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Bayes Rule
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p(x|wj) Likelihood

p(w;) Prior
p(wi|x) Posterior
Bayes Rule
p(wilx) = p(Xlwi)p(wi) _  p(x|wi)p(wi)
p(x) 22 P(x|wi)p(wi)
In other words

posterior o< likelihood X prior

N
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Outline

Bayesian Decision Theory
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Action

and Risk

Classes: {wi,w2,...,wc}
Actions: {aq,ap,..., a5}
Loss: A(ak|wi)

Conditional risk:

C

R(axlx) = > Maklwi)p(wilx)

i=1

Decision function, «(x), specifies a decision rule.

Overall risk:

R:/XR(a(x)|x)p(x)dx

It is the expected loss associated with a given decision rule.
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Bayesian Decision and Bayesian Risk

v

Bayesian decision

o™ = argmin R(a|x)
k

v

This leads to the minimum overall risk. (why?)

v

Bayesian risk: the minimum overall risk

R* :/R(a*|x)p(x)dx

Bayesian risk is the best one can achieve.

v
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Example: Minimum-error-rate classification

Let's have a specific example of Bayesian decision

» In classification problems, action «y corresponds to wy
> Let’s define a zero-one loss function
0 i=k .
Mag|lwi) = . ihk=1,...,c
( k| l) 1 ] 75 k 5 ) )
This means: no loss for correct decisions & all errors are equal
> It easy to see: the conditional risk — error rate
R(ak|x) = E P(wi|x) =1 — P(wk|x)
i#k
» Bayesian decision rule — minimum-error-rate classification

| Decide wj if P(wylx) > P(wilx) Vi# k|

6
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Outline

Bayesian Classification
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Classifier and Discriminant Functions

» Discriminant function: gj(x),i =1,...,C, assigns w; to x
> Classifier
x — wj if gi(x) > gj(x) Vj#i

» Examples:

gi(x) = P(wilx)
gi(x) = P(xwj)P(wi)
gi(x) = InP(x|w;)+ InP(w)

Note: the choice of D-function is not unique, but they may
give equivalent classification result.

» Decision region: the partition of the feature space
x € R;if gi(x) > gi(x) Vj#i

» Decision boundary:
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Multivariate Gaussian Distribution

pl) = (1. ) = oy e {5 ) 2 =)

principal axis

» The principal axes (the direction) are given by the
eigenvectors of the covariance matrix X

» The length of the axes (the uncertainty) is given by the
eigenvalues of
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Mahalanobis Distance

Mahalanobis distance is a normalized distance

[x = tllm = /(x = ) TEHx — )

principal axis
Ip1—nllz # lp2 — pll2
lP1—wllm = |lp2 — pil[m

10/30



Whitening

» To refresh your memory: A linear transformation of a
Gaussian is still a Gaussian.

p(x) = N(u,X), andy=ATx
ply) = N(ATu, ATTA)

» Question: Find one such that the covariance becomes an
identity matrix (i.e., each component has equal uncertainty)

|0

» Whitening is a transform that de-couples the correlation.

A, =UTA"2, where ¥ = UTAU

» prove it: AlYA,, =1
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Discriminant Functions for Gaussian Densities

Minimume-error-rate classifier

gi(x) = In p(x|w;) + In p(w;)
When using Gaussian densities, it is easy to see:

1 d 1
gi(x) = —5(x~ i) T (= i) — 5 In2m — S In || + In p(wi)
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Case I: ¥, = &2l

= il P
2072

Notice that x"x is a constant. Equivalently we have

1
gi(x) = +In p(wj) = —Q[XTX—QM,'TXJFMTM]HH p(wi)

1(x) = | gl Tx + [y i+ T p()]
This leads to a linear discriminant function
gi(x) = W x + Wi
At the decision boundary gi(x) = gj(x), which is linear:
W7 (x — x0) =0,
where W = p; — puj and

o | Pwi)

- n (i — 1)
i = il pwy) ™

1
Xg = E(Mi + 1)
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To See it Clearly ...

Let's view a specific case, where p(w;) = p(wj). The decision
boundary we have:

Mi + 1
(ni = )T (x = TJ) =0

What does it mean?

N\
\ .
\ The boundary is the
N\ perpendicular bisector of the
\ two Gaussian densities!
N\
N\

what if p(w;) # p(wj)?
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Casell: X, =X

gi(x) = —%(x — ) TETHx = i) + In p(wy)

Similarly, we can have an equivalent one:
_ 1 _
gi(x) = (X ) Tx + (—EH,TZ Yui + In(w;))
The discriminant function and decision boundary are still linear:
W' (x —x) =0

where W =¥ '(u; —pj) and

1 In p(wi) — Inp(w;)
xo = (ki + ) = =
27 T (i = ) TR (i —
Note: Compared with Case |, the Euclidean distance is replaced by
Mahalanobis distance. The boundary is still linear, but the hyperplane is

)(,U'I - MJ)

no longer orthogonal to p; — ;.
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Case lll: X; = arbitrary

g,-(x) = XTA,‘X + W,‘X + W,'o,

where
A = _12.—1
2 1
W, = ¥ty
1 71 1
Wip = T oHi X Ni—§|“|zi‘+|np(wi)

Note: The decision boundary is no longer linear! It is
byperquadrics.

16
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Outline

Maximum Likelihood Estimation and Learning
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Learning

» Learning means “training”

> i.e., estimating some unknowns from training samples
» Why?
» It is very difficult to specify these unknowns

» Hopefully, these unknowns can be recovered from examples
given
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Maximum Likelihood (ML) Estimation

» Collected samples D = {x1,x2,...,Xn}

» Estimate unknown parameters © in the sense that the data
likelihood is maximized

Data likelihood

v

p(D|©) = Hp(xue

v

Log likelihood

L(©) =Inp(D|O) = ) p(x|©)
k=1

ML estimation

v

©* = argmax p(D|©) = argmax L(D|©)
(C] (C]
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Example |: Gaussian densities (unknown 1)

1 1 _
In pOxi|) = =5 In((2m)?|Z[) - 50— ) E o — )
Its partial derivative is:

91In p(xk|p)
op

So the KKT condition writes:

=T x — p)

ﬁ:%zxk

k=1

This is exactly what we do in practice.
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Example Il: Gaussian densities (unknown £ and X)

Let's do the univariate case first. Denote o2 by A.

1 2
In p(xi|p, A) = —5 |n 2mA — O — 1)

The partial derivatives and KKT conditions are:

O In p(xk |, n 1 _A
(g, (Ei
np(anlu, ):_E"‘ (ng;) Zk 1{ + 1=0

So we have

n
p=7 E Xk p= E Xk
generalize
—
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Outline

Bayesian Estimation and Learning
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Bayesian Estimation

» Collect samples D = {x1, x2, ..., Xp}, drawn independently
from a fixed but unknown distribution p(x)

» Bayesian estimation uses D to determine p(x|D), i.e., to learn
a p.d.f.

» The unknown © is a random variable (or random vector), i.e.,
© is drawn from p(©).

» p(©) is unknown, but has a parametric form with parameters
© ~ p(©)

» We hope p(©) is sharply peaked at the true value.

» Differences from ML

» in Bayesian estimation, © is not a value, but a random vector

» and we need to recover the distribution of ©, rather than a
single value.

» p(x|D) also needs to be estimated

23 /30



Two Problems in Bayesian Learning

It is clear based on the total probability rule that

p(x|D) = / p(x,0|D)dO = / p(x/©)p(€[D)de

» p(x|D) is a weighted average over all ©

> if p(©|D) peaks very sharply about some value ©, then
p(x|D) can be approximated by p(x|©)

@ » The generation of the observation D can be
illustrated in a graphical model.
e » The two problems are
» estimating p(©|D)
» estimating p(x|D)
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Example: The Univariate Gaussian Case p(u|D)

» Assume p is the only unknown and it has a known Gaussian
prior: p(it) = N(po. 03).
> i.e., o is the best guess of i, and og is its uncertainty

v

Assume a Gaussian likelihood, p(x|u) = N(p,0?)
It is clear that

v

p(p|D) ~ p(D|p)p(p) = H p(xk|)p

where  p(xc|p) = N(p,0%) and  p(p) = N(po, o)
» Let's prove that p(u|D) is still a Gaussian density (why?)

1,n 1 1 & Lo
hint : D) ~ — (25>t
int: p(p|D) ~exp{—5(—5 G%)M (— HXk 2 ut

25 /30



What is Going on?
As D is collection of n samples, let's denote p(u|D) = N(un, 72).
Denote /i, = £ Y7 x.
> 1, represents our best guess for u after observing n samples
» 02 measures the uncertainty of this guess
» So, what is really going on here?
We can obtain the following: (prove it!)
Hn = nagj_gaz Fen + nagaj_omuo

2 o30?
N noi+o2

g

> [in is the data fidelity
Data . . ]
fidelity Prior > o is the prior

> L is a tradeoff (weighed average)
A between them
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Example: The Univariate Gaussian case p(x|D)

After obtaining the posterior p(u|D), we can estimate p(x|D)

p(xID) = [ p(xlu)p(u D)l

It is the convolution of two Gaussian distributions. You can easily
prove: do it!
p(x|D) = N(pun, 0+ 07)
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What is really going on?

> Let's study o,

» 02 | monotonically
» each additional observation decreases the uncertainty of the

estimate ,
>0t > & 50
» Let's study p(x|D)
> p(x|D) = N(n, 0* + o7)
» p(p|D) becomes more and more sharply peaked

Py, %) n=30 let's discuss
> if g = 0, then what?
» if oo > o, then what?
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Example: The Multivariate case

We can generalize the univariate case to multivariate Gaussian,

p(x|p) = N(u, X), p(p) = N(po, Zo).
pn = To(So+ X) i+ E(To 4 3)
>, = fZO(Zoﬂ- *Z)_ h
n n
Actually, this is the best linear unbiased estimate (BLUE).

In addition,
p(x|D) = N(pn, T+ Xn)
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Recursive Learning

> Bayesian estimation can be done recursively, i.e., updating the
previous estimates with new data.

» Denote D" = {x1,x2,...,Xn}

» Easy to see
p(D"©) = p(xn|©@)p(D"1©), and p(OID°) = p(O)

» The recursion is:

m_ P(xa|©)p(0D" 1)
POID") = T ll@)p(€]D™ 1)d®

» So we start from p(©), then move on to p(©|x1), p(O|x1, x2),
and so on
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