EECS 433 Statistical Pattern Recognition

Ying Wu

Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

http://www.eecs.northwestern.edu/~yingwu

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

What are Patterns?

- Random vectors
 - $x \in \mathbb{R}^n$
 - they are static
- Random processes
 - 1-D signals s(t), e.g., time series
 - 2-D signals I(u, v), e.g., images
 - 3-D signals V(u, v, t), e.g., video
 - they are dynamic
- What is a pattern?
 - a prototype with variations
 - its polymorphism is reflected by its variations
 - the variation has a probabilistic distribution
 - for random vector data, it simply is its distribution
 - for random process data, it is very difficult! E.g.,
 - speech, music, ECG
 - image, microarray
 - video

How Do We Represent Patterns?

- Using templates and rules is far from enough
 - as a pattern is likely to exhibit large variations
- thus, a critical issue is to model its variations
 - i.e., learning from the data
 - this is clear for patterns of random vector data
 - and this is the center problem in classical statistical pattern recognition
 - parametric or non-parametric
 - Bayesian or non-Bayesian
- but this is still not quite clear for random process data
 - representing these data is quite challenging
 - features and descriptive models
 - generative models
 - pattern theory

Three Basic Problems in Statistical Pattern Recognition

Let's denote the data by $\boldsymbol{x}.$ There are three basic problems in statistical pattern recognition:

- Classification
 - $f: \mathbf{x} \to C$, where C is a discrete set
- Regression
 - $f: \mathbf{x}
 ightarrow y$, where $y \in \mathbb{R}$ a continuous space
- Density estimation model p(x) that is the probabilistic density of x

Feature

▶ FEATURES can be regarded as the descriptors of the pattern

- they are represented as vectors
- in this sense, a pattern can be represented by a high dimensional random vector
- curse of dimensionality
- features are extracted from raw data
 - weak features and strong features
 - domain knowledge
- features can also be learned
 - linear combination
 - optimal projection, e.g., PCA, LDA
 - sequential selection, e.g., boosting
 - nonlinear embedding
 - dimension reduction, e.g., ISOMAP, LLE, MDS
 - manifold learning, e.g., nonlinear PCA

Components in Pattern Recognition Systems

- Feature extraction
- Feature selection
- Recognizer
- Training

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

Applications

- Speech recognition
- Optical character recognition
- Image-based object recognition
- Image-based biometrics
 - Face recognition/identification
 - Gender/age recognition
 - Gait recognition
 - Fingerprint recognition
 - Iris recognition
- Expression and emotion recognition
- Gesture and action recognition
- Video-based activity recognition
- Video-based event recognition and abnormality detection

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

Supervised and Unsupervised Schemes

To train a classifier from data, there are two typical training schemes:

- Supervised learning
 - the training data has supervision, i.e., input-output pair
 - given a set of $\{\mathbf{x}_k, c_k\}_{k=1}^N$, to train the mapping $f : \mathbf{x} \to C$
 - the labeling acts as the teacher
 - e.g., LDA, SVM
- Unsupervised learning
 - no teacher, only a set of data $\{\mathbf{x}_k\}_{k=1}^N$
 - needs to find the clustering or grouping of the data
 - e.g., most clustering methods
 - it is difficult to determine the number of clusters for training
 - minimum description length (MDL) principle

Other Schemes

Besides supervised and unsupervised learning schemes, there are some others:

- Semi-supervised learning
 - ▶ a mixture of labeled and unlabeled data, $\{\mathbf{x}_k\}_{k=1}^{N_1} \bigcup \{\mathbf{x}_k, c_k\}_{k=1}^{N_2}$
 - only critical and informative data need to be labeled
 - what are those?
 - e.g., active learning
- Reinforcement learning
 - it has a teacher. More precisely, it is a critic
 - but the critic only tells right or wrong, but not how
 - such binary feedbacks are used to improve learning

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

Bayesian and Non-Bayesian Approaches

- Bayesian approach
 - models likelihood $p(\mathbf{x}|C)$ and prior p(C) distributions
 - computes *posterior* $p(C|\mathbf{x})$
 - based on Bayesian decision theory and Bayes risk

$$R(\alpha_k | \mathbf{x}) = \sum_{j=1}^{C} \lambda(\alpha_k | c_j) p(c_j | \mathbf{x})$$

- leads to minimum-error-rate classification
- Bayesian learning (ML estimation and Bayesian estimation)
- Non-Bayesian approach
 - empirical risk and overfitting
 - \blacktriangleright minimizing empirical risk \rightarrow maximizing margin
 - \blacktriangleright minimizing training error \rightarrow maximizing the generalizability
 - a great success of support vector machines

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

Descriptive, Discriminative and Generative Models

- Descriptive models
 - features are derived from data
 - features are descriptive
 - it gives the likelihood of the observed data
 - ▶ e.g., PCA
- Discriminative models
 - features are derived from data
 - but they are *discriminative* to differentiate from other classes
 - it concentrates on the differences from others
 - e.g., LDA, SVM
- Generative models
 - explicitly models the formation or generation of the data
 - based on which the likelihood model is formed
 - no features derived from data directly
 - it can be used to synthesize data. Neither descriptive nor discriminative model can
 - e.g., Gaussian mixture models, HMM, MRF

What is Pattern Recognition?

Applications

Supervised and Unsupervised Schemes

Bayesian and Non-Bayesian Approaches

Descriptive, Discriminative and Generative Models

This Course

In this course, we'll cover the following topics:

- W-1: Bayesian decision and Bayesian classification, PCA/LDA
- W-2: ICA, Nearest neighbor classifiers
- W-3: Nonparametric density estimation, and linear discriminative models
- W-4: SVM and Kernel machines
- W-5: Feature selection and boosting
- W-6: EM, spectral clustering, sparsity models
- W-7: Metric learning, Deep neural networks, Dimension reduction and embedding
- W-8/9: Generative models
 - Bayesian networks (BN) and dynamic Bayesian nets (DBN)
 - Markov random field (MRF)
 - Conditional random field (CRF)

- Textbook
 - Pattern Classification, by R. Duda, P. Hart and D. Stork, 2nd Ed., Wiley-Interscience, 2001
 - Selected recent research papers
 - Lecture notes
- No midterm exam.
- Final projects
 - small group projects ($|group| \le 2$)
 - suggestion: find a smaller topic and write a good comprehensive survey
 - 30-min talk and 20-page report