ and{su

t , s
v
t }

where(ux
t , v

x
t ) are the coordinates of the center ofIO andsu

t andsv
t are the scales, respectively.

Similarly the targetT can be represented asyt = {uy
t , v

y
t }⊤ and{su

t , s
v
t }. If IO andT co-occur

and have stable motion correlation, thenIO can be claimed as an auxiliary object. So the goal is to

evaluate whetherIO andT have strong motion correlation in time window[t−M + 1, t] given the

trajectories ofyt andxt within this time window.

Assume an affine motion model between candidate auxiliary object IO and the targetT for the

period of framet −M + 1 to framet, which is specified by a2 × 2 matrix At and a translation

vectorbt = {ub
t , v

b
t}⊤, as

yt = Atxt + bt. (4.1)

Subtract the mean̄yt of yt andx̄t of xt in the time window[t −M + 1, t] and take the noise into

consideration, the relation betweenIO andT can be expressed with̃yt = yt− ȳt andx̃t = xt− x̄t,

as

ỹt = Atx̃t + n, (4.2)

wheren is a zero mean white noise withE[nn⊤] = σ2I.



46

If we stackỹt andx̃t, the covariance matrixC can be expressed as

C = E[

(

ỹt

x̃t

)

(ỹ⊤t , x̃
⊤
t )]. (4.3)

It is clear thatrank(C) ≤ 2 if there is no noise (i.e. n = 0). This rank deficiency property

is important in detecting the subspace due to motion correlation. In reality, becausen 6= 0, C is

likely to have a full rank. Since the noise is additive, it is easy to prove that the 4D space spanned

by
(

ỹ⊤t , x̃
⊤
t

)

is a direct sum of a signal subspace and a noise subspace. The signal subspace is up

to rank 2 and corresponds to the large eigenvalues ofC, and the noise subspace corresponds to the

smallest eigenvalues (i.e. σ). Therefore, we can check and threshold the eigenvalues to identify

those subspaces.

Denote the estimated covariance matrix byĈ and the covariance matrix of̃x by Ĉx, and we

have

Ĉ =
M−1
∑

i=0

(

ỹt−i

x̃t−i

)

(ỹ⊤t−i, x̃
⊤
t−i) =







AtĈ
xA⊤t + σ2 AtĈ

x

ĈxA⊤t Ĉx






. (4.4)

Performing eigenvalue decomposition onĈ,

Ĉ = QΛQ, (4.5)

we obtain the sorted eigenvalues{λ1, · · · , λ4} and orthonormal basisQ. If there are more than 2

eigenvaluesλ2
j ≫ σ2, this candidate is not an auxiliary object since its motion and the target’s are

not in one subspace.

# of {λ2
j ≫ σ2}











> 2, the candidate is not an AO

<= 2, otherwise
. (4.6)
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If the candidate is an auxiliary object, we can estimate its affine matrixAt with the property that

the noise subspace is orthogonal to the signal subspace. Thelast two eigenvectors correspond to

the noise subspace of̂C are denoted as





















q31 q41

q32 q42

q33 q43

q34 q44





















,

which are orthogonal to arbitrary vector(x̃⊤t A⊤t , x̃
⊤
t ) in the signal subspace. Substitute them back

to Ĉ, and the2× 2 matrixAt can be solved by

A⊤t







q31 q41

q32 q42






+







q33 q43

q34 q44






= 0. (4.7)

Then, the translation vectorbt is obtained withȳ, x̄, andAt. This method gives an effective

detection of auxiliary objects and efficient estimation of their affine motion models.

Such a mining process is meaningful, because it has learned arandom field. We denote the

motion of the targetT by y and those of the auxiliary objects byxk, k = 1, . . . , K, whereK is the

number of auxiliary objects. They constitute a random field.The pair-wise potentialsψk0(xk,y)

are actually learned as a by-product of this mining process,as

ψk0(xk,y) ∝ e−
(y−Akxk−bk)⊤(y−Akxk−bk)

2σ2 , (4.8)

whereσ2 is derived from the small eigenvalues ofC in Eq. 4.3. In many cases, auxiliary objects

share almost the same motion as the target,e.g., the torso and the target head. Therefore, we can

use a Gaussian distribution to characterize those potentials. The mean of the Gaussian is given by
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Ak andbk, which is the affine motion model estimated for thekth auxiliary object. Note from now

on, the subscript indicates the index of an auxiliary objectinstead of the time step.

4.2. Collaborative Tracking

It is clear that CAT is not tracking a single target, but a random field. This random field

among auxiliary objects and the target is hidden and needs tobe inferred from image evidence.

We formulate this problem under a Markov network with a special topology, as shown in Fig.4.6,

where we only assume pair-wise connections between the target y and the auxiliary objectxk

and there are no connections among auxiliary objects. Each of them is associated with its image

evidencezk. We denoteZ = {zk, k = 0, . . . , K}, whereK is the number of AOs andz0 is the

observation ofy (i.e. the target). The core of tracking is to estimate the posteriors p(y|Z) of the

target andp(xk|Z), k = 1, . . . , K, for the auxiliary objects.

Y

X
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Z
2

X
1

X
kZ

1

Z
0

X
3

Z
3

Z
k

Figure 4.6.The star topology of a random field. The hidden motion parameter of the target
is denoted asy with the image observationz0. The motion parameters of the auxiliary
objects are denoted asxk with their respective observationszk.

For such a graph with a star topology, a belief propagation algorithm with 2-step message

passing gives the exact estimates of the posteriors. Denoteby p(zi|xi) the local likelihood and by

φk(xk) the local prior such as the dynamics prediction prior forxk. Each pair of the target and

an auxiliary objectxk bears a pair-wise potentialψk0(xk,y) learned in the subspace-based mining

process, as described in Sec.4.1.D.mk0(y) represents the message passed from thekth auxiliary

object to the target andm0k(xk) is the message from the target to thekth auxiliary object.
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At the first iteration step, the targety receives all the messagesmk0 from every auxiliary

objectxk, then propagates the message back to them at the second iteration. This message passing

mechanism implies a collaborative way of tracking. Notice that if the target and the auxiliary

objects are independent, their independent motion estimates arêpk(xk|Z) ∝ φk(xk)p(zk|xk), k =

1, . . . , K. The relation between the true estimates and independent estimates is simply captured

by a fixed-point equation of the messages:

p(y|Z) ∝ p̂0(y|Z)
∏

k

mk0(y), (4.9)

mk0(y) =

∫

xk

p̂k(xk|Z)ψk0(xk,y)dxk, (4.10)

p(xk|Z) ∝ p̂k(xk|Z)m0k(xk) k = 1, . . . , K, (4.11)

m0k(xk) =

∫

y

p̂0(y|Z)
∏

xi\xk

mi0(y)dy. (4.12)

This suggests that we can use individual trackers for the target and auxiliary objects. But these

sets of individual trackers are not independent, as they need to combine their local estimates and

the messages from others, and iterate. Such a collaborativemechanism leads to a very efficient

solution to tracking the random field. Thus, even if our new approach involves the tracking of a set

of auxiliary objects (e.g.by mean-shift), the computation is manageable because of the efficiency

of the collaborative way.

Compared with a single tracker for the target, the involvement of auxiliary objects can reduce

the uncertainty of the motion estimation of the target and thus make the tracking more confident.

We can prove this in a special case when setting both the potential ψk0(|xk − y|) to be a Gaussian

N(µk0,Σk0) and the local likelihoodp(zk|xk) to be a GaussianN(µ̂k, Σ̂k) (we ignore the local
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prior without losing generality). Under this setting, the closed-form belief propagation gives:

Σ0
−1 = Σ̂−1

0 +
K
∑

k=1

(Σ̂k + Σk0)
−1, (4.13)

µ0 = Σ0(Σ̂
−1
0 µ̂0 +

K
∑

k=1

(Σ̂k + Σk0)
−1(µ̂k + µk0)), (4.14)

where(µ0,Σ0) is the target’s posterior when tracking the random field. If we assume the local

priors to be Gaussian, this result still holds but now(µ̂k, Σ̂k) refers to the local posterior.

Eq. 4.13 makes it clear thatΣ0 is always less than̂Σ0 since these covariance matrices are

positive definite and different motion parameters are uncorrelated. Therefore, the confidence of

the collaborative estimate of the target is higher than thatproduced by a single target tracker.

4.3. Inconsistency and Robust Fusion

The closed form analysis for the collaborative tracking canbe explained in the view of infor-

mation fusion. When the connection potentials between the target and the auxiliary objects are

set to be extremely tight,i.e., the covariance ofΣk0 is a zero matrix0, this belief propagation is

equivalent to the best linear unbiased estimator (BLUE) fory; if they are extremely loose,i.e. Σk0

approaches infinity, it becomes an independent estimation;otherwise, it is similar to covariance

intersection [50].

However, there is a hidden assumption for this conclusion,i.e., the information from all the

sources must be consistent. In simple terms, they must more or less agree with each other. But in

reality, this assumption may not be valid, when the estimates from the individual trackers may be

completely different or inconsistent for many reasons. If we use the above mentioned method to

fuse these inconsistent estimates, we may end up with an estimate that is completely wrong but of

a very high confidence. Such an adverse estimation makes no sense and should be avoided. Thus,
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it is desirable to have a mechanism to detect the inconsistency and identify the outliers for a robust

fusion.

We define two Gaussian sources asconsistentif the variance in the compatible function of

these two Gaussian sources approaches zero using EM estimation. Ganget. al. [40] gave a new

theorem to measure the inconsistency. We employ the following two criteria that are very useful

for detecting the pair-wise inconsistency. The proofs are presented in Appendix B.

Theorem 2. Considering two Gaussian sourcesN(µ1,Σ1) andN(µ2,Σ2), whereµ1, µ2 ∈ Rn,

the two sources are inconsistent if:

1

n
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2) ≥ 2 +

√

Cp +
1

√

Cp

, (4.15)

whereCp is the2-norm conditional number ofΣ1 + Σ2, and they are consistent if:

1

n
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2) < 4. (4.16)

Although these are sufficient conditions in general cases, they are actually also necessary con-

ditions whenn = 1. These criteria enable simple and quick detection of pair-wise inconsistency.

Then, the estimation that is inconsistent with all the others will be regarded as an outlier. The

outlier can be the target or the AOs. If the target is an outlier, we assert that the target is experi-

encing occlusion or drift, and suspend the mining process temporarily. In this case, we can give an

estimation of the target purely based on the predictions from the auxiliary objects, and search for

the image evidence. If the outlier is an auxiliary object, wesimply exclude this auxiliary object for

fusion. After excluding the outliers, we perform belief propagation again on the rest of the network

and employ the target tracker to locate the target precisely. When the majority are not consistent

which means the target estimate can not be verified, a tracking failure is asserted.
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4.4. Experiments and Discussions

4.4.1. Experiment settings

We substantialized and implemented the proposed CVT algorithm in a head tracking system, where

the head tracker is a contour-based elliptical tracker similar to [8] and initialized by the frontal face

detector [59, 58], and the auxiliary trackers are mean-shift trackers. Since a fixed number of edge

points along the ellipse are matched, the single head tracker is quite computationally efficient and

runs at over 50 fps. Although the single head tracker is relatively robust to illumination and view

changes, it is vulnerable to the clutter background, motionblur and occlusions. In our experi-

ments, we compare the proposed CVT algorithm with the single head tracker in a large number of

real-world sequences captured in unconstrained environments including both indoor and outdoor

scenes. These extensive experiments and exciting results have demonstrated the advantages of the

CVT algorithm. Furthermore, we apply the same CAT algorithm topeople tracking based on an

appearance-based torso tracker to exhibit the applicability of the proposed idea to different types

of targets.

The motion parametery = {u, v, su, sv} to be recovered includes the location(u, v) and the

scalessu andsv. The color segmentation and the mean-shift tracker work in the normalized R-

G color space with32×32 bins. Without code optimization, our C++ implementation of CAT

runs comfortably at around 10 fps on average on a Pentium 3GHzdesktop for320×240 images

depending on the number of auxiliary objects discovered.

4.4.2. Quantitative experiments

For a quantitative evaluation, we manually labelled the ground truth of the sequenceskid in

yellow, dancing girl andbirthday kid for 1200, 1600 and 1460 frames respectively.
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The evaluation criteria of tracking error are based on the relative position errors between the center

of the tracking result and that of the ground truth, and the relative scale normalized by the ground

truth scale. Ideally, the position differences should be around0, and the relative scales1.

As shown in Fig.4.7, Fig.4.8and Fig.4.9, the position differences of the results in the CAT are

much smaller than that of the single head tracker and the relative scales have much less fluctuations

around1. It demonstrates the advantages of the CAT,i.e. reducing the false alarm rate and the

estimation covariance. Note that at the end of the sequencekid in yellow, the single tracker

happens to track the head by chance after the drift. Althoughthe CAT tracker loses track at around

frame 1100 for several frames, it is able to recover promptlybecause of the auxiliary objects.
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Figure 4.7.Quantitative comparison: (left) position errors, (right) scale errors, [kid in
yellow,1200 frames].

Some key frames are shown in Fig.4.101. The first row shows the results of the single head

tracker where the highlighted solid-yellow box indicates the location of the head. The second

row shows the segmentation and mining results, where each green rectangle indicates an item

in the current frame. The numbers in blue at the corner show the item labels of the candidate

auxiliary objects. The third row illustrates the fusion results. Each blue box is the estimate of

1All the faces shown in this chapter were mosaicked afterwards for privacy protection.
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Figure 4.8.Quantitative comparison: (left) position errors, (right) scale errors, [dancing
girl,1600 frames].
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Figure 4.9.Quantitative comparison: (left) position errors, (right) scale errors,
[birthday kid,1460 frames].

the head from different sources (i.e. the target or the auxiliary objects trackers). The white box

indicates that estimate is regarded as an outlier. The dark red box is the final result of the fusion.

The corresponding labels of the auxiliary objects are shownat the bottom-right corner. The final

tracking results of CAT are shown in the4-th row as highlighted solid-yellow box, and the dash-red

boxes are the auxiliary object trackers.
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4.4.3. Occlusion and drift

Fig. 4.10 samples the results on the sequencekid in yellow which is very challenging due

to a serious occlusion, target out-of-range and clutter. When the head moves outside the upper

boundary at frame 113, the single head tracker drifts to a false positive in the cluttered background

and is unable to recover. In contrast, the CAT tracker assertsthe occlusion and keeps tracking

correctly. It freezes the head tracker temporarily and re-initializes it based on the predictions

provided by the auxiliary objects. When the kid is walking in front of the bush, the background is

so cluttered that it causes big troubles to the edge-based tracker. On the other hand, CAT discovers

several auxiliary objects,i.e. the shirt and short pant, which are quite stable and provide roughly

correct estimates of the head location and rescue the head tracker from the drift at frame 736.

Figure 4.10.Frame # 50, 113, 124, 229, 736 and 866 ofkid in yellow,1200
frames. (1st row) the head tracker, (2nd row) the mining results, (3rd row) thefusion
results,(4th row) the CVT tracker.
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4.4.4. Quick movement and camouflage

As shown in Fig.4.11, the sequencedancing girl presents quick movements and camouflage.

All the girls are similar in terms of their appearances. Thisis extremely difficult for a single

head tracker to work, but CAT comfortably handles such a challenge. During the dancing, CAT

gradually discovers the spatial relations between the target (the girl of interest) and the adjacent

contexte.g. other girls’ shirts, although such relations are only validin a short time interval. At

frame 757, the single head tracker is trapped by the shoulderof the girl and unable to recover.

At frame 758, the CAT tracker identifies this false alarm and pulls back the head tracker with the

help of the predictions of the AOs that are close to the true target. At frame 1234, the girl of

interest suddenly bows down, CAT detects the tracking failure and resumes tracking quickly. CAT

can comfortably track over 1600 frames for this highly dynamic sequence until the target moves

outside the left boundary for several seconds.

Figure 4.11.Frame # 67, 757, 758, 764, 1234 and 1372 ofdancing girl,1600
frames. (top) the head tracker, (bottom) the CVT tracker.

4.4.5. Scale and view changes

We show the tracking performance when the target undergoes large scale and view changes and

demonstrate the transition of the auxiliary objects in the sequencekid&dad (Fig. 4.12). For the

single head tracker, when the scale of the head becomes very small, it drifts to the torso of the kid
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from frame 69 and fails the tracker. During the first 300 frames, the dad walks with the kid with

quite stable motion correlation. This is discovered by CAT and the region of dad’s shirt is mined

as the auxiliary object to help track the kid’s head. When theymove close to the camera, the scale

and the view change dramatically so that the learned relation between dad’s shirt and the kid’s

head no longer holds. Fortunately, CAT spots that the hat is a good auxiliary object at large scale

and guides the tracking. At the end of the sequence, the head is completely occluded by the hat

for several seconds. Although this is impossible to recover, CAT detects and reports the tracking

failure, while the single head tracker tends to drift to a false positive without notice.

Figure 4.12.Frame # 52, 69, 70, 313, 555 and 616 ofkid&dad,617 frames. (top)
the head tracker, (bottom) the CVT tracker.

4.4.6. Cluttered background

In sequencebirthday kid, the target head experiences large out-of-plane rotation and the ap-

pearances change greatly, as shown in Fig.4.13. For the contour tracker, when the rear head is in

the dark background, no good observation is available around the head so the contour tracker drifts

to the torso and other elliptical regions, and is unable to recover. For the CAT tracker, with the help

of the auxiliary objects, the tracker either keeps trackingin the tough situations or recovers from

drifting in several frames. Note the auxiliary objects discovered can be some objects with inherent
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relations with the target, such as the hat and short pant, or just something that happens to have tem-

porary relations, such as the refrigerator or the gift box. This real-world sequence demonstrates

the advantages of the auxiliary objects for long-duration tracking.

Figure 4.13.Frame # 0, 72, 93, 170, 578, and 1455 ofbirthday kid,1460
frames. (top) the head tracker, (bottom) the CAT tracker.

As shown in Fig.4.14(swimming boy), the background is quite cluttered due to the texture of

water and other people, which makes the single head tracker hopeless. The single head tracker is

easily distracted by the edges in the background and drifts away. On the other hand, CAT discovers

the two blue life buoys and the swimming hat and uses them as the auxiliary objects. When the

boy jumps towards his mother’s arms, CAT uses the life buoys aswell as the orange box on the

bank to help locate his head accurately, which is difficult for the single head tracker. Note that at

the end of this sequence, the kid’s head is occluded by his mom’s head and CAT switches to the

mom. This is reasonable because the auxiliary objects can not differentiate the two heads at the

same location.

4.4.7. More people tracking results

To demonstrate the generalization ability of the proposed method, we apply the context-aware

tracking algorithm to people tracking based on an appearance-based torso tracker. As shown in

Fig. 4.15 [26], when the person to track is occluded by his friends around frame 56, the single
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Figure 4.14.Frame # 87, 131, 334, 526, 578 and 848 ofswimming boy,900
frames. (top) the head tracker, (bottom) the CVT tracker.

torso tracker loses the target and drifts away. In contrast,since the other pedestrians serve as the

temporary contexts, they can help the CAT tracker keep following the target. In addition, after

frame 135 the context information helps to prevent the tracker from drifting to the person next

to the target though both persons have very similar appearances. Another example sequence is

shown in Fig.4.16 where an athlete in a marathon is tracked with natural lighting changes and

view changes are present.

Figure 4.15.Frame # 0, 40, 56, 68, 135, and 425 ofthree past shop,425
frames. (top) the torso tracker, (bottom) the CAT tracker.

4.4.8. Discussions

As demonstrated in a large number of challenging sequences,there are two primary scenarios when

the auxiliary objects greatly help the tracking: 1) some auxiliary objects have persistent relations

to the target and present fairly accurate estimates although these relations may not be foreseen; 2)
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Figure 4.16.Frame #1, 72, 468, 504, 582, and 625 ofmarathon, 625 frames. (top)
the torso tracker, (bottom) the CAT tracker.

a number of auxiliary objects have transitional relations to the target and the majority of them can

give rough correct estimates in a short time interval. In thecases of occlusion or drift, it is not likely

that all the auxiliary objects are occluded or all auxiliarytrackers lose track at the same time, since

the auxiliary objects may not be located in a close vicinity of the target. The mechanism of robust

fusion can identify the inconsistency induced by occlusions or drifts. There are some extremely

difficult cases,e.g. the target is occluded for long time, and CAT fails reasonablybecause on-line

data mining may not be invoked at all. Or only a couple of auxiliary objects discovered and they do

not agree with each other about the target motion, which implies insufficient context information

to verify the tracking results. For these cases, the advantage of CAT is the ability to detect and

report the failure, and leave the system to other means of re-initialization, while the single tracker

has no reliable mechanism to report the failure but keeps tracking aimlessly and regardlessly.

We have proposed a novel solution to robust long-duration tracking by considering the context

of the target. By integrating an unsupervised data mining procedure, a set of auxiliary objects are

discovered on the fly which provide extra measurements to thetarget and reduce the uncertainty

of the estimation. In addition, the learned motion correlations among the auxiliary objects and the

target serve as a strong cue to verify the tracking results tohandle short-term occlusion or tracking

loss. The auxiliary objects are automatically discovered without supervision and do not incur much
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extra computation, which makes the approach generally applicable to a wide spectrum of tracking

scenarios.

For future directions, we will study the relation between the number of auxiliary objects dis-

covered and the confidence level of the verification. Anotherimportant issue to investigate is how

to compromise the need for a quicker initial mining procedure within a shorter time window which

may find more auxiliary objects and a longer time window whichmay find less auxiliary objects

but with a high reliability.
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CHAPTER 5

Attentional Visual Tracking

Long-duration tracking of general targets is quite challenging for computer vision due to the

large uncertainties in a target’s visual appearance and theunconstrained environments which may

be cluttered and distractive. However, tracking has never been a challenge to the human visual

system. In contrast to the tremendous challenges encountered in developing tracking algorithms,

being able to persistently follow moving objects seems to bea very basic functionality in human

visual perception. It is so natural and intuitive that we maynot be aware of how complex it

is. Although the details in human perception on visual dynamics are still largely mysterious, the

studies in psychology, neuroscience and cognitive sciences have obtained substantial evidence and

interesting findings, based on which several hypothetical theories have been proposed [70]. For

example, evidence shows that human visual perception is inherently selective. Perceiving realistic

scenes requires a sequence of many different fixations through the saccadic movements of the eye.

Even when the eye is fixated on a particular location, the act of visual attention(like the movements

of an internal eye or the so-called “mind’s eye”) selects anddetermines what subset of information

of the retinal image gets full processing [72]. This ability to engage in some flexible and selective

strategies for processing different aspects of visual fieldis generally referred to asvisual attention.

In human visual attention,spatial selectionis one important aspect in which human visual

perception system selectively samples the retinal image and concentrates the resources to only

process a restricted portion of information. Another important aspect isproperty selectionin which

people sequentially perceive different properties or features of the same object,e.g. its color,
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its shape, its texture, and its structures. Psychological and cognitive findings suggest that these

selective attention mechanisms are necessary and criticalfor human visual tracking. An interesting

question is how we can take advantage of these studies to develop more powerful visual tracking

algorithms.

This chapter presents new visual tracking approaches that reflects some findings of selective

visual attention in human perception. Recent studies from the 90s have indicated thatselective

attentionmay act in both early and late stages of visual processing butunder different conditions of

perceptual load [70]. Early selectionmay be based on innate principles obtained through evolution,

while late selectionis learned through experiences. By integrating these two selection stages, we

develop and implement two attentional visual tracking (AVT) algorithms. One mainly reflects

the spatial selection mechanism by representing targets with a pool of salient image patches and

dynamically attending to the discriminative subset of patches. The other represents targets with

Markov random fields (MRF) of interest features and tunes the matching criteria to adjust the

emphases on the properties of local appearances and structures automatically. These attentional

visual tracking algorithms adaptively focus on the discriminative characteristics of the targets and

achieve fairly prominent performances in tracking diversified targets without any prior knowledge.
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5.1. Spatial Selection for Attentional Tracking

In this section, we propose a new visual tracking approach reflecting some aspects of spatial

selective attention by connecting the low-level matching to the early attentional selection and the

high-level process to the late selection. Specifically, theearly selection process extracts a pool

of attentional regions(ARs) that are defined as the salient image regions that have good local-

ization properties, and the late selection process dynamically identifies a subset of discriminative

attentional regions (D-ARs) through a discriminative learning on the historical data on the fly.

The computationally demanding process of matching of the ARpool is done in an efficient and

innovative way by using the idea in the locality-sensitive hashing (LSH) [43, 19, 3] technique.

The proposed spatially selective attentional visual tracking (SS-AVT) algorithm is general, ro-

bust and computationally efficient. Representing the targetby a pool of attentional regions makes

SS-AVT robust to appearance variations due to lighting changes, partial occlusions and small de-

formation. Spatial attentional selection of ARs allows SS-AVT to focus its computational resources

on more informative regions to handle distractive environments and targets with complex shapes.

Pre-indexing the features of ARs based on LSH enables fast matching in order to search a large

motion parameter space. In addition, SS-AVT can be used as a region tracking tool for tracking

general objects without any prior knowledge. These merits have been shown in extensive results

on a variety of real-world sequences.

This work is different from some recent work on on-line selection of discriminative features [14]

and other adaptive methods [5, 28, 49], in that SS-AVT does not select global features but spatially-

distributes local attentional regions so as to enable a broader and a more robust selection. In ad-

dition, SS-AVT is also quite different from the fragment-tracking [1] where the target is evenly

divided into a fixed number of fragments in a pre-defined way with no selection.
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5.1.1. Overview of spatial selection for attentional tracking

Selective attention is crucial to visual perception, because the amount of information contained in

visual scenes is far more than what we can process at one time and thus the visual system has to

sample visual information over time by some inherently selective perceptual acts, including spatial

selection that directs the attention to a restricted regionof the visual field. Selective attention may

be made possible by two kinds of heuristics. One is based on innate principles obtained through

evolution, and could be performed in the early stage of visual processing. The other one is learned

through experience and might happen later in visual processing. Both are important in the human

visual system.

Target
initialization Tracking resultVideo frames

AR pool D-AR subset

P(Rt|ri)

Fused P(Rt)
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Figure 5.1.Spatial selection for attentional visual tracking.

As summarized in Fig.5.1, the proposed attentional visual tracking reflects these perceptual

findings of spatial selection in visual attention. SS-AVT has 4 important processes:

• Early attentional selection. As the first step, it extracts informative and salient image

regions calledattentional regions(ARs) from images. This is a low-level process, as it is
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only concerned on local visual fields. In this paper, we treatthose image regions that have

good localization properties as ARs, and the AR is characterized by its color histogram;

• Attentional region matching. Once a pool of ARs is extracted by the early selection pro-

cess, they will be used to process an incoming image to localize their matches. An inno-

vative method is proposed to conquer the large computational demands, by pre-indexing

the features of ARs. For each frame, the matching set of each ARis obtained and used to

estimate a belief of the target location;

• Attentional fusion and target estimation. The beliefs of all the ARs are fused to de-

termine the target location. A subset of ARs have larger weights in the fusion process,

because they are more discriminative. This subset of ARs is obtained by the late selection

process in the previous time frame;

• Late attentional selection. This process reflects some higher level processing to learn

and adapt to the dynamic environments. Based on the collectedhistory tracks of ARs, a

discriminative selection is performed to identify a subsetof most discriminative ARs (or

D-ARs) that exhibit the distinctive features of the target from the environments. They will

have larger weights in the attentional fusion process at thenext frame.

5.1.2. Components in spatially selective attentional tracking

5.1.2.1. Early attentional selection.Visual information is so rich that the human visual system

has a selective attention mechanism to sample the information over time in processing. Early

attentional selection that is believed to act in the very early stage of visual perception performs

the initial pre-filtering task, which should not involve much higher level processing such as object

recognition. Early selective attention is likely to be based on innate principles of human perception,
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e.g., to attend certain information that is evolutionarily advantageous. For example, moving objects

are generally important for survival and appear to play an important role in early attention.

We describe a spatial selection method for this early attentional process. We call the selected

image region asattentional regions(ARs). As discussed before, motion detection appears to play

an important role in early attention. Therefore, the selection of attentional regions should be sensi-

tive to motion (i.e., informative) but insensitive to noise (i.e., stable). Mathematically, any change

in the appearance of such an AR should correspond to a unique motion estimation, and the small

differences between two appearance changes should not leadto dramatically different motion esti-

mates (i.e., well-behaved).

In view of this, we choose to use the criterion and the region extraction method described

in [23] that views the stability of an image region in motion estimation from a system theory

perspective. The appearance change of an image region is treated as measurement of the motion

and is viewed as the system states. For some image regions,e.g., homogeneous regions, the system

states (motions) areunobservablefrom the measurements,i.e., the motions of these regions are not

fully recoverable from their appearance changes. Thus, they should not be attentional regions. In

addition, image regions that lead to unstable systems,i.e., small appearance changes that result in

dramatically different motion estimates, should not be attentional regions. Therefore, attentional

regions can be selected by finding those regions that generate observable and stable systems. It was

proved [23] that because an image region is characterized by its feature histogram, the stability of

the linear motion estimation system can be evaluated by checking the condition number of a matrix

that is only related to the properties of the corresponding image region. A more stable system has

a lower condition number. Thus, in the proposed AVT algorithm, we select the pool of ARs by

locating and extracting those salient image regions.
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Specifically, at the first frameI0, given the target initialization rectangleR0, we evenly ini-

tialize Nmax = 100 tentative ARs inside the target. With an efficient gradient descent search

algorithm [23], the tentative ARs converge to positions where the corresponding condition num-

bers are local minima. By removing the duplicated tentative ARs that have converged to the same

location and those that have large condition numbers, the selected AR pool is obtained and de-

noted by{r1, · · · , rN}. Their relations to the target are recorded for future target estimation in

subsequent tracking. The numberN of ARs is automatically determined by the early selection

process itself, depending on targets,e.g., we have observedN = 60 ∼ 70 for large and com-

plex objects andN = 30 ∼ 40 for small and simple objects in our experiments. Then, the color

histograms of{r1, · · · , rN} are obtained as the feature vectors{p1, · · · ,pN} with D bins, i.e.,

pi = {pi1, · · · , piD}.

As the color histograms on various image regions need to be calculated, the integral histogram

technique [74] can be applied to save computation. In AVT, we implement a modified version of

an integral histogram that is able to retrieve histograms atarbitrary locations in constant time, but

also consumes moderate memory when using high resolution color histograms. Although the sizes

and shapes of different ARs are not necessarily identical, tobe able to process ARs in a uniform

way, we impose that all ARs be the same size and shape,i.e., 30×30 squares initially. An example

of the early selection of attentional region pool is shown inFig. 5.2.

(a) initialization. (b) initial search positions of ARs(c) the pool of ARs.

Figure 5.2.Early selection of the attentional region pool.
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5.1.2.2. Attentional region matching.For each frameIt at time t, to locate the correct target

position, all hypotheses in motion parameter space have to be evaluated to find the best matches

to the ARs in the AR pool. Because the prior knowledge of the dynamics of the ARs is generally

unavailable, exhaustively searching the motion parameterspace can provide optimal performance.

Although this is computationally demanding, we have an innovative solution that significantly

reduces the computation to allow close to real-time performance. This solution is based on the

idea of the locality-sensitive hashing (LSH) [19], a powerful database retrieval algorithm.

Each AR needs to examine a large number of motion hypotheses.In this thesis, the motion

parameters include location(u, v) and scales. Each motion hypothesis corresponds to a candidate

image region. For all target hypotheses, all image patchesrc with the same size as ARs within

the searching range of one AR constitute thecandidate region setwhoseD dimensional color

histograms are denoted as{q1, · · · ,qM}, whereM is the size of the set. Generally the candi-

date region set has thousands of entries. We employ the Bhattacharya coefficient to measure the

similarity of two histogramsp andq, which is equivalent to Matusita metric [32] in L2 distance

form

d(p,q) =
D
∑

j

‖√pj −
√
qj‖2. (5.1)

Matching a feature vector can be translated to querying a database for the nearest neighbor

points in the feature space. The worst case complexity is obviously linear, but this is not good

enough. A significant speed-up can be achieved if the database can be pre-indexed. Locality-

sensitive hashing (LSH) proposed by Indyk and Motwani [43] in 1998 and further developed

in [19] aims to solve the approximate Nearest Neighbor (NN) problem in high dimensional Eu-

clidean space. LSH provides a probabilistic approximationto this problem by randomly hashing

the database withL locality-sensitive hashing functions, and only the pointsin the union of the
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hashing cells that the query point falling in are checked fornearest neighbors. This will lead to

computational savings comparing with checking all the entries in the database. The idea is illus-

trated in Fig.5.3. We refer readers to [43, 19] for details.

Query point q

Hashing cell, C
h1

, C
h2

, C
h3

Data point set P

Near neighbors

Figure 5.3. Illustration of query with LSH.

LSH has been applied in texture analysis [27] and fast contour matching [29]. To the best

of our knowledge, LSH has not been used for on-line tracking before, although another database

technique (K-D Trees) has been used for off-line (non-causal) tracking [11] by hashing the whole

video sequence. When incorporating LSH into on-line visual tracking, there is a fundamental dif-

ference from database applications. In database applications, the indexing is done off-line and thus

the computational overhead of indexing is not a critical issue. In our on-line tracking scenario,

on the contrary, the indexing overhead cannot be ignored because both indexing the database and

retrieving the database are performed during the tracking process. So computational costs of both

indexing and querying are critical. This turns out to be veryimportant in the SS-AVT implemen-

tation.

Now we have two data sets: one for the AR pool with sizeN and the other for thecandidate

region setwith sizeM . Typically,N is within one hundred andM is several thousands. The worst

case of complexity in matching isO(N ×M). As discussed before, this complexity can be further
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reduced by applying LSH. Because the overhead of indexing needs to be considered, which data

set should be chosen to be the database for LSH? If choosing the candidate set as the database, we

find that the indexing overhead is not worth the gain for a limited number of queries from the AR

pool. When we treat the AR pool as the LSH database, the computational gain is significant. The

detailed complexity analysis will be present in a later section. After querying all candidate regions

rc with feature vectorsqc using LSH, the near neighbors withindt in Matusita distance of each AR

ri are obtained and denoted as matching setSri
= {rc|d(pi,qc) ≤ dt}.

5.1.2.3. Attentional fusion and target estimation.As described in the previous subsection, for

each ARri, the attentional region matching process outputs a matching set. Based on the recorded

geometrical relation between this AR and the target (relative translation and scale in our imple-

mentation), the belief of this AR is the probability distribution of target location(ut, vt) of Rt

givenri’s matching set, denoted byP (Rt|ri), which is approximated based on the set of matched

candidaterc ∈ Sri
.

To estimate the target location and scale, the beliefs of allthe ARs need to be fused. Because

some ARs may have a substantial spatial overlap in images, their beliefs may be correlated. This

dependency may complicate the exact fusion process. But we can approximate it by clustering the

significantly overlapped ARs and treating them as one, so as toreduce the dependency. By doing

this, we approximate the estimated distribution of target locationP̂ (Rt) by

P̂ (Rt) ≈
N̂
∑

i

P (Rt|ri)P (ri), (5.2)

whereN̂ is the number of AR clusters, andP (ri) represents the prior distribution ofri in It which

is regarded as uniform. The mode of theP̂ (Rt) determines the tracking result ofRt. This is a

voting process, as shown in Fig.5.4.
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Figure 5.4.Estimation of target location.

It can be proved that this approximation only holds whenN̂ is large, because in this case the

matching likelihoods of the ARs tend to dominate while the spatial correlations tend to be less

critical. But this approximation is questionable whenN̂ is actually small. This is the limitation

of our current implementation, as it is not quite suitable for tracking very small targets when only

very few ARs are available and are largely correlated. Study of partially correlated information

fusion is out of the scope of the thesis.

5.1.2.4. Late attentional selection.As described in previous sections, attentional selection is

indispensable to the human perception of visual dynamics. For long duration tracking, the human

visual tracking system is able to adapt to changing environments and to discriminate the small

differences of the target from the distractions. Tremendous psychological evidence [72] indicates

that visual tracking involves both early selection and lateselection. Late selection may be a series

of focused attention processes that are more proactive and involve higher level processing. For

instance, the camouflage objects in the background around the target may have similar appearances,

e.g., people in a crowd as shown in Fig.5.9. When tracking objects with non-convex shapes, it

is inevitable to include some background regions in target initialization as shown in Fig.5.11and

5.12.
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Some ARs may be more distinctive and have a large discriminative power, so that they should

play a more important role in tracking. Thus, during the tracking, a subset of discriminative atten-

tional regions (or D-ARs) are selected through ranking theirabilities of discerning target motion

from the background motion. We select the subset of D-ARs based on the Principle of Mini-

mum Cross-Entropy (MCE) [17], also called Maximum Discrimination Information (MDI). This

is tantamount to measuring discrimination information between the case of usingP (Rt|ri) to ap-

proximateP̂ (Rt), and the case of using it to approximate the distribution of background motion:

KL(P (Rt|ri)||P̂ (Rt))−KL(P (Rt|ri)||P (B)), (5.3)

whereP (B) is the distribution of nearby background motion. AssumeP (B) to be uniform, this

reduces to cross-entropy betweenP (Rt|ri) andP̂ (Rt):

H(ri,Rt) = H(P (Rt|ri), P̂ (Rt)) (5.4)

= H(P (Rt|ri)) +KL(P (Rt|ri)||P̂ (Rt))

= EP (Rt|ri)(− log(P̂ (Rt))),

whereH(·, ·) stands for the cross-entropy of two distributions andH(·) is the entropy.When oc-

clusion happens, for thoseSri
= ∅, the cross-entropy is set to∞.

For each AR, the cross-entropy in a sliding temporal window of∆t = 10 frames is averaged

with forgetting factorβ = 0.95. The average cross-entropỹH(ri,Rt) of all ARs are sorted to rank
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their discriminative abilities:

H̃(ri,Rt) =
∆t
∑

j=0

βjH(P (Rt−j|ri), P̂ (Rt−j)). (5.5)

The top-ranked ARs are identified as D-ARs and have larger weights in fusion. In our implementa-

tion, we choose the top75%. They will be used to estimatêP (Rt+1) in the next frame. The D-ARs

are not fixed but dynamically changing with respect to the changes of the environment. Fig.5.5

shows the top 10 D-ARs (as red rectangles) for two sequences at3 different frames.

Figure 5.5.Examples of late selection of discriminative ARs.

5.1.2.5. Complexity analysis.In the SS-AVT algorithm, the computation costs for integralhis-

togram calculation, fusion ofP (Rt|ri), mode seek ofP̂ (Rt) are constant and relatively inex-

pensive. The most computationally intensive module is attentional region matching. Exhaustive

matching will involveO(MN) times ofD-dimensional vector comparison which is the basic com-

putational unit in our analysis.

When the data set is hashed by LSH withL hashing functions, consider both indexing and

query costs, the complexity isO(ML + NL), where one hashing function is aD dimensional

inner product calculation [19]. Therefore, the complexity ratio is approximately

τ ≈ O(ML+NL)

O(MN)
≈ ML+NL

MN
. (5.6)



75

In the tracking scenario, the number of entriesM in candidate set is much larger than the

number of ARsN . Usually,M is several thousands andN is less than a hundred. Then, if we

choose to hash the candidate set,L could be larger thanN which means no speedup since we

need to do indexing for every frame. So we hash AR pool withN elements, the complexity ratio

τ ≈ (L/N + L/M) ≈ L/N . Suppose there areN = 100 ARs, empiricallyL = 20 hashing

functions are sufficient for querying the near neighbors within dt = 0.1 at 0.9 probability. The

computation reduces to approximatelyτ = 1/5, if N = 36 andL = 10, τ = 0.28. With this

efficient matching, we can search a larger portion of the motion parameter space,e.g., in our

implementation,[−20,+20] for (u, v) respectively and 3 scales ranging from0.95, 1.0, and1.05.

For large targets, we down-sample the candidate region set to ensureM ≤ 3000. The algorithm is

implemented in C++ and tested on a Pentium-IV 3GHz PC. With moderate code optimization, the

program runs at10− 15 fps on average for352× 240 image sequences.

5.2. Experiments of Spatial Selection

5.2.1. Settings

We test the proposed SS-AVT algorithm for a variety of challenging real-world sequences includ-

ing 3 primary types: quick motion with occlusion, camouflageenvironments, and objects with

complex shapes. Note that in these tests, there are also scale and lighting changes. The targets

include pedestrian, people in crowd, wild animals, bicycleand boatetc. The SS-AVT tracker is

compared with the Mean-shift tracker [15] in the same enhanced YCbCr space with1040 bins

(32 × 32 for Cb and Cr and 16 bins for Y when the pixel is too dark or too bright). Since his-

tograms of many rectangular regions need to be calculated, integral histogram technique [74] is

a good implementation method to save some computations. Thehistograms with a large number

of bins could well delineate the feature distributions, butalso induce memory and computational
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costs. For instance,1040 additional images need to be stored for integral histogram calculation,

this memory consumption is too large to afford. Thus, at the first frame we sort the1040 bins and

keep the top128 bins and employ the128 dimensional vector to represent one attentional region.

This also saves considerable amount of computations in attentional region matching with LSH.

Most of the video clips are downloaded fromGoogle Video.

5.2.2. Quantitative comparison

For the quantitative comparison, the evaluation criteria of tracking error are based on the relative

position error between the center of the tracking result andthat of the ground truth, and the relative

scale normalized by the ground truth scale. A perfect tracking expects the position differences to

be around0 and the relative scales close to1.

We manually labeled the ground truth of the sequenceWalking for 650 frames. The walking

person, as shown in Fig.5.7, is subjected to irregular severe occlusion when passing behind the

bush. As indicated in quantitative comparison in Fig.5.6, SS-AVT performs extremely well, but

mean-shift loses track at frame 164 and never recovers.

Figure 5.6.Quantitative comparison of relative position error and relative scale for track-
ing results of sequence [Walking].
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5.2.3. More tracking results

As shown in Fig.5.8, sequenceHorse Ride involves very quick motion with occasional se-

vere occlusions. The top row shows SS-AVT tracking results where the first frame displays the

attentional region pool. The second row shows Mean-shift tracker’s results. For SS-AVT tracker,

the target is displayed as red dash rectangle, and the pixelscovered by more than one D-AR are

highlighted by increasing the luminance and the D-AR regions are surrounded by solid red lines.

When there are too few matches for ARs, occlusion is detected and displayed with a white dash

bounding box. Mean-shift tracker drifts after a serious occlusion is present at frame 54, while

SS-AVT tracker is able to keep the track by a few attentional regions.

Figure 5.7.Tracking [Walking] for frame #1, 130, 164, 254 and 650, (1st row) SS-AVT
tracker (N=55), and (2nd row) Mean-shift tracker.

Figure 5.8.Tracking [Horse Ride] for frame #1, 40, 54, 58 and 60, (1st row) SS-AVT
tracker (N=45), and (2nd row) Mean-shift tracker.
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Camouflage environments,i.e., similar or even identical objects around the target, are very

challenging for tracking. We demonstrate SS-AVT’s advantages by tracking one person in a crowd

(Fig. 5.9), and a zebra with similar texture nearby (Fig.5.10). The scale of Mean-shift tracker

becomes unstable when nearby background presents similar color histograms, while SS-AVT is

quite robust in camouflage environments due to the selectionof D-ARs.

Figure 5.9.Tracking [Marathon] for frame #1, 33, 48, 75 and 84, (1st row) SS-AVT
tracker (N=40), and (2nd row) Mean-shift tracker.

Figure 5.10. Tracking [Zebra] for frame #1, 63, 118, 136 and 160, (1st) SS-AVT tracker
(N=57), and (2nd row) Mean-shift tracker.

Tracking objects with complex shapes is difficult in practice. Since it is not reasonable to

require initialization to give the accurate boundary of thetarget, some background image regions

will be inevitably included in the target. As illustrated inFig. 5.11and Fig.5.12, the ground and

some water are cropped in the targets. The ARs on the background are not correlated to the target’s

motion, thus they have high cross-entropy and are excluded from the D-AR subset. On the other
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hand, Mean-shift tracker tries to match the holistic color histogram which is likely to be distracted

by the background regions. More tracking results on a variety of general objects, such as animals,

people and vehicles, are shown in Fig.5.13, Fig. 5.14, and Fig.5.15.

Figure 5.11. Tracking [Cheetah] for frame #1, 50, 80, 130, and 185, (1st) SS-AVT
tracker (N=57), and (2nd row) Mean-shift tracker.

Figure 5.12. Tracking [Boat] for frame #1, 20, 60, 80 and 110 (1st), SS-AVT tracker
(N=56), and (2nd row) Mean-shift tracker.

In this section, we have proposed a novel and promising tracking algorithm inspired by findings

of human visual perception. It is suitable for tracking general objects without any prior knowledge.

The target is represented by an attentional region pool which brings robustness against appearance

variations. Dynamically spatial selection of discriminative attentional regions on the fly enables

the tracker to handle camouflage environments and objects with complex shapes. In addition, by

introducing LSH to on-line tracking, the proposed SS-AVT iscomputationally feasible. Our future

work includes 3 aspects: 1) extending our current SS-AVT tracker to a general region tracking
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[Bug] for frame #1, 50, 86, 112 and 140 (N=59)

[Cheetah2] for frame #1, 31, 68, 82 and 102 (N=65)

Figure 5.13.More results of spatially selective attentional visual tracking on animals.

[Marathon2] for frame #1, 64, 90, 121 and 150 (N=21)

[NYC Bicycle] and #1, 57, 118, 146 and 180 (N=22)

[NYC Bicycle2] and #1, 174, 253, 371 and 460 (N=22)

Figure 5.14.More results of spatially selective attentional visual tracking on people.

tool by taking more motion parameters into consideration, 2) instantiating SS-AVT to particular

objects by building extensive attentional region pool for different views, and 3) exploring property

selection,e.g., color, shape, and size, of attentional regions.
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[Tank] for frame #1, 30, 57, 80 and 105 (N=52)

[Tank] for frame #1, 76, 180, 205 and 220 (N=44)

Figure 5.15.More results of spatially selective attentional visual tracking on vehicles.

5.3. Granularity and Elasticity Adaptation for Attentional Visual Tracking

The particular implementation of attentional visual tracking in Sec.5.1 is generally robust to

partial occlusions and camouflaged objects, but can be confronted by targets with large deformation

or rotations, since it implicitly enforces strict relationgeometrical relations among the attentional

regions. Another difficult is how to select the initial scales of the attentional regions. Actually, in

most tracking methods, matching is largely simplified and may only focus on certain characteristics

of targets, for example, the existences of certain local visual patterns or coherence with certain

overall feature statistics in appearance-based tracking.Consequently, successful tracking methods

for certain types of targets may not adapt to other targets easily. Therefore, for generally applicable

trackers, matching needs to be flexible for distinctive targets and adaptive with respect to target

variations. In order to advance towards designing more general trackers, adaptation of more aspects

of observation models need to be introduced and incorporated in a unified framework.

Specifically, for appearance-based tracking, there are twokey aspects in designing observation

models: what is the abstraction level of features, and how totake into account the geometrical

structures of targets. For example, in two extreme cases, the template matching method [31] uses
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local pixel intensities as features and employs sum of squared differences (SSD) as the matching

criterion that enforces rigid geometrical relations amongpixels, so it is suitable for small and

rigid targets but vulnerable to partial occlusions and deformations. On the other hand, kernel-

based tracking algorithms [15, 14, 32] represent targets by weighted histograms that delineate the

overall statistics of targets’ appearances and largely ignore their geometrical layouts. Therefore

these algorithms can deal with non-rigid targets with sufficient sizes but are insensitive to some

motion parameters. In between of these two extreme cases, many other algorithms, such as “super

pixels” [116, 112] or “bag-of-patches” approaches [5, 1, 114, 94], extract features from some

regions of interest on targets and consider their geometrical relations to different degrees.

Granularity

Elasticity

super pixels
  SSD matching

bag of feature points

bag of patches

Mean-shift

( Appearance )

( Structure )

Figure 5.16.Illustration of different tracking approaches in terms of their relative granu-
larity and elasticity.

We refer to the two aforementioned dimensions as the featuregranularityand modelelasticity.

Granularity is a measure of descriptions of components thatmake up an object. We use the feature

granularity to indicate the abstraction level of features,e.g. whether features describe attributes

of a pixel, a blob region or a whole object. Elasticity refersto the degree of flexibility. Here

we use the model elasticity to indicate the ability that the model tolerates geometrical changes

among components,e.g. whether a model allows deformations inside targets or not. The feature

granularity focuses on the target appearance and the model elasticity puts emphasis on its structure.
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Some typical tracking approaches are illustrated qualitatively in Fig. 5.16in terms of their relative

feature granularity and model elasticity.

Humans also perceive different objects at different granularity levels [30]. For objects full of

textures but without clear structures, human eyes may focuson their local appearance characteris-

tics. For objects composed of several parts, both the appearances of the parts and their structures

may attract attention. In addition, as the scales of objectschange or deformation/partial occlusion

occurs, the perception of target structure and local appearance may also change.

In this section, we propose another implementation of attentional visual tracking in which tar-

gets are represented by Markov random fields (MRF) of a set of attentional regions based on affine

invariant features, where the feature granularity and model elasticity can be explicitly adapted with

respect to targets’ appearances during tracking. The feature vectors that delineate the local appear-

ances of interest regions are extracted in a multi-scale manner. Thus, the scale ratio between the

patch sizes that are used to extract feature vectors and the characteristic scales of interest regions

specifies the feature granularity. On the other side, the geometrical relations among the interest

regions,i.e. the structures of targets, are modelled in the pair-site potential functions whose pa-

rameters control the elasticity of the model. Thus, by updating the scale ratio and the parameters in

the potential functions to maximize the joint likelihood ofthe MRF, the tracker adaptively balances

the requirements of consistency with the local appearancesand structures of targets. We refer this

algorithm as granularity and elasticity adaptive attentional visual tracking (GE-AVT).

The main differences of GE-AVT from SS-AVT are as follows: 1)the early selection of at-

tentional regions are based on affine invariant feature detection; 2) the attentional regions are

organized as a MRF model rather than a set; 3) in late selectionstage, certain properties of ob-

servation models are adjusted rather than spatial selection of ARs, i.e. the granularity of ARs and

the elasticity of the MRF model. The target observation models can be viewed as a unification of
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many previous tracking algorithms in the sense of how to organize appearance-based features. In

addition, the adaptation of feature granularity and model elasticity in this paradigm exhibits a new

way to update observation models to handle dynamical targets. The proposed method can estimate

multiple motion parameters including translation, rotation and scaling, and handle partial occlu-

sion, deformable targets and camouflaged objects within theunified framework as demonstrated

by extensive experiments.

Local invariant features have been used in visual tracking before. The proposed method is

different from some recent work [114, 94, 89] where the target is represented by a constellation

of fixed-size (11 × 11) intensity patches extracted at Harris corners [114], or a bag of maximally

stable extremal regions (MSER) [68], or an attributed relational graph of SIFT features [89] where

the target model is adapted by eliminating and incorporating SIFT features and matched by graph

matching.

5.3.1. Target observation model

In GE-AVT, we employ a unified tracking paradigm where the target is represented by an MRF

model of attentional regions, and the feature granularity and the model elasticity can be explicitly

modelled in a parametric way. In this section, we first introduce the general tracking paradigm and

then describe the specific attentional regions based on affine invariant feature detection and MRF

formulation in our implementation.

5.3.1.1. A unified tracking paradigm. Given the target initialization, we construct an MRF

based on the attentional regions within the target. The hidden variablesX = {xi} in the MRF

are the parameters of the attentional regions on the target,and the observable variables are the

parametersZ = {zi} of detected attentional regions based on affine invariant feature detection in
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every frame. The adjacent attentional regions are linked inpair-wise cliques that encode their rel-

ative geometrical relations, as shown in Fig.5.17. Then, by matching features extracted from the

attentional regions in successive frames, the motion of thetargets can be first coarsely estimated

based on the motion of each AR. Afterwards, we refine the target’s motion parameters by searching

for the maximum a posteriori (MAP) estimateP (X∗|Z). We employ the scale ratio between the

sizes of image patches to extract features and the characteristic scales of interest features to model

the feature granularity. The elasticity of the model is controlled by the parameters in the potential

functions. Assuming the tracking results are true realizations of the MRF, we adapt the granularity

and elasticity to maximize the joint probabilityP (X∗). The entire paradigm is summarized in

Fig. 5.18.

x
1

x2 xi

z1

zi
z

2

Figure 5.17.Illustration of the MRF model.

Feature
extraction

Feature granularity
adaptatoin

Tracking results

Coarse motion
parameter estimation

Refinement by
hypothesis testing

Interest region
detection

Model elasticity
adaptation

Input frames Early selection

Late selection

AR matching and target estimation

Figure 5.18.The proposed unified attentional tracking paradigm.
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With different types of attentional regions and strategiesin extracting features, the MRF-based

observation model in this tracking paradigm can substantialize to different observation models. For

example, if we regard each pixel as an attentional region andenforce strict geometrical relations

among the pixels, this model degenerates to template tracking, or if the entire object is an atten-

tional region and features are kernel-weighted histograms, then it turns to kernel-based tracking.

Additionally, the paradigm can well explain the “bag-of-patches” method where no geometrical

constraints are enforced in the MRF and the motions of targetsare estimated from the confidence

map or probabilistic occupance map generated from attentional region matching or outputs of clas-

sifiers.

5.3.1.2. Attentional region detection.For attentional regions in GE-AVT, salient image patches

that are stable in affine transforms are preferable since their motion parameters can be explicitly

estimated. There are many successful affine region detection methods [68], and we select Harris-

Laplace interest regions mainly due to its computational efficiency and the ability to yield rich

candidate regions.

The Harris-Laplace interest feature detector [35, 67] extracts points that are both local maxima

of the Harris cornerness measure in spatial domain and maxima of the normalized Laplacian in

scale space. The cornerness is measured based on the second moment matrixµ of the image

gradient distribution in a neighborhood of a pixel{u, v}, as

µ({u, v}, sI , sD) = s2
Dg(sI)⊗







L2
u({u, v}, sD) LuLv({u, v}, sD)

LuLv({u, v}, sD) L2
v({u, v}, sD)






(5.7)

whereLu({u, v}, sD) andLv({u, v}, sD) are image gradients after smoothed by a Gaussian ker-

nel with variancesD, a.k.a. the derivation scale [67], andg(sI) indicates the Gaussian kernel to

integrate the gradients whose variancesI is referred as the integration scale or the characteristic
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scale [67] of this point. The two eigenvaluesλ1 ≥ λ2 of µ characterize the pixel intensity distribu-

tions in the neighborhood. Two large eigenvalues imply the motion of the image patch surrounding

this pixel may be phenomenal in all directions [84], thus it is a stable corner. Each Harris corner

can be delineated by an ellipse regionR centered at{u, v} with the characteristic scalesI and a

shape matrix̄µ that are normalized by the larger eigenvalueλ1.

After extracting the ellipsesR = {u, v, sI , µ̄} whose centers are Harris corners, we calculate

the normalized Laplacian for those nested ellipses, that is, R
′

andR are nested ifR
′ ⊂ R. Note,

the centers are not necessarily the same for the nested ellipses. The regions that are local maxima

of the normalized Laplacians2
D|Luu({u, v}, sD) + Lvv({u, v}, sD)| are selected as the detected

interest regions{Rt
1, · · · , Rt

Mt} whereM t denotes the number of regions detected at framet.

Please refer to [67] for details about Harris-Laplace interest point detector. In [67], the location

and shape of an interest region are iteratively refined in order to reflect the gradient distributions

more accurately. As there is no guarantee of the convergenceand the computation load is not

affordable for tracking, we do not refine the interest regions.

5.3.1.3. MRF model formulation. Given the detected attentional regions{R0
1, · · · , R0

M0} within

the initial target at framet = 0, we build the MRF including the hidden sitesxi = {ui, vi, sI i, µ̄i}

that correspond toR0
i and incorporate the target’s motion parameters in the pair-wise potential

functions.

The initial attentional regions{R0
1, · · · , R0

M0} are regarded as a true realization of the MRF

and denoted as{x0
1, · · · ,x0

M0}. Then, the joint probabilityP (X) = P (x1, · · ·xM0) is expressed

by the Gibbs energy defined over pair-wise clique setC, as

P (X) =
1

Z
exp



−
∑

(xi,xj)∈C

V (xi,xj)



 , (5.8)
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whereZp is the partition function andV is the pair-wise potential function.(xi,xj) is a pair-

wise clique if the corresponding attentional regions overlap. The higher order cliques and the

dependencies among cliques with common attentional regions are ignored to enable the problem

tractable.

It is open and flexible to define the potential functionV to model the relative geometrical

relation between two attentional regions. To allow rotation and scaling of targets, inV we only

involve the difference of the angleθt
ij betweenxt

i andxt
j at framet against the reference angleθ0

ij

betweenx0
i andx0

j , and the target’s current rotation angle∆θt , as

V (xt
i,x

t
j) =

(θt
ij − θ0

ij −∆θt)2

2σ2
, (5.9)

whereσ is the assumptive variance of angle differences∆θt
ij = θt

ij − θ0
ij, which can control the

elasticity of the MRF,i.e. how rigid the relative geometrical relations among attentional regions

are enforced. The angleθt
ij between two adjacent attentional regions is calculated with the link

connecting their centers,i.e. θt
ij = arctan(

vt
i−vt

j

ut
i−ut

j

). With these definitions, the partition functionZ

can be explicitly expressed asZp = (
√

2πσ)|C| where|C| is the number of pair-wise cliques. An

example of MRF model is illustrated in Fig.5.19where the attentional regions are drawn as yellow

ellipses and the centers of those that are neighbors are linked with red lines.

Figure 5.19.An example of the MRF model initialization.
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Since histograms are generic and rotation invariant, for each attentional region, we extract a

histogram of certain cues to describe its appearance. For a Harris-Laplace interest point, although

the characteristic scalesI is available, how large area around the point should be used to extract

the features to insure good matching can not be determined before tracking. Thus, we utilize a

scalarr to specify the scale ratio between the size of image patch used to extract the histogram

and the characteristic scalesI . For eachxi, H(rxi) represents the histogram extracted from the

ellipse with the length of the major axis equal torsI . Therefore, the ratior controls the feature

granularity.

For an observationzt
i of xi, we define the likelihood of individual attentional region based on

the Bahattachaya coefficientρ between the corresponding histograms, as

P (zt
i|xi) = exp(1− ρ(H(rx0

i ), H(rzt
i))). (5.10)

Fixedr may not be appropriate for all tracking scenarios, sor need to be adjusted during tracking.

5.3.2. Motion estimation

We estimate the motion parameters of the target with two steps. First, the attentional regions

detected in current frame are matched with the initial regions in the MRF so as to coarsely estimate

target’s motion parameters,i.e. translation, scale and rotation angle, which mainly relieson the

resemblance of appearance. Then, a few more motion parameters are sampled guided by the coarse

estimates. The hypothesis that yields the highest joint posterior probability of the MRF is regarded

as the tracking result, which takes both appearance and structures into consideration.

5.3.2.1. Coarse motion estimation.For every incoming frame, we perform Harris-Laplace inter-

est points detector to locate the attentional regions{Rt
1, · · · , Rt

Mt} at current frame in an enlarged
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region surrounding the previous tracking result. If one attentional region is matched to an initial

attentional regionx0
i , we regard it as an observation of the hidden sitexi and denote it byzt

i. The

matching can be achieved by a classifier [5, 28], instead, we directly threshold the Bhattacharya

coefficientρ with the scale ratior by a thresholdT , as

ρ(H(rx0
i ), H(rzt

i)) > T. (5.11)

This matching is not necessarily a one-to-one mapping.

Incremental estimation of the motion parameters of targets, especially for the rotation angle,

is not reliable since the estimation error could be accumulated. Thus, we estimate the target mo-

tion ∆ut,∆vt,∆st,∆θt with respect to the target initialization. These motion parameters are first

coarsely estimated by∆ut
i,∆v

t
i ,∆s

t
ij,∆θ

t
ij of individual observationsyt

i and each pair ofzt
i and

zt
j within a clique.

The translations∆ut
i = (ut

i − u0
i ) and∆vt

i = (vt
i − v0

i ) are cast in a 2D histogram. The scale

factor and the rotation angle are estimated through 1D histogram of those of the detected pair-wise

cliques(yt
i,y

t
j),

∆st
ij =

|{ut
i, v

t
i} − {ut

j, v
t
j}|

|{u0
i , v

0
i } − {u0

j , v
0
j}|

, (5.12)

∆θt
ij = θt

ij − θ0
ij. (5.13)

The modes of the distributions of these motion parameters present coarse motion estimation

for the target,i.e. ∆̄ut, ∆̄vt, ∆̄st, ∆̄θt. The histograms of attentional regions’ motion parameters

are similar to the confidence map or occupance map used in “bag-of-patches” approaches and the

geometrical relations among the attentional regions have not been taken into account. Then, we

employ these rough estimates to guide fine sampling of targetmotions and evaluate the posteriors

to refine the motion estimation.
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5.3.2.2. Motion parameter refinement.As the interest region detection and matching may con-

tain errors, we further refine the coarse motion estimates∆̄ut, ∆̄vt, ∆̄st, ∆̄θt by sampling a few

more motion parameters around them and evaluating these hypotheses.

Given the observationsZ = {z1, · · · , zM} within a hypothesis target region, the MAP esti-

mationX∗ = argmaxP (X|Z) presents the upper bound of the posterior of these observations

Z. With the Markovian properties and the field model structureP (zi|X) = P (zi|xi), the joint

posterior can be expressed as

P (X|Z) ∝ P (Z|X)P (X)

= P (X)
∏

i

P (zi|xi). (5.14)

The joint probabilityP (X) is calculated with Eq.5.8 and Eq.5.9 that utilize the hypothesis

∆̄θt as a parameter. The likelihood of individual interest region P (zi|xi) is defined in Eq.5.10.

Then, the hypothesis whose optimal labellingX∗ yields the highest posteriorP (X∗|Z) is regarded

as the tracking result.

5.3.3. Granularity and elasticity adaptation

In calculatingP (zi|xi) with Eq. 5.10andP (X) with Eq. 5.8 and5.9, the scale ratior to control

the feature granularity andσ to control the elasticity of the MRF play important role in attentional

region matching and MAP estimation. Pre-defined fixedr andσ are not likely to assure good

matching for different targets and challenging situationssuch as partial occlusions and camouflage

objects nearby. Thus, we adapt them in every frame to maximize the posteriors of tracking results.

The updated parametersrt andσt at framet are used in motion estimation at next framet+ 1.
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5.3.3.1. Feature granularity adaptation. We update the scale ratio by searchingrt + ∆r until

local maximum ofP (Zt|Xt∗) =
∏

i P (zt
i|xt∗

i ). Note, here locations and shapes ofzt
i andxt∗

i

are given, onlyrt affectsP (Zt|Xt∗). This is equivalent to maximize the sum of the Bhattacharya

coefficients of all observed attentional regionszt
i in the tracked target, as

rt∗ = argmax
∑

i

ρ(H(rtx0
i ), H(rtzt

i))). (5.15)

The histogramsH(rtx0
i ) are pre-calculated and stored at tracking initialization.To reduce

the computation overhead of adaptation, we perform local gradient search aroundrt ± ∆r with

r0 = 2 and∆r = 0.1 in our experiments. Thus, the feature granularity is updated according to

the appearance changes. If the target is rigid and stable, good matching can be obtained with large

ratio r. If partial occlusion or deformation happen, smallr may be appropriate.

5.3.3.2. Model elasticity adaptation.The parameterσ in the pair-site potential functions controls

the elasticity of the MRF. To enableσ match the degree of deformation of the target, we solve it

by maximize the likelihood of the current tracking result, as

∂ lnP (Xt∗|σ)

∂σ
= 0. (5.16)

Plug in the partition functionZp and the potential energy in Eq.5.9to P (X∗t |σ), we have

P (X∗t |σ) =
1

(
√

2πσ)|C|
exp



−
∑

(xt∗
i ,xt∗

j )∈C

V (xt∗
i ,x

t∗
j )





=
1

(
√

2πσ)|C|
exp



−
∑

(xt∗
i ,xt∗

j )∈C

(∆θt∗
ij −∆θt∗)2

2σ2



 .
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Solving Eq.5.16, we obtain the assumptive varianceσt of angle differences given the current

tracking result,

σt =
1

|C|
∑

(xt∗
i ,xt∗

j )∈C

(∆θt∗
ij −∆θt∗)2. (5.17)

The optimalσt is the variance of the observed angle differences. So, if therelative geometrical

relations of the detected interest regions are stable,σt is small, on the other hand,σt increases

when deformations occur.

5.4. Experiments of Granularity and Elasticity Adaptation

We evaluate the proposed GE-AVT for a variety of real-world sequences that present deforma-

tions, partial occlusions, and camouflage objects. In the Harris-Laplace interest point detector, up

to 12 different integration scales are tested depending on the size of the target. The features used

to match the attentional regions are 2D histograms in normalized-RG space with24× 24 bins and

the corresponding matching threshold for the Bhattacharya coefficient is set toT = 0.75. The

proposed tracker is implemented with C++ which runs at 2-10 frame per second on a Pentium-IV

3GHz desktop. The computation load is jointly determined bythe number of scales in the interest

feature detector and the number of attentional regions detected.

To exhibit the generality of the proposed method, for different sequences, we compare the per-

formance with three trackers: a Mean-shift tracker that also employs 2D histograms in normalized-

RG space with24×24 bins, a template tracker where the image regions are normalized to grey-level

patches and compared with SSD, and a “bag-of-patches” tracker using the same set of interest re-

gions but ignoring their geometrical relations. Although these 3 trackers can deal with different

kinds of tracking scenarios, we demonstrate the proposed method can overcome some difficulties

to them within the unified tracking paradigm.
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5.4.1. Illustration of tracking results

The tracking results are displayed in three rows in Fig.5.20. At the first row, the initialization of the

MRF model is shown in the first image where the cliques are drawnwith red lines, and followed

by the interest region detection results where the matched regions are drawn as yellow ellipses

while the non-matched ones are light blue ellipses. Note thelength of the major axis in drawing

is the product of the scale ratiort and the interest region’s characteristic scalesI . Our tracking

results are illustrated at the second row where the target isindicated by a blue dash bounding box

and the pixels covered by matched attentional regions are highlighted with red boundaries. The

comparison tracking results are shown at the third row.

In sequence [Sidewalk], the size of target is small which is suitable for the template tracker.

However, when a bicycler is passing by the pedestrian from frame 140, the template tracker is

easily distracted, shown in the third row of Fig.5.20. In our tracker, as the attentional regions on

the upper body of the pedestrian remain stable, the tracker can get along with the distractions.

Figure 5.20.Tracking [Sidewalk] for frame #1, 140, 145, 152 and 163, (1st row) ini-
tialization and interest region detection, (2nd row) the proposed tracker (3nd) the template
tracker.
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5.4.2. Partial occlusions

The sequence [Face] first used in [1] presents different degrees of partial occlusions. Large scale

ratio r may jeopardize the interest region matching when partial occlusions occur. From Fig.5.21

we can observe that in our method the scale ratiort is adapted to follow the changing of degree

of occlusion. rt decreases to about 1.2 at frame 285 and increases to3 when the book moves

away. For the mean-shift tracker, when partial occlusion happens, the scale estimation is no longer

reliable and can hardly recover. Some representative frames are shown in Fig.5.22.
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Figure 5.21.Scale ratiort for sequence [Face].

5.4.3. Deformable objects

For sequence [Cock fight], when the target cock experiences large deformation around frame

240,σt in the potential functions increases considerably, as shown in Fig. 5.23. This means the

structure or the relative geometrical relations among the interest regions are largely ignored. Thus,

the target is located mainly by matching its appearance. Whenthe cock pauses fighting at frame

250, its structure helps the proposed tracker to locate the target and estimate the scale more accu-

rately than the Mean-shift tracker.
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Figure 5.22.Tracking [Face] for frame #1, 285, 345, 585 and 599, (1st row) initialization
and interest region detection, (2nd row) the proposed tracker (3nd) the Mean-shift tracker.
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Figure 5.23.σt for sequence [Cock fight].

5.4.4. Camouflaged objects

If the appearance of the target is distinctive in the scene, “bag-of-patches” approaches may work

well, however, they are usually vulnerable when camouflage,i.e. similar or even identical objects,

presents close to the target. As shown in Fig.5.25, when the camouflage package moves close
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Figure 5.24.Tracking [Cock fight] for frame #1, 229, 241, 250 and 410, (1st row)
initialization and interest region detection, (2nd row) the proposed tracker(3nd) the Mean-
shift tracker.

to the target from frame 640, the scale estimation in the pure“bag-of-patches” tracker becomes

unstable and it gradually drifts to the wrong target. In our approach, though interest regions de-

tected on the camouflage package have similar appearances, they are excluded since their relative

positions are not consistent with the MRF model.

5.4.5. More tracking results

More test results on sequences with in-plane rotation and scale changes are shown in Fig.5.26and

Fig. 5.27.

In this section, we have introduced a new perspective on adapting target observation models in

terms of the feature granularity and model elasticity in a unified tracking paradigm, where targets

are represented by MRFs of attentional regions. By employing amulti-scale scheme to extract

features from attentional regions and adjusting the parameters that regulate the target geometri-

cal layout, the proposed method automatically tunes the observation model’s focus on a target’s
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Figure 5.25.Tracking [Package] for frame #1, 640, 702, 740 and 792, (1st row) ini-
tialization and interest region detection, (2nd row) the proposed tracker (3nd) the “bag-of-
patches” tracker.

Figure 5.26.Tracking [Box] for frame #1, 215, 405, 510 and 598, (1st row) initialization
and interest region detection, (2nd row) the proposed tracker.

appearance and structure. Future work will include investigation about how to adapt the feature

granularity of individual attentional regions and the potential functions for each clique.

5.5. Discussion on Attentional Tracking

The core strategy of attentional tracking is to construct a highly redundant target representation

at initialization, thus during tracking the tracker can adjust its attention to more discriminative parts

or properties of the target. This is fundamentally different from directly updating the observation
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Figure 5.27.Tracking [Kid] for frame #1, 10, 40, 45 and 60, (1st row) initialization and
interest region detection, (2nd row) the proposed tracker.

model with the tracking results or on-line learning since nonew features are introduced to the

observation models after initialization but more agile matching methods are employed. There are

several issues open to different implementations: how to select attention regions at early selection

to represent the target, how to organize the attentional regions, and how to adapt the focus of

matching criteria of the trackers at late selection, as wellas the computation costs.

In our implementations, SS-AVT extracts a pool of attentional regions whose motions can be

estimated reliably to represent the targets. Since all attentional regions have the same size (30×30

at initialization), we can utilize LSH technique to accelerate the matching. The relative geometrical

relations between attentional regions are implicitly assumed to be stationary. The pros are that the

target representation is quite robust to partial occlusions or camouflage objects and efficient, but the

cons are that the sizes of the attentional regions are not selected in a principled way so it is hard to

handle large scale changes especially when the targets zoomout and the sizes get smaller, and the

strict requirement of the geometrical structure makes it hard to deal with objects with deformation

or rotations.

On the other hand, GE-AVT extracts attentional regions using a multiple scale scheme based on

affine invariant feature point detection, thus the characteristic scales and the rotation angles of the

attentional regions can be estimated, which enables the tracker to infer more motion parameters.



100

In addition, the attentional regions are organized in a MRF model so the matching scheme can

be more flexible. But the main drawback is that the affine invariant point detection is sensitive

to reflections, illumination conditions and view changes, therefore a large portion of attentional

regions may not yield good matching. More robust attentional region extraction methods and more

flexible matching scheme deserve further investigation to push the attentional tracking algorithm

to be more robust and practical.
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CHAPTER 6

Game-Theoretic Multiple Target Tracking

Multiple target tracking (MTT) is a challenging task when similar targets are present in close

vicinity. The challenge is rooted in the difficulty of estimating the motions of multiple targets

cannot be treated independently if they are present in closevicinity. Especially, if their visual

observations (or visual evidence) are mixed, it is generally very difficult to figure out the right

associations of these observations to the individual targets (that implies a general segmentation

problem). To handle this difficulty, the motions of multipletargets have to be jointly estimated

from the mixed visual observations.

This joint estimation problem can be performed in a centralized fashion by formulating a joint

observation model, as treated in many existing methods [79, 64, 78, 47, 41, 69, 91, 117, 54]. Be-

cause the joint observation model evaluates hypotheses of joint motion states, these methods lead

to complicated centralized MTT trackers that generally need to search a rather high dimensional

solution space.

This chapter brings a new view to MTT from a game-theoretic perspective, bridging the joint

motion estimation and the Nash Equilibrium of agame. Instead of designing a centralized tracker,

MTT is decentralized and a set of individual trackers is used, each of which tries to maximize its

visual evidence for explaining its motion as well as generating interference to others. Modelling

this competitive behavior, a specialgameis designed so that the difficult joint motion estimation

is achieved at the Nash Equilibrium of this game where no individual tracker has incentives to

change its motion estimate. We substantialize this novel idea in a solid case study where individual
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trackers are kernel-based trackers. An efficient best response updating procedure is designed to find

the Nash Equilibrium. The power of this game-theoretic MTT is shown by promising results on

difficult real videos.

6.1. Interference Model for Kernel-based Trackers

In this section, we introduce a new analytical interferencemodel for kernel-based trackers,

which is a key component in formulating the game-theoretic MTT. This interference model takes

both target appearances and spatial relations into consideration.

6.1.1. Joint likelihood maximization

Denote the motion parameters for theith target byθi. Its corresponding support is denoted byΩi,

i.e. the set of pixels{xn} within the region of targeti. Thus, the motions of a number ofN targets

can be estimated by maximizing the joint likelihood,

Θ∗ = argmax
{θ1,··· ,θN}

P (
N
⋃

i=1

Ωi|θ1, · · · , θN). (6.1)

If no occlusion is present,i.e. Ωi ∩ Ωj = ∅,∀i, j ≤ N . This joint optimization can be done

independently:

θ∗i = argmax
θi

P (Ωi|θi), ∀i ≤ N. (6.2)

If occlusion is present,i.e. Ωi ∩ Ωj 6= ∅,∃i, j ≤ N , we can assign the pixels in the overlapped

regions to different targets probabilistically, thus

Θ∗ = argmax
{θ1,··· ,θN}

N
∏

i=1

P (Ω̂i|θ1, · · · , θN), (6.3)
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whereΩ̂i is the probabilistic support of targeti. This is equivalent to an energy minimization

problem:

Θ∗ = argmin
{θ1,··· ,θN}

−
N
∑

i=1

lnP (Ω̂i|θ1, · · · , θN). (6.4)

6.1.2. Kernel-based likelihood

Specifically, for a kernel-based tracker, a target is represented by a kernel weighted feature his-

togram [15]. The motion parameters are denoted byθ
△
= {y, h}, wherey is the location of the

kernel center andh is its scale. Denote byxn the 2D pixel location andzn
△
= ||xn−y

h
||. The kernel

functionk(z2
n) used is the Epanechnikov kernel:

k(z2
n) =











1
2
c−1
d (d+ 2)(1− z2

n), z2
n < 1

0, otherwise
, (6.5)

whered = 2 andcd is the area of the unit circle. The negative derivative of thekernel is denoted

by g(z2
n)
△
= −k′(z2

n).

Following the notations in [15], for a single tracker without interference, the model of targeti

is described by anM -bin histogramqi = {qim}m=1,··· ,M , and the target hypothesis bypi(yi) =

{pim(yi)}m=1,··· ,M ,

pim(yi) =
∑

xn∈Ωi

k(||xn − yi

hi

||2)δ[b(xn)−m], (6.6)

whereδ[·] is the Kronecker delta function and the functionb(·) maps the pixel locationxn to a bin

indexm. The Bhattacharyya coefficientρ(yi) is employed to measure the similarity between a

target hypothesis and the model

ρ(yi) =
M
∑

m=1

√

pim(yi)qim. (6.7)
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Since the distance from the hypothesis histogrampi(yi) to the model histogramqi can be de-

fined asd(yi) =
√

1− ρ(yi), the likelihood model for trackeri (in Eq. 6.2) without considering

interference can be formulated as:

P (Ωi|θi) ∝ e1−ρ(yi). (6.8)

6.1.3. Kernel-based interference model

Due to partial occlusion, we need to consider the interference among theN targets,i.e. Ωi ∩

Ωj 6= ∅,∃i, j ≤ N . The observation model for trackeri is no longer solely determined byyi but

the joint motion configuration of all trackers (which is denoted by{yi,y−i} = {yi, · · · ,yN} to

highlight other trackers’ interference with trackeri). In view of this, we generalize the kernel-based

histogram model by,

p̂im(yi,y−i) =
1

Ci

∑

xn∈Ωi

{

k(||xn − yi

hi

||2)δ[b(xn)−m] ·
qim(xn)k(||xn−yi

hi
||2)

∑N

j=1 qjm(xn)k(||xn−yj

hj
||2)

}

, (6.9)

whereCi ≤ 1 is a normalization term. The probability that the pixelxn is within Ωi is approxi-

mated by
qim(xn)k(||xn−yi

hi
||2)

∑N

j=1 qjm(xn)k(||xn−yj

hj
||2)

, (6.10)

whereqim(xn) =
∑M

m=1 qim[δ(b(xn) − m)] is the histogram bin value for pixelxn in the target

modelqi. Please note when using Epanechnikov kernel with a finite support, if one tracker has

no overlap with others, Eq.6.9 degenerates to Eq.6.6. To avoid numerical problems, we set

qim = ǫ > 0,∀m < M , whereǫ is a very small value, to guarantee non-zero binsqim(xn) and

qjm(xn).
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Thegeneralized Bhattacharyya coefficientis defined aŝρ(yi,y−i) =
∑M

m=1

√

p̂im(yi,y−i)qim.

Then, the likelihood model for targeti with interference is formulated as:

P (Ω̂i|θ1, · · · , θN) ∝ e1−ρ̂(yi,y−i). (6.11)

This interference model takes both the appearance similarity and spatial relations into account.

For examples, as shown in case A in Fig.6.1, if the bin values of the pixels in the overlap region are

larger in a target modelj than in the other, then those pixels have higher weights in Eq. 6.10. On

the other hand, if the pixels in the overlap region are equally likely for both target models as in the

case B, then the pixels close to the center of one target shall have higher probability to be counted

in its model. Furthermore, since Eq.6.10 is less than 1, this interference model down-weights

those pixels that are in the overlapped regions of differenttrackers and have ambiguous identities.

Figure 6.1. Illustration of two cases for the interference model.

6.2. Game-theoretic Multiple Target Tracking

Based on the interference model, we can formulate the joint motion estimation (Sec.6.2.1)

and construct a game (Sec.6.2.2) whose N.E. corresponds to a local optimum of the joint motion

estimation and can be efficiently solved (Sec.6.2.3). The algorithm is summarized in Sec.6.2.4.
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6.2.1. Joint motion estimation

Assuming that the scales remain constant when multiple targets approach to each other, based on

the interference likelihood model (Eq.6.11), the minimization of the joint energy (in Eq.6.4) is

equivalent to:

max
{y1,··· ,yN}

J1(y1, · · · ,yN) =
N
∑

i=1

ρ̂i(yi,y−i). (6.12)

Maximizing the joint likelihood is equivalent to optimizing the joint kernel locations of all targets

that maximize the sum of the generalized Bhattacharyya coefficients.

Denote the initial locations of the trackers by{y0
i ,y

0
−i}. Then, performing Taylor expansion

w.r.t. p̂im(y0
i ,y

0
−i) and plugging Eq.6.9 into ρ̂i(yi,y−i), ρ̂i(yi,y−i) can be approximated by

ρ̂i(yi,y−i) =
M
∑

m=1

√

p̂im(yi,y−i)qim

≈ 1

2

M
∑

m=1

(

√

p̂im(y0
i ,y

0
−i)qim + p̂im(yi,y−i)

√

qim
p̂im(y0

i ,y
0
−i)

)

(6.13)

=
1

2

M
∑

m=1

√

p̂im(y0
i ,y

0
−i)qim +

1

2Ci

∑

Ωi

ωi(xn)k(||xn − yi

hi

||2)
qim(xn)k(||xn−yi

hi
||2)

∑N

j=1 qjm(xn)k(||xn−yj

hj
||2)

,

whereωi(xn) is determined by the initial status of trackeri p̂im(y0
i ,y

0
−i) and the model histogram

qi of targeti,

ωi(xn) =
M
∑

m=1

δ[b(xn)−m]

√

qim
p̂im(y0

i ,y
0
−i)

. (6.14)

Since only the second term in Eq.6.13 is related to the variable{yi,y−i} given the initial

locations, we can ignore the terms inJ1 that are not affected by{y1, · · · ,yN}. Then we redefine
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the objective function and have:

max
{y1,··· ,yN}

J2(y1, · · · ,yN)
△
=

N
∑

i=1

ri(yi,y−i), (6.15)

whereri(yi,y−i) corresponds to the individual matching of trackeri (as the second term in Eq.6.13):

ri(yi,y−i)
△
=

1

2Ci

∑

Ωi

ωi(xn)k(||xn−yi

hi
||2)

1 +
∑N

j=1,j 6=i

qjm(xn)k(||
xn−yj

hj
||2)

qim(xn)k(||
xn−yi

hi
||2)

. (6.16)

Since∇J2 w.r.t. to {y1, · · · ,yN} is intractable, we further approximate it with a lower bound

J3 ≤ J2:

max
{y1,··· ,yN}

J3(y1, · · · ,yN)
△
=

N
∑

i=1

r̃i(yi,y−i), (6.17)

where

r̃i(yi,y−i)
△
=

1

2Ci

∑

Ωi

ω(xn)k(||xn−yi

hi
||2)

1 +
∑N

j=1,j 6=i

qjm(xn)

qim(xn)
k(||xn−yj

hj
||2)

. (6.18)

This proximation means that the pixels in the occlusion regions are further down-weighted as

1/

(

1 +
N
∑

j=1,j 6=i

qjm(xn)k(||xn−yj

hj
||2)

qim(xn)k(||xn−yi

hi
||2)

)

→ 1/

(

1 +
N
∑

j=1,j 6=i

qjm(xn)

qim(xn)
k(||xn − yj

hj

||2)
)

. (6.19)

This is reasonable, since we don’t explicitly recover the occlusion relations among the targets and

a natural choice is to reduce their contributions to the weighted histograms.

6.2.2. Game construction and formulation

Although it is natural to design a game to model the competition among multiple trackers, the

construction of the game cannot be arbitrary,e.g. based on intuitions or heuristics, because the

equilibrium of the game may not necessarily be a solution to MTT. For example, if we formulate
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a naive non-cooperative game[N, {R2}, {ρ̂i(yi,y−i)}], where the players correspond to the indi-

vidual trackers, the strategy for each player is the motionyi ∈ R
2, and its utility ρ̂i(yi,y−i) is

the generalized Bhattacharyya coefficient. This naive game is unable to assure a social optimal

behavior (that corresponds to a good joint solution to MTT),because each tracker will try to solely

increase its own utility. Special care has to be taken in the game construction.

A local optimum{y∗1, · · · ,y∗N} of J3(y1, · · · ,yN)
△
= rtot(y1, · · · ,yN) is a good solution to

MTT. The solution must satisfy the Karush-Kuhn-Tucker (KKT) conditions,

∂rtot(y1, · · · ,yN)

∂yi

|{y∗

1 ,··· ,y∗

N
} = 0, ∀i ≤ N. (6.20)

Thus, the N.E. of the game we construct must also satisfy these conditions. In view of this, we

design a gameG = [N, {R2}, {rtot(yi,y−i)}]. At the N.E.{y∗1, · · · ,y∗N} of this game,∀ playeri

and its optimal strategyy∗i , we havertot(y
∗
i ,y

∗
−i) ≥ rtot(yi,y

∗
−i),∀yi, by definition of N.E.. Since

rtot is continuous,∇yi
rtot(yi,y

∗
−i)|y∗

i
= 0,∀i, is held at N.E.. Consequently, the N.E. also satisfies

the KKT conditions ofJ3. Therefore, this construction of the game is plausible, andmaximizing

J3 is equivalent to finding the N.E.. Fortunately, this can be solved efficiently by a decentralized

best response updating, as described below.

6.2.3. Finding a Nash Equilibrium

To find a N.E., we design a decentralized synchronous scheme to update the best response for each

tracker. Namely,∀i, assuming all the other trackers’ locationsy−i are given, we find the best̂yi

that maximizes the utilityrtot(yi,y−i), i.e. to solve∇yi
rtot(yi,y−i) = 0. The justification of this
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iterative process can be found in Sec.6.3. We have,∀i,

∇yi
rtot(yi,y−i) = ∇yi

r̃i(yi,y−i) +
N
∑

j 6=i

∇yi
r̃j(yj,y−j) = 0. (6.21)

Eq.6.21can be solved in a closed-form. To make the derivation clear,we denote

ηii(xn)
△
=

ωi(xn)

1 +
∑N

j=1,j 6=i

qjm(xn)

qim(xn)
k(||xn−yj

hj
||2)

. (6.22)

ηji(xn)
△
=

ωj(xn)k(||xn−yj

hj
||2)

(1 +
∑N

l=1,l 6=j
qlm(xn)
qjm(xn)

k(||xn−yl

hl
||2))2

, (6.23)

Then, we have

∇yi
r̃i(yi,y−i) =

1

Cih2
i

∑

Ωi

ηii(xn)g(||xn − yi

hi

||2)(xn − yi), (6.24)

and fori 6= j, we have,

∇yi
r̃j(yj,y−j) = − 1

Cjh2
i

∑

Ωj∩Ωi

ηji(xn)g(||xn − yi

hi

||2)(xn − yi). (6.25)

Please noteyi merely influences̃rj(yj,y−j) through the overlapped region{xn ∈ Ωj ∩ Ωi}

andg(||xn−yi

hi
||2) is uniform for Epanechnikov kernel.∇yi

r̃j(yj,y−j) acts as a force of thejth

tracker that pushes away theith tracker.

Plugging Eq.6.24and Eq.6.25to Eq.6.21, we can solve the bestŷi giveny−i in a closed form.

To make things clear, we define two more coefficientswii(xn) andwji(xn) for pixel xn ∈ Ωi,

wii(xn)
△
=

1

Cih2
i

ηii(xn)g(||xn − yi

hi

||2),∀xn ∈ Ωi, (6.26)
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wji(xn)
△
=











− 1
Cjh2

i

ηji(xn)g(||xn−yi

hi
||2) xn ∈ Ωi ∩ Ωj

0 xn /∈ Ωi ∩ Ωj

. (6.27)

We have,

∇yi
rtot(yi,y−i) =

N
∑

j=1

∇yi
r̃j(yj,y−j)

=
∑

Ωi

xn

N
∑

j=1

wji(xn)− yi

∑

Ωi

N
∑

j=1

wji(xn) = 0. (6.28)

Therefore, considering the interference of the targeti to all the others targets and given the locations

of other targets, the bestŷi that maximizes the utility is

ŷi =

∑N

j=1

∑

Ωi
xnwji(xn)

∑N

j=1

∑

Ωi
wji(xn)

, ∀i. (6.29)

For each frameI(t), whenN trackers approach to each other, we can iteratively updateyi, i =

1, · · · , N by Eq.6.29. This iterative process reaches an equilibrium that achieves a local optimum

of the joint motion estimation.

A geometrical explanation is the following. We can vieŵyi as a combination of forceŝyi←j

which is the solution to∇yi
r̃j(yj,y−j) = 0 as

ŷi←j =

∑

Ωi
xnwji(xn)

∑

Ωi
wji(xn)

. (6.30)

ŷi←j acts as trackerj’s counter force to trackeri when consideringyi’s interference iñrj(yj,y−j).

This can be visualized in Fig.6.2.
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Figure 6.2. Illustration of force combination for̂yi.

6.2.4. Algorithm summary

We summarize our game-theoretic MTT algorithm. If a subset of targets approach each other,

and their hypotheses are overlapped (the distances less than a threshold), we generate a game and

use the algorithm in Fig.6.4 to search for the N.E. If one target is isolated from others weuse

Mean-shift tracker. The procedure is summarized in Fig.6.3.

Input : FrameI(t), target models{qi}, and initial states of the set of individual trackers
θ(t−1) = {y(t−1)

i , h
(t−1)
i } for i = 1, · · · , N ′

.
Output: Tracking resultsθ(t) = {y(t)

i , h
(t)
i } for i = 1, · · · , N ′

.
(1) Divide trackers into different groups if they are in close vicinity.

(2) For each group of trackers, if it has more than one trackerin the group, generate a
game and call the algorithm in Fig.6.4, otherwise call Mean-shift tracker [15].

(3) For each individual tracker, searchh(t)
i with discrete scale factors{0.95, 1, 1.05}

to maximize its generalized Bhattacharyya coefficientρ̂(ŷi, ŷ−i).

Figure 6.3. Procedure of game-theoretic MTT.

6.3. Game Theoretic Analysis

In the gameG we have constructed, the utility function of each player is the joint matching

rtot(yi,y−i) =
∑N

i r̃(yi,y−i), which forces an individual tracker to take other trackers’influences

into consideration rather than only focusing on its own interest.∇yi
r̃j(yj,y−j), i.e. the sensitivity
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Input : FrameI, target models{qi}, and initial states of the set of individual trackers
{y0

i , hi} for i = 1, · · · , N .
Output: Target locations{ŷi, i = 1, · · · , N} at the equilibrium.

(1) For each trackeri, determineΩi and calculatêpi(yi,y−i) by Eq.6.9.

(2) In order to calculate∇yi
r̃i(yi,y−i) in Eq.6.24, for each pixelxn ∈ Ωi, calculate

• ωi(xn) by Eq.6.14,
• ηii(xn) by Eq.6.22,
• wii(xn) by Eq.6.26.

(3) In order to calculate∇yj
r̃i(yi,y−i) in Eq.6.25(note switch subscripti andj), for

trackerj 6= i,Ωi ∩ Ωj 6= ∅, for each pixelxn ∈ Ωi ∩ Ωj, calculate
• ηij(xn) according to Eq.6.23,
• wij(xn) according to Eq.6.27.

(4) For trackeri, calculateŷi giveny−i by Eq.6.29.

(5) If all {ŷi ∀i = 1, · · · , N} are stationary, exit; otherwise go to Step 1.

Figure 6.4. Algorithm for finding N.E. in game-theoretic MTT.

of trackerj’s matching w.r.t trackeri’s motion yi, can be regarded as a price trackerj charges

trackeri and counter reacts toyi throughŷi←j.

To analyze whether the Nash Equilibrium can be achieved by the best response updating for

gameG = [N, {R2}, {rtot(y1, · · · ,yN)}], we resort to the following definition and theorem in the

supermodular game theory [92, 97].

Definition 2. A gameG = {N,S, {fi}} is a supermodular (submodular) game if the setS of

feasible joint strategies is a sublattice, and each utilityfunctionfi is supermodular (submodular)

function onS.

Theorem 3. In a supermodular (submodular) gameG = {N,S, {fi}}, (a) there exists at least

one Nash Equilibrium; (b) if each player starts from any feasible strategy and uses best response

updating, then the joint strategies will eventually converge to a Nash Equilibrium.
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For details about supermodular games, we refer the readers to Chapter 4 in [92] and Chapter 7

in [97].

Based on the supermodular game theory, to show the best response updating can reach a N.E.,

a sufficient condition includes 1) the solution of Eq.6.21is a best response ofŷi given fixedy−i,

and 2) the gameG is a supermodular/submodular game. Condition 1 is satisfied sincertot(yi,y−i)

is concave onyi in that the Epanechnikov kernel functionk is non-negative and strictly concave.

The details are given in the first part of Appendix C. The condition 2 can be satisfied in certain

Ωi, i = 1, · · · , N where each utility function is submodular function, which can be checked as a

by-product in the best response updating as given in the second part of Appendix C.

6.4. Experiments and Discussions

We demonstrate the proposed game-theoretic MTT by using both synthesized and real video

(downloaded fromGoogle Video). The basic individual tracker is a Mean-shift trackers with32×32

2D histogram in the Hue-Saturation space. To purely evaluate the performance of the proposed

method, we do not incorporate motion dynamic prior, object detectors, and background subtrac-

tion, although it is easy to incorporate them. The method is implemented in C++ and tested on

Pentium IV 3GHz PC. Empirically, the best response updating converges very quickly within 3-

10 iterations, so the computations are almost the same as that in multiple independent Mean-shift

trackers.

6.4.1. Example of best response updating

First, we show an example of the best response updating for tracking the hands and the face in a

sign language video. The first 4 images in Fig.6.5show the positions of the hands and the face at

the first 3 iterations and at the last iteration during the best response updating. We observe that the
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sum of generalized Bhattacharyya coefficients
∑3

i=1 ρ̂(yi,y−i) monotonically increases as shown

in the last graph. But the individual̂ρ(yi,y−i) may be up and down. This is a rather difficult case

because the hands and the face share the same skin tones. In our method, the competition ends up

at an equilibrium that gives a good estimation of them.

Figure 6.5. Illustration of best response updating procedure: iteration #0, 1, 2, and 8.

6.4.2. Synthesized video

We synthesize two videos in which there are 3 different targets and 5 identical targets, respec-

tively. The backgrounds include random noise and 10-20 small targets that are wandering ran-

domly. Frame samples are shown in Fig.6.6. The trackers are drawn in different colors and a red

dash ellipse indicates the group of trackers that are engaged in the game. The final motion̂yi are

drawn at the centers of the targets. From the test results, the competition among the targets leads

to an equilibrium and largely avoids the coalescence problem.

Figure 6.6.Tracking synthesized video: (1st row) 3 different targets for frame #1, 15, 42,
427, and 500; (2nd row) 5 identical targets for frame #1, 13, 19, 20, 25.
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6.4.3. Real video

We further test the proposed approach in real sign language and sports videos. These are very

challenging tests for MTT. The hand gesturing in sign language video (Fig.6.7) is fast and the

hand shape is deformable. Since the color of the hands and theface are quite similar, when the

hands moving in front of the head, it is very likely that independent trackers will fail as shown

in the 2nd row of Fig.6.7. On the contrary, in our method, the interference from the face tracker

to the hands tends to push the hands away from the face, which greatly alleviates coalescence

phenomenons.

Figure 6.7.Tracking [sign language] for frame #1, 171, 172, 305, and 325, (1st row)
game-theoretic MTT trackers and (2nd row) multiple independent trackers.

Sports video is another large category where the athletes generally wear similar uniforms and

may have very complicated interactions. Therefore tracking people in sports video is a very diffi-

cult task. We show the tracking results forkid soccer, free style soccer andvolleyball

in Fig. 6.8. The proposed method can follow people with complicated occlusions. The comparison

to the results of independent trackers are shown below our results, where one single target often

traps multiple trackers.
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Figure 6.8. (1st row) tracking [kid soccer] for frame #40, 64, 79, 101, 109; (3rd
row) tracking [free style soccer] for frame #1, 100, 250, 280, and 300; (5th row)
tracking [volleyball] for frame #1, 15, 40, 50, and 120.

6.4.4. Discussions

In this chapter we have introduced a new view of game theory tothe study of multiple target track-

ing. The competition of individual trackers is formulated as a game and we bridge the solution

to the joint motion estimation and the Nash Equilibrium of the game. Consequently, the maxi-

mization of the joint likelihood can be decentralized. The N.E. of this game can be solved by an

efficient iterative procedure in a closed form. The proposedmethod achieves promising results in

tracking quasi-identical targets in both synthesized and real video sequences.
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CHAPTER 7

Conclusions

In this thesis, I mainly summarize my work on object-level visual tracking and present the

context-aware and attentional visual tracking algorithmsfor a single target, and a game-theoretic

multiple target tracking algorithm. The proposed algorithms mainly focus on how to handle the

large variations of targets in real-world video sequences efficiently in order to enhance the gener-

ality and reliability of visual tracking algorithms. Sincethe target variations are unpredictable and

tracking algorithms have to deal with them in an unsupervised way, adaptive target observation

models with flexible matching criteria are critical to the success of a tracking algorithm.

Using subspace tracking as an example, we reveal that directly updating the observation model

with the latest previous tracking results is a chicken-egg problem in nature without any bottom-up

constraints. In viewing of this, we propose two novel ideas to enhance and adapt non-stationary

observation models: context-aware tracking and attentional tracking. In context-aware tracking,

the tracker mines some auxiliary objects automatically as the spatial contexts of the target which

have short-term strong motion correlation with the target,these context information can provide

additional verification of the tracking results. This is a general method to improve long-term robust

tracking, which is effective to deal with the short-term invalidation of the target observation model

due to severe occlusion, targets moving out of image boundary, and the distraction of camouflage

objects. Further, we present two implementations of attentional visual tracking, where the targets

are represented by a rich pool of attentional regions that are stable in motion estimation. In spa-

tially selective attentional tracking, a discriminative subset of attentional regions are dynamically
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selected to locate the target, while, in granularity and elasticity adaptive attentional tracking, the

scales of the attentional regions and the relative geometrical relations among the attentional re-

gions are tuned to enhance the robustness of the observationmodel. This rich and redundant target

representation is more tolerant to small target variationsdue to lighting changes and deformation,

irregular partial occlusion, and inaccurate target initialization. The spatial selection or granularity

and elasticity adaptation do not rely on adjusting the individual attentional region model or induc-

ing new features during the tracking, which largely avoids the chicken-and-egg problem in on-line

adaptation. The context-aware and attentional visual tracking algorithms bring novel insights to the

visual tracking area and achieve exciting and promising experimental results on real-world video

sequences in unconstrained environments.

Multiple target tracking poses additional difficulties in practice and need to be addressed even-

tually when tracking is applied to real applications. The main challenges are the coalescence

problem when targets with similar appearances approachingeach other and the high computa-

tion complexity due to the joint motion estimation. In the proposed game-theoretic multiple target

tracking algorithm, we formulate the problem as a game whereindividual tracker competes against

each other for the visual evidence while also induces interferences to the others. By designing an

interference model for kernel-based trackers, the joint motion estimation is solved by seeking the

Nash Equilibrium in a particular submodular game using bestresponse updating, which has linear

complexity with the number of targets.

Visual object tracking is a fundamental problem in computervision and deserves more research

efforts. For the future research, we will continue pursuingintelligent robust visual tracking algo-

rithms for theoretical study and practical systems. On the theoretical aspect, how to integrate the

proposed context-aware tracking and attentional trackingefficiently requires further investigation.

The AVT algorithm adjusts the “visual attention” inside thetargets to achieve robust matching,
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while CAT algorithm resorts to external contexts in the scene, i.e. temporally motion correlated

regions, to verify the results. How to scalably and automatically fuse these two strategies in a

principled way remains open. In terms of practical system design, how to infer more motion pa-

rameters,e.g. the aspect ratio, how to extract invariant image features with high repeatability as

the attentional regions, and how to utilize the prior knowledge about the target and scene, are of

great importance to a practical application.
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Appendix

Appendix A

Lemma 1. The solution of the following problem:

min
A

tr(ATCA), s.t., ATA = I, (7.1)

whereA ∈ R
m×r, andC = ZZT ∈ R

m×m, is given by the eigenvectors that corresponds to ther

smallest eigenvalues ofC.

Proof: It is easy to figure it out. Actually this is the same as the proof for the procedure in PCA.

Based on the Lemma, the proof of Theorem 1 is given by the following: Performing SVD onAt,

we haveAt = UΣVT , whereU ∈ R
m×r, Σ ∈ R

r×r, V ∈ R
r×r. It is easy to see:Pt = UUT .

Then the optimization problem in Eq.3.4 is equivalent to:

argmin
U

J3(U) = argmin
U

{tr(UTC−t U)−tr(UTC+
t U)+α||UUT−Pt−1||2F}, s.t. UTU = I.

The Lagrangian is given by:

L(U) = J3(U) + λ(UTU− I).

Let U = [e1, . . . , er], and we have:

∂L

∂e
= 2(C−t −C+

t )e + 2α(eeT −Pt−1)e + 2λe

= 2(C−t −C+
t + αI− αPt−1)e + 2λe.
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Thus,e is an eigenvector of̂C = C−t −C+
t + αI − αPt−1. The minimization problem is solved

by finding ther eigenvectors that correspond to ther smallest eigenvalues of̂C. Q.E.D.

Appendix B

Definition of inconsistency in a two-node Gaussian Markov network

The theorem of inconsistency between two Gaussian sources and the proofs were first proposed

by Ganget. al. [40]. We consider to define the inconsistency in a two-node Gaussian Markov

network, as shown in Fig.7.1, where the two observation nodes are Gaussian random vectors

z1 ∼ N(µ1,Σ1) andz2 ∼ N(µ2,Σ2) with µ1, µ2 ∈ R
n. Therefore, the compatible functions

between observation nodes and the hidden nodes are Gaussian, i.e.,

φ(xi, zi) =
1

√

(2π)n|Σi|
e−

1
2
(zi−xi)

⊤Σ−1
i (zi−xi). (7.2)

Assumex1 can be predicted by a functionf of x2, the compatible or the potential function ofx1

andx2 can be expressed as a Gaussian

ψ(x1,x2) =
exp

{

− (x1−f(x2))⊤(x1−f(x2))

2σ2
12

}

√

(2π)nσn
12

(7.3)

.
=

exp
{

− (x1−A12x2−µ12)⊤(x1−A12x2−µ12)

2σ2
12

}

√

(2π)nσn
12

, (7.4)

which indicates ifx1 andf(x2) can be regarded as being generated from one common model and

σ2
12 is the scalar variance. Whenf is nonlinear, we linearize it by Taylor expansion,i.e., µ12 = f(0)

andA12 = ∂f12(x2)
∂x2

|x2=0 is then × n Jacobian. So we only consider the linearized relation ofx1

andx2 in Eq.7.4.
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Figure 7.1.Two-node Markov network.

The varianceσ2
12 indeed models the uncertainties between the estimatex1 and the neighbor-

hood estimateA12x2 + µ12. AssumeA12 andµ12 are known, given all the{z1, z2} , the estimate

of σ2
12 is a natural indicator of whetherx1 andA12x2 + µ12 should be consensus,i.e., if σ2

12 is

very small, then they should be in consensus sinceψ(x1,x2) is approaching to an impulse delta

function, and vice versa.

The Bayesian MAP inference ofx1 and the ML estimate ofσ12 can be obtained by the follow-

ing Bayesian EM algorithm [73], i.e.,

x1 = (Σ−1
1 +

1

σ2
12

I)−1

× (Σ−1
1 z1 +

1

σ2
12

(A12x2 + µ12)) (7.5)

σ2
12 =

1

n
(x1 −A12x2 − µ12)

⊤(x1 −A12x2 − µ12) (7.6)

Fixing σ12, the E-Step in Eq.7.5 obtains the MAP estimate ofx1 by fixed-point iteration.

Fixing x1 andx2, the M-Step in Eq.7.6maximizesp(x1,x2|σ12, z1, z2) w.r.t. σ12. Combining the

two steps together also constitutes a fixed-point iterationfor σ2
12.

We measure the consistency of two observation sourcesz1 andz2 by examining if their es-

timatesx1 andx2 are in consensus,i.e. if x1 is predictable fromx2 through a linear relation

A12x2 + µ12 with small varianceσ2
12. Therefore, whenz1 andz2 are consistent, the estimate of

x1 andA12x2 + µ12 will show a consensus,i.e., they will be almost the same. In this case, from
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Eq. 7.6, the estimate ofσ2
12 will always approach to zero,i.e., zero is the only fixed-point. On

the contrary, if they are inconsistent, the estimate ofx1 andA12x2 + µ12 may deviate from each

other,i.e., the convergent results ofσ2
12 may be non-zero. This indicates that there exist non-zero

fixed-points forσ2
12. These motivate us to define the inconsistency of two Gaussian sources as

follows.

Definition 3. If zero is the only fixed-point forσ2
12 in the Bayesian EM,i.e. in Eq. 7.5 and

Eq.7.6, {z1,Σ1} and{z2,Σ2} are consistent; if there exist non-zero fixed-points forσ2
12, they are

inconsistent.

Proof of inconsistency criterion

Given the aforementioned definition of inconsistency for two Gaussian sources in two-node Markov

network, we propose a sufficient condition to check the convergent value ofσ2
12 as stated in The-

orem2. The basic idea of the proof is to check if Eq.7.6 has non-zero solutions. With some

manipulations we express Eq.7.6 as a functionF (σ2
12) in Eq. 7.12. Then, we show if the con-

dition numberCp of Σ1 + Σ2 satisfies Eq.4.15 in Theorem2, there exist two positive numbers

0 < k2 < k1 such thatF (k1) < 0 andF (k2) > 0, which indicates there is a non-zero solution. If

Cp satisfies Eq.4.16, F (σ2
12) < 0 for all σ2

12 > 0, thus there is no non-zero solution for Eq.7.6.

PROOF. Fixing σ2
12, the fixed-point iteration in Eq.7.5 is guaranteed to obtain the exact MAP

estimate on the joint posterior Gaussian. For simplification of notation, we denotêx2 = A12x2 +

µ12 andẑ2 = A12z2 + µ12. DefineP = Σ1 + Σ2 andS = P + σ2
12I. The convergent result in the
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E-Step in Eq.7.5 is the same as,







x1

x̂2






=







(σ2
12I + Σ̂2)S

−1z1 + Σ1S
−1ẑ2

Σ̂2S
−1z1 + (σ2

12I + Σ1)S
−1ẑ2






. (7.7)

Embedding it to the M-Step in Eq.7.6, we have

σ2
12 =

1

n
σ2

12σ
2
12(z1 − ẑ2)

⊤S−1S−1(z1 − ẑ2). (7.8)

To prove Theorem2, since zero is a solution ofσ2
12 for Eq. 7.8, we only need to analyze the

existence of non-zero solutions ofσ2
12 for

1

n
σ2

12(z1 − ẑ2)
⊤S−1S−1(z1 − ẑ2)− 1 = 0. (7.9)

P is the sum of two covariance matrices so it isreal positive definite. Thus there exists an or-

thonormal matrixQ such thatP = QDpQ
⊤, where

Dp = diag[σ2
1, σ

2
2, . . . , σ

2
n]

is the eigen-matrix withσ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n > 0 andCp =

σ2
1

σ2
n
. Then we haveS = QDsQ

⊤,

where

Ds = diag[σ2
1 + σ2

12, σ
2
2 + σ2

12, . . . , σ
2
n + σ2

12].

Furthermore,S−1 = Q⊤D−1
s Q where

D−1
s = diag[

1

σ2
1 + σ2

12

,
1

σ2
2 + σ2

12

, . . . ,
1

σ2
n + σ2

12

].
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We also denotẽz = Q(z1 − ẑ2) = [z̃1, z̃2, . . . , z̃n]⊤. Then, we can simplify the expressions in

Eq.7.9and Eq.4.15in Theorem2 (Sec.4.3) as,

1

n
σ2

12(z1 − ẑ2)
⊤S−2(z1 − ẑ2) =

1

n

n
∑

i=1

σ2
12z̃

2
i

(σ2
i + σ2

12)
2
, (7.10)

1

n
(z1 − ẑ2)

⊤P−1(z1 − ẑ2) =
1

n

n
∑

i=1

z̃2
i

σ2
i

. (7.11)

From Eq.7.10, we express Eq.7.9as a functionF (·) of σ2
12 and only need to analyze the solution

of σ2
12 for

F (σ2
12) =

1

n

n
∑

i=1

z̃2
i

σ2
i

· 1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

− 1 = 0. (7.12)

Now we proceed to prove the conclusions in Theorem2.

Denote the left-hand side of Eq.4.15 in Theorem2 asd and plug Eq.7.11 in, thus Eq.4.15

means

d =
1

n

n
∑

i=1

z̃2
i

σ2
i

> 2 +

√

σ2
1

σ2
n

+

√

σ2
n

σ2
1

≥ 4.

Whenσ2
12 = k1 = (d− 2)σ2

1, for anyi, we have

1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

<
1

2 + 0 + d− 2
=

1

d
.

Thus,

F (k1) <
1

n

n
∑

i=1

z̃2
i

σ2
i

· 1
d
− 1 = 0.

Whenσ2
12 = k2 =

√

σ2
1σ

2
n, for anyi,

1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

≥ 1

2 + σ2
n

k2
+ k2

σ2
1

=
1

2 +
√

σ2
1

σ2
n

+
√

σ2
n

σ2
1

≥ 1

d
,
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thus

F (k2) ≥
1

n

n
∑

i=1

z̃2
i

σ2
i

· 1
d
− 1 = 0.

Since0 < k2 < k1 andF (·) is continuous, there must exist ak3 such thatk2 ≤ k3 < k1 and

F (k3) = 0. This proves that the inequality Eq.4.15in Theorem2 holds can indicate a non-zero

solution for Eq.7.9, namely there exists at least one non-zero fixed point forσ2
12 in the Bayesian

EM, which means the two Gaussian sources are not in consensusaccording to our definition of

inconsistency. Thus, the first claim in Theorem2 is proved.

Eq.4.16meansd = 1
n

∑n

i=1
z̃2
i

σ2
i

< 4, then we have

F (σ2
12) ≤

1

n

n
∑

i=1

z̃2
i

σ2
i

· 1
4
− 1 =

d

4
− 1 < 0

for all σ2
12 > 0. Therefore, there does not exist a non-zero solution for Eq.7.12. Eq. 4.16 in

Theorem2 is proven.

�

Appendix C

Proof that Eq. 6.29is a best response

To show Eq.6.29 is the best response of̂yi given fixedy−i, we need to show the solution̂yi

of Eq. 6.21 is a global optimum ofrtot(yi,y−i). We prove this by showingrtot(yi,y−i) =

∑N

j=1 r̃j(y1, · · · ,yN) is concave.

Denoteyi = {ui, vi}, giveny−i are fixed,r̃i(yi) = r̃i(ui, vi) and r̃j(yi) = r̃j(ui, vi). Note

g(||xn−yi

hi
||2) is positive and uniform for Epanechnikov kernel. From Eq.6.24and Eq.6.25, we
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have

∂r̃i(ui, vi)

∂ui∂vi

= 0,
∂r̃i(ui, vi)

∂ui∂ui

=
∂r̃i(ui, vi)

∂vi∂vi

= −
∑

Ωi

wii(xn).

∂r̃j(ui, vi)

∂ui∂vi

= 0,
∂r̃j(ui, vi)

∂ui∂ui

=
∂r̃j(ui, vi)

∂vi∂vi

= −
∑

Ωi

wji(xn).

So in the Hessian matrix of
∑N

j=1 r̃j(ui, vi), the elements on the diagonal are−∑N

j=1

∑

Ωi
wji(xn)

and 0 for elements off the diagonal, it is negative definite which indicates it is concave overyi =

{ui, vi}.

Conditions for G being a submodular game

To show a game is supermodular (submodular) game we need to show the joint strategy space is

defined on a sublattice and all utility functions are supermodular (submodular) functions on the

joint strategy space. Any non-empty compact subset ofR
n is a sublattice ofRn [97]. So the first

requirement is satisfied in our gameG. For the second condition, we have this theorem [97]:

Theorem 4. Let X ⊂ R
n and f : X → R. The functionf is supermodular iff it satis-

fies increasing (decreasing) differences onX. If f is twice differentiable,f is supermodular iff

∂2f

∂xi∂xj
≥ 0, or submodular iff ∂2f

∂xi∂xj
≤ 0, ∀i, j.

Denoteyi = {ui, vi}. We need to examine∂r̃i(yi,y−i)
∂ui∂uj

, ∂r̃i(yi,y−i)
∂vi∂vj

, ∂r̃i(yi,y−i)
∂ui∂vj

, and ∂r̃i(yi,y−i)
∂vi∂uj

for

i 6= j. In addition, we need to check∂r̃i(yi,y−i)
∂uk∂ul

, ∂r̃i(yi,y−i)
∂vj∂vl

, ∂r̃i(yi,y−i)
∂uj∂vl

, and ∂r̃i(yi,y−i)
∂vj∂ul

for j, l 6= i.

Whether these conditions hold depends on the{Ωi, i = 1, · · · , N} and can be checked analytically.

We observe the constructed gameG is submodular when the occlusion regions are small and the

kernel centers are not occluded. Each term can be derived from Eq.6.24and Eq.6.25, thus these

conditions can be checked as a by-product in the best response updating given{Ωi, i = 1, · · · , N}.
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