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Bayes Rule

I p(x|ωi ) Likelihood

I p(ωi ) Prior

I p(ωi |x) Posterior

I Bayes Rule

p(ωi |x) =
p(x|ωi )p(ωi )

p(x)
=

p(x|ωi )p(ωi )∑
i p(x|ωi )p(ωi )

I In other words

posterior ∝ likelihood× prior
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Action and Risk

I Classes: {ω1, ω2, . . . , ωc}
I Actions: {α1, α2, . . . , αa}
I Loss: λ(αk |ωi )

I Conditional risk:

R(αk |x) =
c∑

i=1

λ(αk |ωi )p(ωi |x)

I Decision function, α(x), specifies a decision rule.

I Overall risk:

R =

∫
x

R(α(x)|x)p(x)dx

I It is the expected loss associated with a given decision rule.
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Bayesian Decision and Bayesian Risk

I Bayesian decision

α∗ = argmin
k

R(αk |x)

I This leads to the minimum overall risk. (why?)

I Bayesian risk: the minimum overall risk

R∗ =

∫
x

R(α∗|x)p(x)dx

I Bayesian risk is the best one can achieve.
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Example: Minimum-error-rate classification

Let’s have a specific example of Bayesian decision

I In classification problems, action αk corresponds to ωk

I Let’s define a zero-one loss function

λ(αk |ωi ) =

{
0 i = k
1 i 6= k

i , k = 1, . . . , c

This means: no loss for correct decisions & all errors are equal

I It easy to see: the conditional risk → error rate

R(αk |x) =
∑
i 6=k

P(ωi |x) = 1− P(ωk |x)

I Bayesian decision rule → minimum-error-rate classification

Decide ωk if P(ωk |x) > P(ωi |x) ∀i 6= k
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Classifier and Discriminant Functions

I Discriminant function: gi (x), i = 1, . . . ,C , assigns ωi to x

I Classifier
x → ωi if gi (x) > gj(x) ∀j 6= i

I Examples:

gi (x) = P(ωi |x)

gi (x) = P(x|ωi )P(ωi )

gi (x) = ln P(x|ωi ) + ln P(ωi )

Note: the choice of D-function is not unique, but they may
give equivalent classification result.

I Decision region: the partition of the feature space

x ∈ Ri if gi (x) > gj(x) ∀j 6= i

I Decision boundary:
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Multivariate Gaussian Distribution

p(x) = N(µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}

x
1

x
2 principal axis

 

p
1p

2

I The principal axes (the direction) are given by the
eigenvectors of the covariance matrix Σ

I The length of the axes (the uncertainty) is given by the
eigenvalues of Σ
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Mahalanobis Distance

Mahalanobis distance is a normalized distance

||x− µ||m =
√

(x− µ)TΣ−1(x− µ)

x
1

x
2 principal axis

 

p
1p

2

||p1 − µ||2 6= ||p2 − µ||2
||p1 − µ||m = ||p2 − µ||m
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Whitening

I To refresh your memory: A linear transformation of a
Gaussian is still a Gaussian.

p(x) = N(µ,Σ), and y = ATx

p(y) = N(ATµ, ATΣA)

I Question: Find one such that the covariance becomes an
identity matrix (i.e., each component has equal uncertainty)

y = A
w
x

x y

I Whitening is a transform that de-couples the correlation.

Aw = UTΛ−
1
2 , where Σ = UTΛU

I prove it: AT
wΣAw = I
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Discriminant Functions for Gaussian Densities

Minimum-error-rate classifier

gi (x) = ln p(x|ωi ) + ln p(ωi )

When using Gaussian densities, it is easy to see:

gi (x) = −1

2
(x− µi )TΣ−1

i (x− µi )−
d

2
ln 2π − 1

2
ln |Σi |+ ln p(ωi )
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Case I: Σi = σ2I

gi (x) = −||x− µi ||
2

2σ2
+ln p(ωi ) = − 1

2σ2
[xTx−2µTi x+µTi µi ]+ln p(ωi )

Notice that xTx is a constant. Equivalently we have

gi (x) = −[
1

σ2
µi ]

Tx + [− 1

2σ2
µTi µi + ln p(ωi )]

This leads to a linear discriminant function

gi (x) = WT
i x + Wi0

At the decision boundary gi (x) = gj(x), which is linear:

WT (x− x0) = 0,

where W = µi − µj and

x0 =
1

2
(µi + µj)−

σ2

||µi − µj ||2
ln

p(ωi )

p(ωj)
(µi − µj)
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To See it Clearly ...

Let’s view a specific case, where p(ωi ) = p(ωj). The decision
boundary we have:

(µi − µj)T (x−
µi + µj

2
) = 0

What does it mean?

The boundary is the
perpendicular bisector of the
two Gaussian densities!

what if p(ωi ) 6= p(ωj)?
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Case II: Σi = Σ

gi (x) = −1

2
(x− µi )TΣ−1(x− µi ) + ln p(ωi )

Similarly, we can have an equivalent one:

gi (x) = (Σ−1µi )
Tx + (−1

2
µTi Σ−1µi + ln(ωi ))

The discriminant function and decision boundary are still linear:

WT (x− x0) = 0

where W = Σ−1(µi − µj) and

x0 =
1

2
(µi + µj)−

ln p(ωi )− ln p(ωj)

(µi − µj)TΣ−1(µi − µj)
(µi − µj)

Note: Compared with Case I, the Euclidean distance is replaced by

Mahalanobis distance. The boundary is still linear, but the hyperplane is

no longer orthogonal to µi − µj .
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Case III: Σi = arbitrary

gi (x) = xTAix + Wix + Wi0,

where

Ai = −1

2
Σ−1
i

Wi = Σ−1
i µi

Wi0 = −1

2
µTi Σ−1

i µi −
1

2
ln |Σi |+ ln p(ωi )

Note: The decision boundary is no longer linear! It is
byperquadrics.
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Learning

I Learning means “training”

I i.e., estimating some unknowns from training samples
I Why?

I It is very difficult to specify these unknowns
I Hopefully, these unknowns can be recovered from examples

given
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Maximum Likelihood (ML) Estimation

I Collected samples D = {x1, x2, . . . , xn}
I Estimate unknown parameters Θ in the sense that the data

likelihood is maximized

I Data likelihood

p(D|Θ) =
n∏

k=1

p(xk |Θ)

I Log likelihood

L(Θ) = ln p(D|Θ) =
n∑

k=1

p(xk |Θ)

I ML estimation

Θ∗ = argmax
Θ

p(D|Θ) = argmax
Θ

L(D|Θ)

19 / 30



Example I: Gaussian densities (unknown µ)

ln p(xk |µ) = −1

2
ln((2π)d |Σ|)− 1

2
(xk − µ)TΣ−1(xk − µ)

Its partial derivative is:

∂ ln p(xk |µ)

∂µ
= Σ−1(xk − µ)

So the KKT condition writes:

n∑
k=1

Σ−1(xk − µ̂) = 0

It is easy to see the ML estimate of µ is:

µ̂ =
1

n

n∑
k=1

xk

This is exactly what we do in practice.
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Example II: Gaussian densities (unknown µ and Σ)

Let’s do the univariate case first. Denote σ2 by ∆.

ln p(xk |µ,∆) = −1

2
ln 2π∆− 1

2∆
(xk − µ)2

The partial derivatives and KKT conditions are:{
∂ ln p(xk |µ,∆)

∂µ = 1
∆ (xk − µ)

∂ ln p(xk |µ,∆)
∂∆ = − 1

2∆ + (xk−µ)2

2∆2

=⇒
{ ∑n

k=1
1
∆̂

(xk − µ̂) = 0∑n
k=1{

1
∆̂

+ (xk−µ̂)2

∆̂2
} = 0

So we have
µ̂ = 1

n

n∑
k=1

xk

σ̂2 = 1
n

n∑
k=1

(xk − µ̂)2

generalize
=⇒


µ̂ = 1

n

n∑
k=1

xk

Σ̂ = 1
n

n∑
k=1

(xk − µ̂)(xk − µ̂)T
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Bayesian Estimation

I Collect samples D = {x1, x2, . . . , xn}, drawn independently
from a fixed but unknown distribution p(x)

I Bayesian estimation uses D to determine p(x |D), i.e., to learn
a p.d.f.

I The unknown Θ is a random variable (or random vector), i.e.,
Θ is drawn from p(Θ).

I p(Θ) is unknown, but has a parametric form with parameters
Θ ∼ p(Θ)

I We hope p(Θ) is sharply peaked at the true value.
I Differences from ML

I in Bayesian estimation, Θ is not a value, but a random vector
I and we need to recover the distribution of Θ, rather than a

single value.
I p(x |D) also needs to be estimated
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Two Problems in Bayesian Learning

It is clear based on the total probability rule that

p(x |D) =

∫
p(x ,Θ|D)dΘ =

∫
p(x |Θ)p(Θ|D)dΘ

I p(x |D) is a weighted average over all Θ

I if p(Θ|D) peaks very sharply about some value Θ̂, then
p(x |D) can be approximated by p(x |Θ̂)

X

D

I The generation of the observation D can be
illustrated in a graphical model.

I The two problems are
I estimating p(Θ|D)
I estimating p(x |D)
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Example: The Univariate Gaussian Case p(µ|D)

I Assume µ is the only unknown and it has a known Gaussian
prior: p(µ) = N(µ0, σ

2
0).

I i.e., µ0 is the best guess of µ, and σ0 is its uncertainty

I Assume a Gaussian likelihood, p(x |µ) = N(µ, σ2)

I It is clear that

p(µ|D) ∼ p(D|µ)p(µ) =
n∏

k=1

p(xk |µ)p(µ)

where p(xk |µ) = N(µ, σ2) and p(µ) = N(µ0, σ
2
0)

I Let’s prove that p(µ|D) is still a Gaussian density (why?)

hint : p(µ|D) ∼ exp{−1

2
(

n

σ2
+

1

σ2
0

)µ2−2(
1

σ2

n∑
k=1

xk +
µ0

σ2
)µ}
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What is Going on?
As D is collection of n samples, let’s denote p(µ|D) = N(µn, σ

2
n).

Denote µ̄n = 1
n

∑n
k=1 xk .

I µn represents our best guess for µ after observing n samples

I σ2
n measures the uncertainty of this guess

I So, what is really going on here?

We can obtain the following: (prove it!) µn =
nσ2

0

nσ2
0+σ2 µ̄n + σ2

nσ2
0+σ2µ0

σ2
n =

σ2
0σ

2

nσ2
0+σ2

Data

fidelity
Prior

I µ̄n is the data fidelity

I µ0 is the prior

I µn is a tradeoff (weighed average)
between them
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Example: The Univariate Gaussian case p(x |D)

After obtaining the posterior p(µ|D), we can estimate p(x |D)

p(x |D) =

∫
p(x |µ)p(µ|D)dµ

It is the convolution of two Gaussian distributions. You can easily
prove: do it!

p(x |D) = N(µn, σ
2 + σ2

n)
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What is really going on?

I Let’s study σn
I σ2

n ↓ monotonically
I each additional observation decreases the uncertainty of the

estimate
I σ2

n → σ2

n → 0

I Let’s study p(x |D)
I p(x |D) = N(µn, σ

2 + σ2
n)

I p(µ|D) becomes more and more sharply peaked

let’s discuss

I if σ0 = 0, then what?

I if σ0 � σ, then what?

28 / 30



Example: The Multivariate case

We can generalize the univariate case to multivariate Gaussian,
p(x |µ) = N(µ,Σ), p(µ) = N(µ0,Σ0).

µn = Σ0(Σ0 +
1

n
Σ)−1µ̄n +

1

n
Σ(Σ0 +

1

n
Σ)−1µ0

Σn =
1

n
Σ0(Σ0 +

1

n
Σ)−1Σ

Actually, this is the best linear unbiased estimate (BLUE).

In addition,
p(x |D) = N(µn, Σ + Σn)
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Recursive Learning

I Bayesian estimation can be done recursively, i.e., updating the
previous estimates with new data.

I Denote Dn = {x1, x2, . . . , xn}
I Easy to see

p(Dn|Θ) = p(xn|Θ)p(Dn−1|Θ), and p(Θ|D0) = p(Θ)

I The recursion is:

p(Θ|Dn) =
p(xn|Θ)p(Θ|Dn−1)∫

p(xn|Θ)p(Θ|Dn−1)dΘ

I So we start from p(Θ), then move on to p(Θ|x1), p(Θ|x1, x2),
and so on
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