
Data Mining and Knowledge Discovery, 2, 121–167 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Tutorial on Support Vector Machines for Pattern
Recognition

CHRISTOPHER J.C. BURGES burges@lucent.com
Bell Laboratories, Lucent Technologies

Editor: Usama Fayyad

Abstract. The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization.
We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through
a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique
and when they are global. We describe how support vector training can be practically implemented, and discuss
in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the
data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing
the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC
dimension would normally bode ill for generalization performance, and while at present there exists no theory
which shows that good generalization performance isguaranteedfor SVMs, there are several arguments which
support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired
by these arguments are also presented. We give numerous examples and proofs of most of the key theorems.
There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

Keywords: support vector machines, statistical learning theory, VC dimension, pattern recognition

1. Introduction

The purpose of this paper is to provide an introductory yet extensive tutorial on the basic
ideas behind Support Vector Machines (SVMs). The books (Vapnik, 1995; Vapnik, 1998)
contain excellent descriptions of SVMs, but they leave room for an account whose purpose
from the start is to teach. Although the subject can be said to have started in the late
seventies (Vapnik, 1979), it is only now receiving increasing attention, and so the time
appears suitable for an introductory review. The tutorial dwells entirely on the pattern
recognition problem. Many of the ideas there carry directly over to the cases of regression
estimation and linear operator inversion, but space constraints precluded the exploration of
these topics here.

The tutorial contains some new material. All of the proofs are my own versions, where
I have placed a strong emphasis on their being both clear and self-contained, to make the
material as accessible as possible. This was done at the expense of some elegance and
generality: however generality is usually easily added once the basic ideas are clear. The
longer proofs are collected in the Appendix.

By way of motivation, and to alert the reader to some of the literature, we summarize
some recent applications and extensions of support vector machines. For the pattern recog-
nition case, SVMs have been used for isolated handwritten digit recognition (Cortes and
Vapnik, 1995; Sch¨olkopf, Burges and Vapnik, 1995; Sch¨olkopf, Burges and Vapnik, 1996;
Burges and Sch¨olkopf, 1997), object recognition (Blanz et al., 1996), speaker identification
(Schmidt, 1996), charmed quark detection1, face detection in images (Osuna, Freund and

122 BURGES

Girosi, 1997a), and text categorization (Joachims, 1997). For the regression estimation
case, SVMs have been compared on benchmark time series prediction tests (M¨uller et al.,
1997; Mukherjee, Osuna and Girosi, 1997), the Boston housing problem (Drucker et al.,
1997), and (on artificial data) on the PET operator inversion problem (Vapnik, Golowich
and Smola, 1996). In most of these cases, SVM generalization performance (i.e. error
rates on test sets) either matches or is significantly better than that of competing methods.
The use of SVMs for density estimation (Weston et al., 1997) and ANOVA decomposition
(Stitson et al., 1997) has also been studied. Regarding extensions, the basic SVMs contain
no prior knowledge of the problem (for example, a large class of SVMs for the image
recognition problem would give the same results if the pixels were first permuted randomly
(with each image suffering the same permutation), an act of vandalism that would leave the
best performing neural networks severely handicapped) and much work has been done on
incorporating prior knowledge into SVMs (Sch¨olkopf, Burges and Vapnik, 1996; Sch¨olkopf
et al., 1998a; Burges, 1998). Although SVMs have good generalization performance, they
can be abysmally slow in test phase, a problem addressed in (Burges, 1996; Osuna and
Girosi, 1998). Recent work has generalized the basic ideas (Smola, Sch¨olkopf and Müller,
1998a; Smola and Sch¨olkopf, 1998), shown connections to regularization theory (Smola,
Schölkopf and Müller, 1998b; Girosi, 1998; Wahba, 1998), and shown how SVM ideas can
be incorporated in a wide range of other algorithms (Sch¨olkopf, Smola and M¨uller, 1998b;
Schölkopf et al, 1998c). The reader may also find the thesis of (Sch¨olkopf, 1997) helpful.

The problem which drove the initial development of SVMs occurs in several guises -
the bias variance tradeoff (Geman and Bienenstock, 1992), capacity control (Guyon et al.,
1992), overfitting (Montgomery and Peck, 1992) - but the basic idea is the same. Roughly
speaking, for a given learning task, with a given finite amount of training data, the best
generalization performance will be achieved if the right balance is struck between the
accuracy attained on that particular training set, and the “capacity” of the machine, that is,
the ability of the machine to learn any training set without error. A machine with too much
capacity is like a botanist with a photographic memory who, when presented with a new
tree, concludes that it is not a tree because it has a different number of leaves from anything
she has seen before; a machine with too little capacity is like the botanist’s lazy brother,
who declares that if it’s green, it’s a tree. Neither can generalize well. The exploration and
formalization of these concepts has resulted in one of the shining peaks of the theory of
statistical learning (Vapnik, 1979).

In the following, bold typeface will indicate vector or matrix quantities; normal typeface
will be used for vector and matrix components and for scalars. We will label components
of vectors and matrices with Greek indices, and label vectors and matrices themselves with
Roman indices. Familiarity with the use of Lagrange multipliers to solve problems with
equality or inequality constraints is assumed2.

2. A Bound on the Generalization Performance of a Pattern Recognition Learning
Machine

There is a remarkable family of bounds governing the relation between the capacity of a
learning machine and its performance3. The theory grew out of considerations of under what
circumstances, and how quickly, the mean of some empirical quantity converges uniformly,

SUPPORT VECTOR MACHINES 123

as the number of data points increases, to the true mean (that which would be calculated
from an infinite amount of data) (Vapnik, 1979). Let us start with one of these bounds.

The notation here will largely follow that of (Vapnik, 1995). Suppose we are givenl
observations. Each observation consists of a pair: a vectorxi ∈ Rn, i = 1, . . . , l and the
associated “truth”yi, given to us by a trusted source. In the tree recognition problem,xi

might be a vector of pixel values (e.g.n = 256 for a 16x16 image), andyi would be 1 if the
image contains a tree, and -1 otherwise (we use -1 here rather than 0 to simplify subsequent
formulae). Now it is assumed that there exists some unknown probability distribution
P (x, y) from which these data are drawn, i.e., the data are assumed “iid” (independently
drawn and identically distributed). (We will useP for cumulative probability distributions,
andp for their densities). Note that this assumption is more general than associating a fixed
y with everyx: it allows there to be a distribution ofy for a givenx. In that case, the trusted
source would assign labelsyi according to a fixed distribution, conditional onxi. However,
after this Section, we will be assuming fixedy for givenx.

Now suppose we have a machine whose task it is to learn the mappingxi 7→ yi. The
machine is actually defined by a set of possible mappingsx 7→ f(x, α), where the functions
f(x, α) themselves are labeled by the adjustable parametersα. The machine is assumed to
be deterministic: for a given inputx, and choice ofα, it will always give the same output
f(x, α). A particular choice ofα generates what we will call a “trained machine.” Thus,
for example, a neural network with fixed architecture, withα corresponding to the weights
and biases, is a learning machine in this sense.

The expectation of the test error for a trained machine is therefore:

R(α) =
∫

1
2
|y − f(x, α)|dP (x, y) (1)

Note that, when a densityp(x, y) exists,dP (x, y) may be writtenp(x, y)dxdy. This is a
nice way of writing the true mean error, but unless we have an estimate of whatP (x, y) is,
it is not very useful.

The quantityR(α) is called the expected risk, or just the risk. Here we will call it the
actual risk, to emphasize that it is the quantity that we are ultimately interested in. The
“empirical risk” Remp(α) is defined to be just the measured mean error rate on the training
set (for a fixed, finite number of observations)4:

Remp(α) =
1
2l

l∑
i=1

|yi − f(xi, α)|. (2)

Note that no probability distribution appears here.Remp(α) is a fixed number for a
particular choice ofα and for a particular training set{xi, yi}.

The quantity1
2 |yi − f(xi, α)| is called the loss. For the case described here, it can only

take the values0 and1. Now choose someη such that0 ≤ η ≤ 1. Then for losses taking
these values, with probability1 − η, the following bound holds (Vapnik, 1995):

R(α) ≤ Remp(α) +

√(
h(log(2l/h) + 1) − log(η/4)

l

)
(3)

124 BURGES

whereh is a non-negative integer called the Vapnik Chervonenkis (VC) dimension, and is
a measure of the notion of capacity mentioned above. In the following we will call the right
hand side of Eq. (3) the “risk bound.” We depart here from some previous nomenclature:
the authors of (Guyon et al., 1992) call it the “guaranteed risk”, but this is something of a
misnomer, since it is really a bound on a risk, not a risk, and it holds only with a certain
probability, and so is not guaranteed. The second term on the right hand side is called the
“VC confidence.”

We note three key points about this bound. First, remarkably, it is independent ofP (x, y).
It assumes only that both the training data and the test data are drawn independently ac-
cording tosomeP (x, y). Second, it is usually not possible to compute the left hand side.
Third, if we knowh, we can easily compute the right hand side. Thus given several different
learning machines (recall that “learning machine” is just another name for a family of func-
tionsf(x, α)), and choosing a fixed, sufficiently smallη, by then taking that machine which
minimizes the right hand side, we are choosing that machine which gives the lowest upper
bound on the actual risk. This gives a principled method for choosing a learning machine
for a given task, and is the essential idea of structural risk minimization (see Section 2.6).
Given a fixed family of learning machines to choose from, to the extent that the bound is
tight for at least one of the machines, one will not be able to do better than this. To the
extent that the bound is not tight for any, the hope is that the right hand side still gives useful
information as to which learning machine minimizes the actual risk. The bound not being
tight for the whole chosen family of learning machines gives critics a justifiable target at
which to fire their complaints. At present, for this case, we must rely on experiment to be
the judge.

2.1. The VC Dimension

The VC dimension is a property of a set of functions{f(α)} (again, we useα as a generic
set of parameters: a choice ofα specifies a particular function), and can be defined for
various classes of functionf . Here we will only consider functions that correspond to the
two-class pattern recognition case, so thatf(x, α) ∈ {−1, 1} ∀x, α. Now if a given set of
l points can be labeled in all possible2l ways, and for each labeling, a member of the set
{f(α)} can be found which correctly assigns those labels, we say that that set of points is
shatteredby that set of functions. The VC dimension for the set of functions{f(α)} is
defined as the maximum number of training points that can be shattered by{f(α)}. Note
that, if the VC dimension ish, then there exists at least one set ofh points that can be
shattered, but it in general it will not be true thateveryset ofh points can be shattered.

2.2. Shattering Points with Oriented Hyperplanes inRn

Suppose that the space in which the data live isR2, and the set{f(α)} consists of oriented
straight lines, so that for a given line, all points on one side are assigned the class1, and all
points on the other side, the class−1. The orientation is shown in Figure 1 by an arrow,
specifying on which side of the line points are to be assigned the label1. While it is possible
to find three points that can be shattered by this set of functions, it is not possible to find
four. Thus the VC dimension of the set of oriented lines inR2 is three.

SUPPORT VECTOR MACHINES 125

Figure 1. Three points inR2, shattered by oriented lines.

Let’s now consider hyperplanes inRn. The following theorem will prove useful (the
proof is in the Appendix):

Theorem 1 Consider some set ofm points inRn. Choose any one of the points as origin.
Then them points can be shattered by oriented hyperplanes5 if and only if the position
vectors of the remaining points are linearly independent6.

Corollary : The VC dimension of the set of oriented hyperplanes inRn isn+1, since we
can always choosen + 1 points, and then choose one of the points as origin, such that the
position vectors of the remainingn points are linearly independent, but can never choose
n + 2 such points (since non + 1 vectors inRn can be linearly independent).

An alternative proof of the corollary can be found in (Anthony and Biggs, 1995), and
references therein.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
infinite VC dimension (a family of classifiers is said to have infinite VC dimension if it can
shatterl points, no matter how largel). Define the step functionθ(x), x ∈ R : {θ(x) =
1 ∀x > 0; θ(x) = −1 ∀x ≤ 0}. Consider the one-parameter family of functions, defined
by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R. (4)

You choose some numberl, and present me with the task of findingl points that can be
shattered. I choose them to be:

126 BURGES

1 2 3 4x=0

Figure 2. Four points that cannot be shattered byθ(sin(αx)), despite infinite VC dimension.

xi = 10−i, i = 1, · · · , l. (5)

You specify any labels you like:

y1, y2, · · · , yl, yi ∈ {−1, 1}. (6)

Thenf(α) gives this labeling if I chooseα to be

α = π(1 +
l∑

i=1

(1 − yi)10i

2
). (7)

Thus the VC dimension of this machine is infinite.
Interestingly, even though we can shatter an arbitrarily large number of points, we can

also find just four points that cannot be shattered. They simply have to be equally spaced,
and assigned labels as shown in Figure 2. This can be seen as follows: Write the phase at
x1 asφ1 = 2nπ + δ. Then the choice of labely1 = 1 requires0 < δ < π. The phase atx2,
mod2π, is2δ; theny2 = 1 ⇒ 0 < δ < π/2. Similarly, pointx3 forcesδ > π/3. Then at
x4, π/3 < δ < π/2 implies thatf(x4, α) = −1, contrary to the assigned label. These four
points are the analogy, for the set of functions in Eq. (4), of the set of three points lying
along a line, for oriented hyperplanes inRn. Neither set can be shattered by the chosen
family of functions.

2.4. Minimizing The Bound by Minimizingh

Figure 3 shows how the second term on the right hand side of Eq. (3) varies withh, given a
choice of 95% confidence level (η = 0.05) and assuming a training sample of size 10,000.
The VC confidence is a monotonic increasing function ofh. This will be true for any value
of l.

Thus, given some selection of learning machines whose empirical risk is zero, one wants to
choose that learning machine whose associated set of functions has minimal VC dimension.
This will lead to a better upper bound on the actual error. In general, for non zero empirical
risk, one wants to choose that learning machine which minimizes the right hand side of Eq.
(3).

Note that in adopting this strategy, we are only using Eq. (3) as a guide. Eq. (3) gives
(with some chosen probability) an upper bound on the actual risk. This does not prevent
a particular machine with the same value for empirical risk, and whose function set has
higher VC dimension, from having better performance. In fact an example of a system that
gives good performance despite having infinite VC dimension is given in the next Section.
Note also that the graph shows that forh/l > 0.37 (and forη = 0.05 andl = 10, 000), the
VC confidence exceeds unity, and so for higher values the bound is guaranteed not tight.

SUPPORT VECTOR MACHINES 127

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
C

 C
on

fid
en

ce

h / l = VC Dimension / Sample Size

Figure 3. VC confidence is monotonic inh

2.5. Two Examples

Consider thek’th nearest neighbour classifier, withk = 1. This set of functions has infinite
VC dimension and zero empirical risk, since any number of points, labeled arbitrarily, will
be successfully learned by the algorithm (provided no two points of opposite class lie right
on top of each other). Thus the bound provides no information. In fact, for any classifier
with infinite VC dimension, the bound is not even valid7. However, even though the bound
is not valid, nearest neighbour classifiers can still perform well. Thus this first example is
a cautionary tale: infinite “capacity” does not guarantee poor performance.

Let’s follow the time honoured tradition of understanding things by trying to break them,
and see if we can come up with a classifier for which the bound is supposed to hold, but
which violates the bound. We want the left hand side of Eq. (3) to be as large as possible,
and the right hand side to be as small as possible. So we want a family of classifiers which
gives the worst possible actual risk of0.5, zero empirical risk up to some number of training
observations, and whose VC dimension is easy to compute and is less thanl (so that the
bound is non trivial). An example is the following, which I call the “notebook classifier.”
This classifier consists of a notebook with enough room to write down the classes ofm
training observations, wherem ≤ l. For all subsequent patterns, the classifier simply says
that all patterns have the same class. Suppose also that the data have as many positive
(y = +1) as negative (y = −1) examples, and that the samples are chosen randomly. The
notebook classifier will have zero empirical risk for up tom observations;0.5 training error
for all subsequent observations;0.5 actual error, and VC dimensionh = m. Substituting
these values in Eq. (3), the bound becomes:

m

4l
≤ ln(2l/m) + 1 − (1/m) ln(η/4) (8)

which is certainly met for allη if

f(z) =
(z

2

)
exp(z/4−1) ≤ 1, z ≡ (m/l), 0 ≤ z ≤ 1 (9)

which is true, sincef(z) is monotonic increasing, andf(z = 1) = 0.236.

128 BURGES

h1h2h3h4 h1 < h2 < h3 ...

Figure 4. Nested subsets of functions, ordered by VC dimension.

2.6. Structural Risk Minimization

We can now summarize the principle of structural risk minimization (SRM) (Vapnik, 1979).
Note that the VC confidence term in Eq. (3) depends on the chosen class of functions,
whereas the empirical risk and actual risk depend on the one particular function chosen by
the training procedure. We would like to find that subset of the chosen set of functions, such
that the risk bound for that subset is minimized. Clearly we cannot arrange things so that
the VC dimensionh varies smoothly, since it is an integer. Instead, introduce a “structure”
by dividing the entire class of functions into nested subsets (Figure 4). For each subset,
we must be able either to computeh, or to get a bound onh itself. SRM then consists of
finding that subset of functions which minimizes the bound on the actual risk. This can be
done by simply training a series of machines, one for each subset, where for a given subset
the goal of training is simply to minimize the empirical risk. One then takes that trained
machine in the series whose sum of empirical risk and VC confidence is minimal.

We have now laid the groundwork necessary to begin our exploration of support vector
machines.

3. Linear Support Vector Machines

3.1. The Separable Case

We will start with the simplest case: linear machines trained on separable data (as we shall
see, the analysis for the general case - nonlinear machines trained on non-separable data
- results in a very similar quadratic programming problem). Again label the training data
{xi, yi}, i = 1, · · · , l, yi ∈ {−1, 1}, xi ∈ Rd. Suppose we have some hyperplane which
separates the positive from the negative examples (a “separating hyperplane”). The points
x which lie on the hyperplane satisfyw · x + b = 0, wherew is normal to the hyperplane,
|b|/‖w‖ is the perpendicular distance from the hyperplane to the origin, and‖w‖ is the
Euclidean norm ofw. Letd+ (d−) be the shortest distance from the separating hyperplane
to the closest positive (negative) example. Define the “margin” of a separating hyperplane
to bed++d−. For the linearly separable case, the support vector algorithm simply looks for
the separating hyperplane with largest margin. This can be formulated as follows: suppose
that all the training data satisfy the following constraints:

SUPPORT VECTOR MACHINES 129

-b
|w|

w

Origin

Margin

H1

H2

Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

xi · w + b ≥ +1 for yi = +1 (10)

xi · w + b ≤ −1 for yi = −1 (11)

These can be combined into one set of inequalities:

yi(xi · w + b) − 1 ≥ 0 ∀i (12)

Now consider the points for which the equality in Eq. (10) holds (requiring that there
exists such a point is equivalent to choosing a scale forw andb). These points lie on the
hyperplaneH1 : xi · w + b = 1 with normalw and perpendicular distance from the origin
|1 − b|/‖w‖. Similarly, the points for which the equality in Eq. (11) holds lie on the
hyperplaneH2 : xi · w + b = −1, with normal againw, and perpendicular distance from
the origin| − 1 − b|/‖w‖. Henced+ = d− = 1/‖w‖ and the margin is simply2/‖w‖.
Note thatH1 andH2 are parallel (they have the same normal) and that no training points
fall between them. Thus we can find the pair of hyperplanes which gives the maximum
margin by minimizing‖w‖2, subject to constraints (12).

Thus we expect the solution for a typical two dimensional case to have the form shown in
Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. those which
wind up lying on one of the hyperplanesH1, H2), and whose removal would change the
solution found, are called support vectors; they are indicated in Figure 5 by the extra circles.

We will now switch to a Lagrangian formulation of the problem. There are two reasons
for doing this. The first is that the constraints (12) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The second is that
in this reformulation of the problem, the training data will only appear (in the actual training
and test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case (Section 4).

Thus, we introduce positive Lagrange multipliersαi, i = 1, · · · , l, one for each of the
inequality constraints (12). Recall that the rule is that for constraints of the formci ≥ 0, the
constraint equations are multiplied bypositiveLagrange multipliers and subtracted from

130 BURGES

the objective function, to form the Lagrangian. For equality constraints, the Lagrange
multipliers are unconstrained. This gives Lagrangian:

LP ≡ 1
2
‖w‖2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi (13)

We must now minimizeLP with respect tow, b, and simultaneously require that the
derivatives ofLP with respect to all theαi vanish, all subject to the constraintsαi ≥ 0
(let’s call this particular set of constraintsC1). Now this is a convex quadratic programming
problem, since the objective function is itself convex, and those points which satisfy the
constraints also form a convex set (any linear constraint defines a convex set, and a set of
N simultaneous linear constraints defines the intersection ofN convex sets, which is also
a convex set). This means that we can equivalently solve the following “dual” problem:
maximizeLP , subject to the constraints that the gradient ofLP with respect tow andb
vanish, and subject also to the constraints that theαi ≥ 0 (let’s call that particular set of
constraintsC2). This particular dual formulation of the problem is called the Wolfe dual
(Fletcher, 1987). It has the property that the maximum ofLP , subject to constraintsC2,
occurs at the same values of thew, b andα, as the minimum ofLP , subject to constraints
C1

8.
Requiring that the gradient ofLP with respect tow andb vanish give the conditions:

w =
∑

i

αiyixi (14)

∑
i

αiyi = 0. (15)

Since these are equality constraints in the dual formulation, we can substitute them into
Eq. (13) to give

LD =
∑

i

αi − 1
2

∑
i,j

αiαjyiyjxi · xj (16)

Note that we have now given the Lagrangian different labels (P for primal,D for dual) to
emphasize that the two formulations are different:LP andLD arise from the same objective
function but with different constraints; and the solution is found by minimizingLP or by
maximizingLD. Note also that if we formulate the problem withb = 0, which amounts to
requiring that all hyperplanes contain the origin, the constraint (15) does not appear. This
is a mild restriction for high dimensional spaces, since it amounts to reducing the number
of degrees of freedom by one.

Support vector training (for the separable, linear case) therefore amounts to maximizing
LD with respect to theαi, subject to constraints (15) and positivity of theαi, with solution
given by (14). Notice that there is a Lagrange multiplierαi for every training point. In
the solution, those points for whichαi > 0 are called “support vectors”, and lie on one of
the hyperplanesH1, H2. All other training points haveαi = 0 and lie either onH1 or
H2 (such that the equality in Eq. (12) holds), or on that side ofH1 or H2 such that the

SUPPORT VECTOR MACHINES 131

strict inequality in Eq. (12) holds. For these machines, the support vectors are the critical
elements of the training set. They lie closest to the decision boundary; if all other training
points were removed (or moved around, but so as not to crossH1 or H2), and training was
repeated, the same separating hyperplane would be found.

3.2. The Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions play a central role in both the theory and
practice of constrained optimization. For the primal problem above, the KKT conditions
may be stated (Fletcher, 1987):

∂

∂wν
LP = wν −

∑
i

αiyixiν = 0 ν = 1, · · · , d (17)

∂

∂b
LP = −

∑
i

αiyi = 0 (18)

yi(xi · w + b) − 1 ≥ 0 i = 1, · · · , l (19)

αi ≥ 0 ∀i (20)

αi(yi(w · xi + b) − 1) = 0 ∀i (21)

The KKT conditions are satisfied at the solution of any constrained optimization problem
(convex or not), with any kind of constraints, provided that the intersection of the set of
feasible directions with the set of descent directions coincides with the intersection of the
set of feasible directionsfor linearized constraintswith the set of descent directions (see
Fletcher, 1987; McCormick, 1983)). This rather technical regularity assumption holds
for all support vector machines, since the constraints are always linear. Furthermore, the
problem for SVMs is convex (a convex objective function, with constraints which give a
convex feasible region), and for convex problems (if the regularity condition holds), the
KKT conditions arenecessary and sufficientfor w, b, α to be a solution (Fletcher, 1987).
Thus solving the SVM problem is equivalent to finding a solution to the KKT conditions.
This fact results in several approaches to finding the solution (for example, the primal-dual
path following method mentioned in Section 5).

As an immediate application, note that, whilew is explicitly determined by the training
procedure, the thresholdb is not, although it is implicitly determined. Howeverb is easily
found by using the KKT “complementarity” condition, Eq. (21), by choosing anyi for
which αi 6= 0 and computingb (note that it is numerically safer to take the mean value of
b resulting from all such equations).

Notice that all we’ve done so far is to cast the problem into an optimization problem
where the constraints are rather more manageable than those in Eqs. (10), (11). Finding
the solution for real world problems will usually require numerical methods. We will have
more to say on this later. However, let’s first work out a rare case where the problem is
nontrivial (the number of dimensions is arbitrary, and the solution certainly not obvious),
but where the solution can be found analytically.

132 BURGES

3.3. Optimal Hyperplanes: An Example

While the main aim of this Section is to explore a non-trivial pattern recognition problem
where the support vector solution can be found analytically, the results derived here will
also be useful in a later proof. For the problem considered, every training point will turn
out to be a support vector, which is one reason we can find the solution analytically.

Considern + 1 symmetrically placed points lying on a sphereSn−1 of radiusR: more
precisely, the points form the vertices of ann-dimensional symmetric simplex. It is conve-
nient to embed the points inRn+1 in such a way that they all lie in the hyperplane which
passes through the origin and which is perpendicular to the(n + 1)-vector(1, 1, ..., 1) (in
this formulation, the points lie onSn−1, they spanRn, and are embedded inRn+1). Explic-
itly, recalling that vectors themselves are labeled by Roman indices and their coordinates
by Greek, the coordinates are given by:

xiµ = −(1 − δi,µ)

√
R

n(n + 1)
+ δi,µ

√
Rn

n + 1
(22)

where the Kronecker delta,δi,µ, is defined byδi,µ = 1 if µ = i, 0 otherwise. Thus, for
example, the vectors for three equidistant points on the unit circle (see Figure 12) are:

x1 = (

√
2
3
,
−1√

6
,
−1√

6
)

x2 = (
−1√

6
,

√
2
3
,
−1√

6
)

x3 = (
−1√

6
,
−1√

6
,

√
2
3
) (23)

One consequence of the symmetry is that the angle between any pair of vectors is the
same (and is equal toarccos(−1/n)):

‖xi‖2 = R2 (24)

xi · xj = −R2/n (25)

or, more succinctly,

xi · xj

R2
= δi,j − (1 − δi,j)

1
n

. (26)

Assigning a class labelC ∈ {+1,−1} arbitrarily to each point, we wish to find that
hyperplane which separates the two classes with widest margin. Thus we must maximize
LD in Eq. (16), subject toαi ≥ 0 and also subject to the equality constraint, Eq. (15). Our
strategy is to simply solve the problem as though there were no inequality constraints. If
the resulting solution does in fact satisfyαi ≥ 0 ∀i, then we will have found the general
solution, since the actual maximum ofLD will then lie in the feasible region, provided the

SUPPORT VECTOR MACHINES 133

equality constraint, Eq. (15), is also met. In order to impose the equality constraint we
introduce an additional Lagrange multiplierλ. Thus we seek to maximize

LD ≡
n+1∑
i=1

αi − 1
2

n+1∑
i,j=1

αiHijαj − λ
n+1∑
i=1

αiyi, (27)

where we have introduced the Hessian

Hij ≡ yiyjxi · xj . (28)

Setting∂LD

∂αi
= 0 gives

(Hα)i + λyi = 1 ∀i (29)

Now H has a very simple structure: the off-diagonal elements are−yiyjR
2/n, and the

diagonal elements areR2. The fact that all the off-diagonal elements differ only by factors
of yi suggests looking for a solution which has the form:

αi =
(

1 + yi

2

)
a +

(
1 − yi

2

)
b (30)

wherea andb are unknowns. Plugging this form in Eq. (29) gives:(
n + 1

n

)(
a + b

2

)
− yip

n

(
a + b

2

)
=

1 − λyi

R2
(31)

wherep is defined by

p ≡
n+1∑
i=1

yi. (32)

Thus

a + b =
2n

R2(n + 1)
(33)

and substituting this into the equality constraint Eq. (15) to finda, b gives

a =
n

R2(n + 1)

(
1 − p

n + 1

)
, b =

n

R2(n + 1)

(
1 +

p

n + 1

)
(34)

which gives for the solution

αi =
n

R2(n + 1)

(
1 − yip

n + 1

)
(35)

Also,

(Hα)i = 1 − yip

n + 1
. (36)

134 BURGES

Hence

‖w‖2 =
n+1∑
i,j=1

αiαjyiyjxi · xj = αT Hα

=
n+1∑
i=1

αi

(
1 − yip

n + 1

)
=

n+1∑
i=1

αi =
(n

R2

)(
1 −

(
p

n + 1

)2
)

(37)

Note that this is one of those cases where the Lagrange multiplierλ can remain undeter-
mined (although determining it is trivial). We have now solved the problem, since all the
αi are clearly positive or zero (in fact theαi will only be zero if all training points have
the same class). Note that‖w‖ depends only on thenumberof positive (negative) polarity
points, and not on how the class labels are assigned to the points in Eq. (22). This is clearly
not true ofw itself, which is given by

w =
n

R2(n + 1)

n+1∑
i=1

(
yi − p

n + 1

)
xi (38)

The margin,M = 2/‖w‖, is thus given by

M =
2R√

n (1 − (p/(n + 1))2)
. (39)

Thus when the number of pointsn + 1 is even, the minimum margin occurs when
p = 0 (equal numbers of positive and negative examples), in which case the margin is
Mmin = 2R/

√
n. If n + 1 is odd, the minimum margin occurs whenp = ±1, in which

caseMmin = 2R(n + 1)/(n
√

n + 2). In both cases, the maximum margin is given by
Mmax = R(n + 1)/n. Thus, for example, for the two dimensional simplex consisting of
three points lying onS1 (and spanningR2), and with labeling such that not all three points
have the same polarity, the maximum and minimum margin are both3R/2 (see Figure
(12)).

Note that the results of this Section amount to an alternative, constructive proof that the
VC dimension of oriented separating hyperplanes inRn is at leastn + 1.

3.4. Test Phase

Once we have trained a Support Vector Machine, how can we use it? We simply determine
on which side of the decision boundary (that hyperplane lying half way betweenH1 and
H2 and parallel to them) a given test patternx lies and assign the corresponding class label,
i.e. we take the class ofx to besgn(w · x + b).

3.5. The Non-Separable Case

The above algorithm for separable data, when applied to non-separable data, will find no
feasible solution: this will be evidenced by the objective function (i.e. the dual Lagrangian)

SUPPORT VECTOR MACHINES 135

growing arbitrarily large. So how can we extend these ideas to handle non-separable data?
We would like to relax the constraints (10) and (11), but only when necessary, that is, we
would like to introduce a further cost (i.e. an increase in the primal objective function) for
doing so. This can be done by introducing positive slack variablesξi, i = 1, · · · , l in the
constraints (Cortes and Vapnik, 1995), which then become:

xi · w + b ≥ +1 − ξi for yi = +1 (40)

xi · w + b ≤ −1 + ξi for yi = −1 (41)

ξi ≥ 0 ∀i. (42)

Thus, for an error to occur, the correspondingξi must exceed unity, so
∑

i ξi is an upper
bound on the number of training errors. Hence a natural way to assign an extra cost for errors
is to change the objective function to be minimized from‖w‖2/2 to ‖w‖2/2+C (

∑
i ξi)

k,
whereC is a parameter to be chosen by the user, a largerC corresponding to assigning
a higher penalty to errors. As it stands, this is a convex programming problem for any
positive integerk; for k = 2 andk = 1 it is also a quadratic programming problem, and the
choicek = 1 has the further advantage that neither theξi, nor their Lagrange multipliers,
appear in the Wolfe dual problem, which becomes:

Maximize:

LD ≡
∑

i

αi − 1
2

∑
i,j

αiαjyiyjxi · xj (43)

subject to:

0 ≤ αi ≤ C, (44)

∑
i

αiyi = 0. (45)

The solution is again given by

w =
NS∑
i=1

αiyixi. (46)

whereNS is the number of support vectors. Thus the only difference from the optimal
hyperplane case is that theαi now have an upper bound ofC. The situation is summarized
schematically in Figure 6.

We will need the Karush-Kuhn-Tucker conditions for the primal problem. The primal
Lagrangian is

LP =
1
2
‖w‖2 + C

∑
i

ξi −
∑

i

αi{yi(xi · w + b) − 1 + ξi} −
∑

i

µiξi (47)

136 BURGES

-b

−ξ
|w|

|w|

w

Figure 6. Linear separating hyperplanes for the non-separable case.

where theµi are the Lagrange multipliers introduced to enforce positivity of theξi. The
KKT conditions for the primal problem are therefore (notei runs from 1 to the number of
training points, andν from 1 to the dimension of the data)

∂LP

∂wν
= wν −

∑
i

αiyixiν = 0 (48)

∂LP

∂b
= −

∑
i

αiyi = 0 (49)

∂LP

∂ξi
= C − αi − µi = 0 (50)

yi(xi · w + b) − 1 + ξi ≥ 0 (51)

ξi ≥ 0 (52)

αi ≥ 0 (53)

µi ≥ 0 (54)

αi{yi(xi · w + b) − 1 + ξi} = 0 (55)

µiξi = 0 (56)

As before, we can use the KKT complementarity conditions, Eqs. (55) and (56), to
determine the thresholdb. Note that Eq. (50) combined with Eq. (56) shows thatξi = 0 if
αi < C. Thus we can simply take any training point for which0 < αi < C to use Eq. (55)
(with ξi = 0) to computeb. (As before, it is numerically wiser to take the average over all
such training points.)

3.6. A Mechanical Analogy

Consider the case in which the data are inR2. Suppose that the i’th support vector exerts
a forceFi = αiyiŵ on a stiff sheet lying along the decision surface (the “decision sheet”)

SUPPORT VECTOR MACHINES 137

Figure 7. The linear case, separable (left) and not (right). The background colour shows the shape of the decision
surface.

(hereŵ denotes the unit vector in the directionw). Then the solution (46) satisfies the
conditions of mechanical equilibrium:

∑
Forces =

∑
i

αiyiŵ = 0 (57)

∑
Torques =

∑
i

si ∧ (αiyiŵ) = ŵ ∧ w = 0. (58)

(Here thesi are the support vectors, and∧ denotes the vector product.) For data inRn,
clearly the condition that the sum of forces vanish is still met. One can easily show that the
torque also vanishes.9

This mechanical analogy depends only on the form of the solution (46), and therefore
holds for both the separable and the non-separable cases. In fact this analogy holds in
general (i.e., also for the nonlinear case described below). The analogy emphasizes the
interesting point that the “most important” data points are the support vectors with highest
values ofα, since they exert the highest forces on the decision sheet. For the non-separable
case, the upper boundαi ≤ C corresponds to an upper bound on the force any given point
is allowed to exert on the sheet. This analogy also provides a reason (as good as any other)
to call these particular vectors “support vectors”10.

3.7. Examples by Pictures

Figure 7 shows two examples of a two-class pattern recognition problem, one separable
and one not. The two classes are denoted by circles and disks respectively. Support vectors
are identified with an extra circle. The error in the non-separable case is identified with a
cross. The reader is invited to use Lucent’s SVM Applet (Burges, Knirsch and Haratsch,
1996) to experiment and create pictures like these (if possible, try using 16 or 24 bit color).

4. Nonlinear Support Vector Machines

How can the above methods be generalized to the case where the decision function11 is not
a linear function of the data? (Boser, Guyon and Vapnik, 1992), showed that a rather old

138 BURGES

trick (Aizerman, 1964) can be used to accomplish this in an astonishingly straightforward
way. First notice that the only way in which the data appears in the training problem, Eqs.
(43) - (45), is in the form of dot products,xi · xj . Now suppose we first mapped the data to
some other (possibly infinite dimensional) Euclidean spaceH, using a mapping which we
will call Φ:

Φ : Rd 7→ H. (59)

Then of course the training algorithm would only depend on the data through dot products
in H, i.e. on functions of the formΦ(xi) ·Φ(xj). Now if there were a “kernel function”K
such thatK(xi, xj) = Φ(xi) ·Φ(xj), we would only need to useK in the training algorithm,
and would never need to explicitly even know whatΦ is. One example is

K(xi, xj) = e−‖xi−xj‖2/2σ2
. (60)

In this particular example,H is infinite dimensional, so it would not be very easy to work
with Φ explicitly. However, if one replacesxi · xj by K(xi, xj) everywhere in the training
algorithm, the algorithm will happily produce a support vector machine which lives in an
infinite dimensional space, and furthermore do so in roughly the same amount of time it
would take to train on the un-mapped data. All the considerations of the previous sections
hold, since we are still doing a linear separation, but in a different space.

But how can we use this machine? After all, we needw, and that will live inH also (see
Eq. (46)). But in test phase an SVM is used by computing dot products of a given test point
x with w, or more specifically by computing the sign of

f(x) =
NS∑
i=1

αiyiΦ(si) · Φ(x) + b =
NS∑
i=1

αiyiK(si, x) + b (61)

where thesi are the support vectors. So again we can avoid computingΦ(x) explicitly
and use theK(si, x) = Φ(si) · Φ(x) instead.

Let us call the space in which the data live,L. (Here and below we useL as a mnemonic
for “low dimensional”, andH for “high dimensional”: it is usually the case that the range
of Φ is of much higher dimension than its domain). Note that, in addition to the fact thatw
lives inH, there will in general be no vector inL which maps, via the mapΦ, tow. If there
were,f(x) in Eq. (61) could be computed in one step, avoiding the sum (and making the
corresponding SVMNS times faster, whereNS is the number of support vectors). Despite
this, ideas along these lines can be used to significantly speed up the test phase of SVMs
(Burges, 1996). Note also that it is easy to find kernels (for example, kernels which are
functions of the dot products of thexi in L) such that the training algorithm and solution
found are independent of the dimension of bothL andH.

In the next Section we will discuss which functionsK are allowable and which are not.
Let us end this Section with a very simple example of an allowed kernel, for which wecan
construct the mappingΦ.

Suppose that your data are vectors inR2, and you chooseK(xi, xj) = (xi · xj)2. Then
it’s easy to find a spaceH, and mappingΦ from R2 toH, such that(x · y)2 = Φ(x) ·Φ(y):
we chooseH = R3 and

SUPPORT VECTOR MACHINES 139

0.2 0.4 0.6 0.8 1
-1

-0.5
0

0.5
1

0
0.2
0.4
0.6
0.8

1

Figure 8. Image, inH, of the square[−1, 1] × [−1, 1] ∈ R2 under the mappingΦ.

Φ(x) =


 x2

1√
2 x1x2

x2
2


 (62)

(note that here the subscripts refer to vector components). For data inL defined on the
square[−1, 1] × [−1, 1] ∈ R2 (a typical situation, for grey level image data), the (entire)
image ofΦ is shown in Figure 8. This Figure also illustrates how to think of this mapping:
the image ofΦ may live in a space of very high dimension, but it is just a (possibly very
contorted) surface whose intrinsic dimension12 is just that ofL.

Note that neither the mappingΦ nor the spaceH are unique for a given kernel. We could
equally well have chosenH to again beR3 and

Φ(x) =
1√
2


 (x2

1 − x2
2)

2x1x2

(x2
1 + x2

2)


 (63)

orH to beR4 and

Φ(x) =




x2
1

x1x2

x1x2

x2
2


 . (64)

The literature on SVMs usually refers to the spaceH as a Hilbert space, so let’s end this
Section with a few notes on this point. You can think of a Hilbert space as a generalization
of Euclidean space that behaves in a gentlemanly fashion. Specifically, it is any linear space,
with an inner product defined, which is also complete with respect to the corresponding
norm (that is, any Cauchy sequence of points converges to a point in the space). Some
authors (e.g. (Kolmogorov, 1970)) also require that it be separable (that is, it must have a
countable subset whose closure is the space itself), and some (e.g. Halmos, 1967) don’t.
It’s a generalization mainly because its inner product can beany inner product, not just
the scalar (“dot”) product used here (and in Euclidean spaces in general). It’s interesting

140 BURGES

that the older mathematical literature (e.g. Kolmogorov, 1970) also required that Hilbert
spaces be infinite dimensional, and that mathematicians are quite happy defining infinite
dimensional Euclidean spaces. Research on Hilbert spaces centers on operators in those
spaces, since the basic properties have long since been worked out. Since some people
understandably blanch at the mention of Hilbert spaces, I decided to use the term Euclidean
throughout this tutorial.

4.1. Mercer’s Condition

For which kernels does there exist a pair{H,Φ}, with the properties described above,
and for which does there not? The answer is given by Mercer’s condition (Vapnik, 1995;
Courant and Hilbert, 1953): There exists a mappingΦ and an expansion

K(x, y) =
∑

i

Φ(x)iΦ(y)i (65)

if and only if, for anyg(x) such that∫
g(x)2dx is finite (66)

then∫
K(x, y)g(x)g(y)dxdy ≥ 0. (67)

Note that for specific cases, it may not be easy to check whether Mercer’s condition is
satisfied. Eq. (67) must hold foreveryg with finite L2 norm (i.e. which satisfies Eq. (66)).
However, we can easily prove that the condition is satisfied for positive integral powers of
the dot product:K(x, y) = (x · y)p. We must show that

∫
(

d∑
i=1

xiyi)pg(x)g(y)dxdy ≥ 0. (68)

The typical term in the multinomial expansion of(
∑d

i=1 xiyi)p contributes a term of the
form

p!
r1!r2! · · · (p − r1 − r2 · · ·)!

∫
xr1

1 xr2
2 · · · yr1

1 yr2
2 · · · g(x)g(y)dxdy (69)

to the left hand side of Eq. (67), which factorizes:

=
p!

r1!r2! · · · (p − r1 − r2 · · ·)! (
∫

xr1
1 xr2

2 · · · g(x)dx)2 ≥ 0. (70)

One simple consequence is that any kernel which can be expressed asK(x, y) =
∑∞

p=0 cp(x·
y)p, where thecp are positive real coefficients and the series is uniformly convergent, sat-
isfies Mercer’s condition, a fact also noted in (Smola, Sch¨olkopf and Müller, 1998b).

SUPPORT VECTOR MACHINES 141

Finally, what happens if one uses a kernel which does not satisfy Mercer’s condition?
In general, there may exist data such that the Hessian is indefinite, and for which the
quadratic programming problem will have no solution (the dual objective function can
become arbitrarily large). However, even for kernels that do not satisfy Mercer’s condition,
one might still find that a given training set results in a positive semidefinite Hessian, in
which case the training will converge perfectly well. In this case, however, the geometrical
interpretation described above is lacking.

4.2. Some Notes onΦ andH

Mercer’s condition tells us whether or not a prospective kernel is actually a dot product
in some space, but it does not tell us how to constructΦ or even whatH is. However, as
with the homogeneous (that is, homogeneous in the dot product inL) quadratic polynomial
kernel discussed above, we can explicitly construct the mapping for some kernels. In
Section 6.1 we show how Eq. (62) can be extended to arbitrary homogeneous polynomial
kernels, and that the corresponding spaceH is a Euclidean space of dimension

(
d+p−1

p

)
.

Thus for example, for a degreep = 4 polynomial, and for data consisting of 16 by 16
images (d=256), dim(H) is 183,181,376.

Usually, mapping your data to a “feature space” with an enormous number of dimensions
would bode ill for the generalization performance of the resulting machine. After all, the
set of all hyperplanes{w, b} are parameterized by dim(H) +1 numbers. Most pattern
recognition systems with billions, or even an infinite, number of parameters would not
make it past the start gate. How come SVMs do so well? One might argue that, given the
form of solution, there are at mostl + 1 adjustable parameters (wherel is the number of
training samples), but this seems to be begging the question13. It must be something to do
with our requirement ofmaximum marginhyperplanes that is saving the day. As we shall
see below, a strong case can be made for this claim.

Since the mapped surface is of intrinsic dimension dim(L), unless dim(L) = dim(H),
it is obvious that the mapping cannot be onto (surjective). It also need not be one to one
(bijective): considerx1 → −x1, x2 → −x2 in Eq. (62). The image ofΦ need not itself be
a vector space: again, considering the above simple quadratic example, the vector−Φ(x)
is not in the image ofΦ unlessx = 0. Further, a little playing with the inhomogeneous
kernel

K(xi, xj) = (xi · xj + 1)2 (71)

will convince you that the correspondingΦcan map two vectors that are linearly dependent
in L onto two vectors that are linearly independent inH.

So far we have considered cases whereΦ is done implicitly. One can equally well turn
things around andstart with Φ, and then construct the corresponding kernel. For example
(Vapnik, 1996), ifL = R1, then a Fourier expansion in the datax, cut off afterN terms,
has the form

f(x) =
a0

2
+

N∑
r=1

(a1r cos(rx) + a2r sin(rx)) (72)

142 BURGES

and this can be viewed as a dot product between two vectors inR2N+1: a = (a0√
2
, a11, . . . , a21, . . .),

and the mappedΦ(x) = (1√
2
, cos(x), cos(2x), . . . , sin(x), sin(2x), . . .). Then the corre-

sponding (Dirichlet) kernel can be computed in closed form:

Φ(xi) · Φ(xj) = K(xi, xj) =
sin((N + 1/2)(xi − xj))

2 sin((xi − xj)/2)
. (73)

This is easily seen as follows: lettingδ ≡ xi − xj ,

Φ(xi) · Φ(xj) =
1
2

+
N∑

r=1

cos(rxi) cos(rxj) + sin(rxi) sin(rxj)

= −1
2

+
N∑

r=0

cos(rδ) = −1
2

+ Re{
N∑

r=0

e(irδ)}

= −1
2

+ Re{(1 − ei(N+1)δ)/(1 − eiδ)}
= (sin((N + 1/2)δ))/2 sin(δ/2).

Finally, it is clear that the above implicit mapping trick will work foranyalgorithm in
which the data only appear as dot products (for example, the nearest neighbor algorithm).
This fact has been used to derive a nonlinear version of principal component analysis by
(Schölkopf, Smola and M¨uller, 1998b); it seems likely that this trick will continue to find
uses elsewhere.

4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x, y) = (x · y + 1)p (74)

K(x, y) = e−‖x−y‖2/2σ2
(75)

K(x, y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degreep in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (thesi), the weights (αi), and the threshold (b) are all produced
automaticallyby the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Sch¨olkopf et al, 1997). For the neural network case, the
first layer consists ofNS sets of weights, each set consisting ofdL (the dimension of the
data) weights, and the second layer consists ofNS weights (theαi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products

SUPPORT VECTOR MACHINES 143

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

of the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parametersκ andδ (and of the data‖x‖2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters
for positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel),
the solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains
N one-versus-rest classifiers (say, “one” positive, “rest” negative) for theN -class case and
takes the class for a test point to be that corresponding to the largest positive distance (Boser,
Guyon and Vapnik, 1992).

4.4. Global Solutions and Uniqueness

When is the solution to the support vector training problem global, and when is it unique?
By “global”, we mean that there exists no other point in the feasible region at which
the objective function takes a lower value. We will address two kinds of ways in which
uniqueness may not hold: solutions for which{w, b} are themselves unique, but for which
the expansion ofw in Eq. (46) is not; and solutions whose{w, b} differ. Both are of interest:
even if the pair{w, b} is unique, if theαi are not, there may be equivalent expansions ofw
which require fewer support vectors (a trivial example of this is given below), and which
therefore require fewer instructions during test phase.

It turns out that every local solution is also global. This is a property of any convex
programming problem (Fletcher, 1987). Furthermore, the solution is guaranteed to be
unique if the objective function (Eq. (43)) is strictly convex, which in our case means
that the Hessian must be positive definite (note that for quadratic objective functionsF ,
the Hessian is positive definite if and only ifF is strictly convex; this is not true for non-

144 BURGES

quadraticF : there, a positive definite Hessian implies a strictly convex objective function,
but not vice versa (considerF = x4) (Fletcher, 1987)). However, even if the Hessian
is positive semidefinite, the solution can still be unique: consider two points along the
real line with coordinatesx1 = 1 andx2 = 2, and with polarities+ and−. Here the
Hessian is positive semidefinite, but the solution (w = −2, b = 3, ξi = 0 in Eqs. (40),
(41), (42)) is unique. It is also easy to find solutions which are not unique in the sense
that theαi in the expansion ofw are not unique:: for example, consider the problem of
four separable points on a square inR2: x1 = [1, 1], x2 = [−1, 1], x3 = [−1,−1] and
x4 = [1,−1], with polarities[+,−,−,+] respectively. One solution isw = [1, 0], b = 0,
α = [0.25, 0.25, 0.25, 0.25]; another has the samew andb, but α = [0.5, 0.5, 0, 0] (note
that both solutions satisfy the constraintsαi > 0 and

∑
i αiyi = 0). When can this occur

in general? Given some solutionα, choose anα′ which is in the null space of the Hessian
Hij = yiyjxi · xj , and require thatα′ be orthogonal to the vector all of whose components
are 1. Then addingα′ to α in Eq. (43) will leaveLD unchanged. If0 ≤ αi + α′

i ≤ C and
α′ satisfies Eq. (45), thenα + α′ is also a solution15.

How about solutions where the{w, b} are themselves not unique? (We emphasize that
this can only happen in principle if the Hessian is not positive definite, and even then, the
solutions are necessarily global). The following very simple theorem shows that if non-
unique solutions occur, then the solution at one optimal point is continuously deformable
into the solution at the other optimal point, in such a way that all intermediate points are
also solutions.

Theorem 2 Let the variableX stand for the pair of variables{w, b}. Let the Hessian
for the problem be positive semidefinite, so that the objective function is convex. LetX0

andX1 be two points at which the objective function attains its minimal value. Then there
exists a pathX = X(τ) = (1 − τ)X0 + τX1, τ ∈ [0, 1], such thatX(τ) is a solution for
all τ .

Proof: Let the minimum value of the objective function beFmin. Then by assumption,
F (X0) = F (X1) = Fmin. By convexity ofF , F (X(τ)) ≤ (1 − τ)F (X0) + τF (X1) =
Fmin. Furthermore, by linearity, theX(τ) satisfy the constraints Eq. (40), (41): explicitly
(again combining both constraints into one):

yi(wτ · xi + bτ) = yi((1 − τ)(w0 · xi + b0) + τ(w1 · xi + b1))
≥ (1 − τ)(1 − ξi) + τ(1 − ξi) = 1 − ξi (77)

Although simple, this theorem is quite instructive. For example, one might think that the
problems depicted in Figure 10 have several different optimal solutions (for the case of linear
support vector machines). However, since one cannot smoothly move the hyperplane from
one proposed solution to another without generating hyperplanes which are not solutions,
we know that these proposed solutions are in fact not solutions at all. In fact, for each of
these cases, the optimal unique solution is atw = 0, with a suitable choice ofb (which
has the effect of assigning the same label to all the points). Note that this is a perfectly

SUPPORT VECTOR MACHINES 145

Figure 10.Two problems, with proposed (incorrect) non-unique solutions.

acceptable solution to the classification problem: any proposed hyperplane (withw 6= 0)
will cause the primal objective function to take a higher value.

Finally, note that the fact that SVM training always finds a global solution is in contrast
to the case of neural networks, where many local minima usually exist.

5. Methods of Solution

The support vector optimization problem can be solved analytically only when the number
of training data is very small, or for the separable case when it is known beforehand which
of the training data become support vectors (as in Sections 3.3 and 6.2). Note that this can
happen when the problem has some symmetry (Section 3.3), but that it can also happen
when it does not (Section 6.2). For the general analytic case, the worst case computational
complexity is of orderN3

S (inversion of the Hessian), whereNS is the number of support
vectors, although the two examples given both have complexity of O(1).

However, in most real world cases, Equations (43) (with dot products replaced by kernels),
(44), and (45) must be solved numerically. For small problems, any general purpose
optimization package that solves linearly constrained convex quadratic programs will do.
A good survey of the available solvers, and where to get them, can be found16 in (Moré and
Wright, 1993).

For larger problems, a range of existing techniques can be brought to bear. A full ex-
ploration of the relative merits of these methods would fill another tutorial. Here we just
describe the general issues, and for concreteness, give a brief explanation of the technique
we currently use. Below, a “face” means a set of points lying on the boundary of the feasible
region, and an “active constraint” is a constraint for which the equality holds. For more on
nonlinear programming techniques see (Fletcher, 1987; Mangasarian, 1969; McCormick,
1983).

The basic recipe is to (1) note the optimality (KKT) conditions which the solution must
satisfy, (2) define a strategy for approaching optimality by uniformly increasing the dual
objective function subject to the constraints, and (3) decide on a decomposition algorithm
so that only portions of the training data need be handled at a given time (Boser, Guyon
and Vapnik, 1992; Osuna, Freund and Girosi, 1997a). We give a brief description of some
of the issues involved. One can view the problem as requiring the solution of a sequence
of equality constrained problems. A given equality constrained problem can be solved in
one step by using the Newton method (although this requires storage for a factorization of

146 BURGES

the projected Hessian), or in at mostl steps using conjugate gradient ascent (Press et al.,
1992) (wherel is the number of data points for the problem currently being solved: no extra
storage is required). Some algorithms move within a given face until a new constraint is
encountered, in which case the algorithm is restarted with the new constraint added to the
list of equality constraints. This method has the disadvantage that only one new constraint
is made active at a time. “Projection methods” have also been considered (Mor´e, 1991),
where a point outside the feasible region is computed, and then line searches and projections
are done so that the actual move remains inside the feasible region. This approach can add
several new constraints at once. Note that in both approaches, several active constraints
can becomeinactive in one step. In all algorithms, only the essential part of the Hessian
(the columns corresponding toαi 6= 0) need be computed (although some algorithms do
compute the whole Hessian). For the Newton approach, one can also take advantage of the
fact that the Hessian is positive semidefinite by diagonalizing it with the Bunch-Kaufman
algorithm (Bunch and Kaufman, 1977; Bunch and Kaufman, 1980) (if the Hessian were
indefinite, it could still be easily reduced to 2x2 block diagonal form with this algorithm).
In this algorithm, when a new constraint is made active or inactive, the factorization of
the projected Hessian is easily updated (as opposed to recomputing the factorization from
scratch). Finally, in interior point methods, the variables are essentially rescaled so as
to always remain inside the feasible region. An example is the “LOQO” algorithm of
(Vanderbei, 1994a; Vanderbei, 1994b), which is a primal-dual path following algorithm.
This last method is likely to be useful for problems where the number of support vectors as
a fraction of training sample size is expected to be large.

We briefly describe the core optimization method we currently use17. It is an active set
method combining gradient and conjugate gradient ascent. Whenever the objective function
is computed, so is the gradient, at very little extra cost. In phase 1, the search directions
s are along the gradient. The nearest face along the search direction is found. If the dot
product of the gradient there withs indicates that the maximum alongs lies between the
current point and the nearest face, the optimal point along the search direction is computed
analytically (note that this does not require a line search), and phase 2 is entered. Otherwise,
we jump to the new face and repeat phase 1. In phase 2, Polak-Ribiere conjugate gradient
ascent (Press et al., 1992) is done, until a new face is encountered (in which case phase 1
is re-entered) or the stopping criterion is met. Note the following:

• Search directions are always projected so that theαi continue to satisfy the equality
constraint Eq. (45). Note that the conjugate gradient algorithm will still work; we
are simply searching in a subspace. However, it is important that this projection is
implemented in such a way that not only is Eq. (45) met (easy), but also so that the
angle between the resulting search direction, and the search direction prior to projection,
is minimized (not quite so easy).

• We also use a “sticky faces” algorithm: whenever a given face is hit more than once,
the search directions are adjusted so that all subsequent searches are done within that
face. All “sticky faces” are reset (made “non-sticky”) when the rate of increase of the
objective function falls below a threshold.

• The algorithm stops when the fractional rate of increase of the objective functionF
falls below a tolerance (typically 1e-10, for double precision). Note that one can also

SUPPORT VECTOR MACHINES 147

use as stopping criterion the condition that the size of the projected search direction
falls below a threshold. However, this criterion does not handle scaling well.

• In my opinion the hardest thing to get right is handling precision problems correctly
everywhere. If this is not done, the algorithm may not converge, or may be much slower
than it needs to be.

A good way to check that your algorithm is working is to check that the solution satisfies
all the Karush-Kuhn-Tucker conditions for the primal problem, since these are necessary
and sufficient conditions that the solution be optimal. The KKT conditions are Eqs. (48)
through (56), with dot products between data vectors replaced by kernels wherever they
appear (notew must be expanded as in Eq. (48) first, sincew is not in general the mapping
of a point inL). Thus to check the KKT conditions, it is sufficient to check that theαi satisfy
0 ≤ αi ≤ C, that the equality constraint (49) holds, that all points for which0 ≤ αi < C
satisfy Eq. (51) withξi = 0, and that all points withαi = C satisfy Eq. (51) for some
ξi ≥ 0. These are sufficient conditions for all the KKT conditions to hold: note that by
doing this we never have to explicitly compute theξi or µi, although doing so is trivial.

5.1. Complexity, Scalability, and Parallelizability

Support vector machines have the following very striking property. Both training and test
functions depend on the data only through the kernel functionsK(xi, xj). Even though it
corresponds to a dot product in a space of dimensiondH , wheredH can be very large or
infinite, the complexity of computingK can be far smaller. For example, for kernels of
the formK = (xi · xj)p, a dot product inH would require of order

(
dL+p−1

p

)
operations,

whereas the computation ofK(xi, xj) requires onlyO(dL) operations (recalldL is the
dimension of the data). It is this fact that allows us to construct hyperplanes in these
very high dimensional spaces yet still be left with a tractable computation. Thus SVMs
circumvent both forms of the “curse of dimensionality”: the proliferation of parameters
causing intractable complexity, and the proliferation of parameters causing overfitting.

5.1.1. Training For concreteness, we will give results for the computational complexity
of one the the above training algorithms (Bunch-Kaufman)18 (Kaufman, 1998). These
results assume that different strategies are used in different situations. We consider the
problem of training on just one “chunk” (see below). Again letl be the number of training
points,NS the number of support vectors (SVs), anddL the dimension of the input data.
In the case where most SVs are not at the upper bound, andNS/l << 1, the number of
operationsC is O(N3

S + (N2
S)l + NSdLl). If insteadNS/l ≈ 1, thenC is O(N3

S + NSl +
NSdLl) (basically by starting in the interior of the feasible region). For the case where
most SVs are at the upper bound, andNS/l << 1, thenC is O(N2

S + NSdLl). Finally, if
most SVs are at the upper bound, andNS/l ≈ 1, we haveC of O(DLl2).

For larger problems, two decomposition algorithms have been proposed to date. In the
“chunking” method (Boser, Guyon and Vapnik, 1992), one starts with a small, arbitrary
subset of the data and trains on that. The rest of the training data is tested on the resulting
classifier, and a list of the errors is constructed, sorted by how far on the wrong side of the

148 BURGES

margin they lie (i.e. how egregiously the KKT conditions are violated). The next chunk is
constructed from the firstN of these, combined with theNS support vectors already found,
whereN + NS is decided heuristically (a chunk size that is allowed to grow too quickly or
too slowly will result in slow overall convergence). Note that vectors can be dropped from
a chunk, and that support vectors in one chunk may not appear in the final solution. This
process is continued until all data points are found to satisfy the KKT conditions.

The above method requires that the number of support vectorsNS be small enough so that
a Hessian of sizeNS byNS will fit in memory. An alternative decomposition algorithm has
been proposed which overcomes this limitation (Osuna, Freund and Girosi, 1997b). Again,
in this algorithm, only a small portion of the training data is trained on at a given time, and
furthermore, only a subset of the support vectors need be in the “working set” (i.e. that set
of points whoseα’s are allowed to vary). This method has been shown to be able to easily
handle a problem with 110,000 training points and 100,000 support vectors. However, it
must be noted that the speed of this approach relies on many of the support vectors having
corresponding Lagrange multipliersαi at the upper bound,αi = C.

These training algorithms may take advantage of parallel processing in several ways.
First, all elements of the Hessian itself can be computed simultaneously. Second, each
element often requires the computation of dot products of training data, which could also
be parallelized. Third, the computation of the objective function, or gradient, which is
a speed bottleneck, can be parallelized (it requires a matrix multiplication). Finally, one
can envision parallelizing at a higher level, for example by training on different chunks
simultaneously. Schemes such as these, combined with the decomposition algorithm of
(Osuna, Freund and Girosi, 1997b), will be needed to make very large problems (i.e.>>
100,000 support vectors, with many not at bound), tractable.

5.1.2. Testing In test phase, one must simply evaluate Eq. (61), which will require
O(MNS) operations, whereM is the number of operations required to evaluate the kernel.
For dot product and RBF kernels,M is O(dL), the dimension of the data vectors. Again,
both the evaluation of the kernel and of the sum are highly parallelizable procedures.

In the absence of parallel hardware, one can still speed up test phase by a large factor, as
described in Section 9.

6. The VC Dimension of Support Vector Machines

We now show that the VC dimension of SVMs can be very large (even infinite). We will
then explore several arguments as to why, in spite of this, SVMs usually exhibit good
generalization performance. However it should be emphasized that these are essentially
plausibility arguments. Currently there exists no theory whichguaranteesthat a given
family of SVMs will have high accuracy on a given problem.

We will call any kernel that satisfies Mercer’s condition a positive kernel, and the cor-
responding spaceH the embedding space. We will also call any embedding space with
minimal dimension for a given kernel a “minimal embedding space”. We have the following

SUPPORT VECTOR MACHINES 149

Theorem 3 LetK be a positive kernel which corresponds to a minimal embedding space
H. Then the VC dimension of the corresponding support vector machine (where the error
penaltyC in Eq. (44) is allowed to take all values) isdim(H) + 1.

Proof: If the minimal embedding space has dimensiondH , thendH points in the image of
L under the mappingΦ can be found whose position vectors inH are linearly independent.
From Theorem 1, these vectors can be shattered by hyperplanes inH. Thus by either
restricting ourselves to SVMs for the separable case (Section 3.1), or for which the error
penaltyC is allowed to take all values (so that, if the points are linearly separable, aC can
be found such that the solution does indeed separate them), the family of support vector
machines with kernelK can also shatter these points, and hence has VC dimensiondH +1.

Let’s look at two examples.

6.1. The VC Dimension for Polynomial Kernels

Consider an SVM with homogeneous polynomial kernel, acting on data inRdL :

K(x1, x2) = (x1 · x2)p, x1, x2 ∈ RdL (78)

As in the case whendL = 2 and the kernel is quadratic (Section 4), one can explicitly
construct the mapΦ. Lettingzi = x1ix2i, so thatK(x1, x2) = (z1 + · · · + zdL

)p, we see
that each dimension ofH corresponds to a term with given powers of thezi in the expansion
of K. In fact if we choose to label the components ofΦ(x) in this manner, we can explicitly
write the mapping for anyp anddL:

Φr1r2···rdL
(x) =

√(
p!

r1!r2! · · · rdL
!

)
xr1

1 xr2
2 · · ·xrdL

dL
,

dL∑
i=1

ri = p, ri ≥ 0 (79)

This leads to

Theorem 4 If the space in which the data live has dimensiondL (i.e. L = RdL), the
dimension of the minimal embedding space, for homogeneous polynomial kernels of degree
p (K(x1, x2) = (x1 · x2)p, x1, x2 ∈ RdL), is

(
dL+p−1

p

)
.

(The proof is in the Appendix). Thus the VC dimension of SVMs with these kernels is(
dL+p−1

p

)
+ 1. As noted above, this gets very large very quickly.

6.2. The VC Dimension for Radial Basis Function Kernels

Theorem 5 Consider the class of Mercer kernels for whichK(x1, x2) → 0 as ‖x1 −
x2‖ → ∞, and for whichK(x, x) is O(1), and assume that the data can be chosen arbitrarily
from Rd. Then the family of classifiers consisting of support vector machines using these
kernels, and for which the error penalty is allowed to take all values, has infinite VC
dimension.

150 BURGES

Proof: The kernel matrix,Kij ≡ K(xi, xj), is a Gram matrix (a matrix of dot products:
see (Horn, 1985)) inH. Clearly we can choose training data such that all off-diagonal
elementsKi6=j can be made arbitrarily small, and by assumption all diagonal elements
Ki=j are of O(1). The matrixK is then of full rank; hence the set of vectors, whose dot
products inH form K , are linearly independent (Horn, 1985); hence, by Theorem 1, the
points can be shattered by hyperplanes inH, and hence also by support vector machines
with sufficiently large error penalty. Since this is true for any finite number of points, the
VC dimension of these classifiers is infinite.

Note that the assumptions in the theorem are stronger than necessary (they were chosen
to make the connection to radial basis functions clear). In fact it is only necessary thatl
training points can be chosen such that the rank of the matrixKij increases without limit as
l increases. For example, for Gaussian RBF kernels, this can also be accomplished (even
for training data restricted to lie in a bounded subset ofRdL) by choosing small enough RBF
widths. However in general the VC dimension of SVM RBF classifiers can certainly be
finite, and indeed, for data restricted to lie in a bounded subset ofRdL , choosing restrictions
on the RBF widths is a good way to control the VC dimension.

This case gives us a second opportunity to present a situation where the SVM solution
can be computed analytically, which also amounts to a second, constructive proof of the
Theorem. For concreteness we will take the case for Gaussian RBF kernels of the form
K(x1, x2) = e−‖x1−x2‖2/2σ2

. Let us choose training points such that the smallest distance
between any pair of points is much larger than the widthσ. Consider the decision function
evaluated on the support vectorsj :

f(sj) =
∑

i

αiyie
−‖si−sj‖2/2σ2

+ b. (80)

The sum on the right hand side will then be largely dominated by the termi = j; in fact the
ratio of that term to the contribution from the rest of the sum can be made arbitrarily large
by choosing the training points to be arbitrarily far apart. In order to find the SVM solution,
we again assume for the moment that every training point becomes a support vector, and
we work with SVMs for the separable case (Section 3.1) (the same argument will hold for
SVMs for the non-separable case ifC in Eq. (44) is allowed to take large enough values).
Since all points are support vectors, the equalities in Eqs. (10), (11) will hold for them. Let
there beN+ (N−) positive (negative) polarity points. We further assume that all positive
(negative) polarity points have the same valueα+ (α−) for their Lagrange multiplier. (We
will know that this assumption is correct if it delivers a solution which satisfies all the KKT
conditions and constraints). Then Eqs. (19), applied to all the training data, and the equality
constraint Eq. (18), become

α+ + b = 1
−α− + b = −1

N+α+ − N−α− = 0 (81)

which are satisfied by

SUPPORT VECTOR MACHINES 151

Figure 11. Gaussian RBF SVMs of sufficiently small width can classify an arbitrarily large number of training
points correctly, and thus have infinite VC dimension

α+ =
2N−

N− + N+

α− =
2N+

N− + N+

b =
N+ − N−
N− + N+

(82)

Thus, since the resultingαi are also positive, all the KKT conditions and constraints are
satisfied, and we must have found the global solution (with zero training errors). Since the
number of training points, and their labeling, is arbitrary, and they are separated without
error, the VC dimension is infinite.

The situation is summarized schematically in Figure 11.
Now we are left with a striking conundrum. Even though their VC dimension is infinite

(if the data is allowed to take all values inRdL), SVM RBFs can have excellent performance
(Schölkopf et al, 1997). A similar story holds for polynomial SVMs. How come?

7. The Generalization Performance of SVMs

In this Section we collect various arguments and bounds relating to the generalization
performance of SVMs. We start by presenting a family of SVM-like classifiers for which
structural risk minimization can be rigorously implemented, and which will give us some
insight as to why maximizing the margin is so important.

7.1. VC Dimension of Gap Tolerant Classifiers

Consider a family of classifiers (i.e. a set of functionsΦ on Rd) which we will call “gap
tolerant classifiers.” A particular classifierφ ∈ Φ is specified by the location and diameter

152 BURGES

M = 3/2
D = 2

Φ=0

Φ=0

Φ=1

Φ=−1
Φ=0

Figure 12.A gap tolerant classifier on data inR2.

of a ball inRd, and by two hyperplanes, with parallel normals, also inRd. Call the set of
points lying between, but not on, the hyperplanes the “margin set.” The decision functions
φ are defined as follows: points that lie inside the ball, but not in the margin set, are assigned
class{±1}, depending on which side of the margin set they fall. All other points are simply
defined to be “correct”, that is, they are not assigned a class by the classifier, and do not
contribute to any risk. The situation is summarized, ford = 2, in Figure 12. This rather
odd family of classifiers, together with a condition we will impose on how they are trained,
will result in systems very similar to SVMs, and for which structural risk minimization can
be demonstrated. A rigorous discussion is given in the Appendix.

Label the diameter of the ballD and the perpendicular distance between the two hyper-
planesM . The VC dimension is defined as before to be the maximum number of points
that can be shattered by the family, but by “shattered” we mean that the points can occur as
errors in all possible ways (see the Appendix for further discussion). Clearly we can control
the VC dimension of a family of these classifiers by controlling the minimum marginM
and maximum diameterD that members of the family are allowed to assume. For example,
consider the family of gap tolerant classifiers inR2 with diameterD = 2, shown in Figure
12. Those with margin satisfyingM ≤ 3/2 can shatter three points; if3/2 < M < 2, they
can shatter two; and ifM ≥ 2, they can shatter only one. Each of these three families of
classifiers corresponds to one of the sets of classifiers in Figure 4, with just three nested
subsets of functions, and withh1 = 1, h2 = 2, andh3 = 3.

These ideas can be used to show how gap tolerant classifiers implement structural risk
minimization. The extension of the above example to spaces of arbitrary dimension is
encapsulated in a (modified) theorem of (Vapnik, 1995):

SUPPORT VECTOR MACHINES 153

Theorem 6 For data inRd, the VC dimensionh of gap tolerant classifiers of minimum
marginMmin and maximum diameterDmax is bounded above19 by min{dD2

max/M2
mine, d}+

1.

For the proof we assume the following lemma, which in (Vapnik, 1979) is held to follow
from symmetry arguments20:

Lemma: Considern ≤ d+1 points lying in a ballB ∈ Rd. Let the points be shatterable
by gap tolerant classifiers with marginM . Then in order forM to be maximized, the points
must lie on the vertices of an (n− 1)-dimensional symmetric simplex, and must also lie on
the surface of the ball.
Proof: We need only consider the case where the number of pointsn satisfiesn ≤ d + 1.
(n > d+1 points will not be shatterable, since the VC dimension of oriented hyperplanes in
Rd isd+1, and any distribution of points which can be shattered by a gap tolerant classifier
can also be shattered by an oriented hyperplane; this also shows thath ≤ d + 1). Again we
consider points on a sphere of diameterD, where the sphere itself is of dimensiond−2. We
will need two results from Section 3.3, namely (1) ifn is even, we can find a distribution ofn
points (the vertices of the (n− 1)-dimensional symmetric simplex) which can be shattered
by gap tolerant classifiers ifD2

max/M2
min = n − 1, and (2) if n is odd, we can find a

distribution ofn points which can be so shattered ifD2
max/M2

min = (n − 1)2(n + 1)/n2.
If n is even, at mostn points can be shattered whenever

n − 1 ≤ D2
max/M2

min < n. (83)

Thus forn even the maximum number of points that can be shattered may be written
bD2

max/M2
minc + 1.

If n is odd, at mostn points can be shattered whenD2
max/M2

min = (n− 1)2(n + 1)/n2.
However, the quantity on the right hand side satisfies

n − 2 < (n − 1)2(n + 1)/n2 < n − 1 (84)

for all integern > 1. Thus forn odd the largest number of points that can be shattered
is certainly bounded above bydD2

max/M2
mine + 1, and from the above this bound is also

satisfied whenn is even. Hence in general the VC dimensionh of gap tolerant classifiers
must satisfy

h ≤ dD2
max

M2
min

e + 1. (85)

This result, together withh ≤ d + 1, concludes the proof.

7.2. Gap Tolerant Classifiers, Structural Risk Minimization, and SVMs

Let’s see how we can do structural risk minimization with gap tolerant classifiers. We need
only consider that subset of theΦ, call it ΦS , for which training “succeeds”, where by
success we mean that all training data are assigned a label∈ {±1} (note that these labels do
not have to coincide with the actual labels, i.e. training errors are allowed). WithinΦS , find
the subset which gives the fewest training errors - call this number of errorsNmin. Within

154 BURGES

that subset, find the functionφ which gives maximum margin (and hence the lowest bound
on the VC dimension). Note the value of the resulting risk bound (the right hand side of
Eq. (3), using the bound on the VC dimension in place of the VC dimension). Next, within
ΦS , find that subset which givesNmin + 1 training errors. Again, within that subset, find
theφ which gives the maximum margin, and note the corresponding risk bound. Iterate,
and take that classifier which gives the overall minimum risk bound.

An alternative approach is to divide the functionsΦ into nested subsetsΦi, i ∈ Z, i ≥ 1,
as follows: allφ ∈ Φi have{D, M} satisfyingdD2/M2e ≤ i. Thus the family of functions
in Φi has VC dimension bounded above by min(i, d)+1. Note also thatΦi ⊂ Φi+1. SRM
then proceeds by taking thatφ for which training succeeds in each subset and for which
the empirical risk is minimized in that subset, and again, choosing thatφ which gives the
lowest overall risk bound.

Note that it is essential to these arguments that the bound (3) holds foranychosen decision
function, not just the one that minimizes the empirical risk (otherwise eliminating solutions
for which some training pointx satisfiesφ(x) = 0 would invalidate the argument).

The resulting gap tolerant classifier is in fact a special kind of support vector machine
which simply does not count data falling outside the sphere containing all the training data,
or inside the separating margin, as an error. It seems very reasonable to conclude that
support vector machines, which are trained with very similar objectives, also gain a similar
kind of capacity control from their training. However, a gap tolerant classifier is not an
SVM, and so the argument does not constitute a rigorous demonstration of structural risk
minimization for SVMs. The original argument for structural risk minimization for SVMs
is known to be flawed, since the structure there is determined by the data (see (Vapnik,
1995), Section 5.11). I believe that there is a further subtle problem with the original
argument. The structure is defined so that no training points are members of the margin set.
However, one must still specify how test points that fall into the margin are to be labeled.
If one simply assigns the same, fixed class to them (say +1), then the VC dimension will
be higher21 than the bound derived in Theorem 6. However, the same is true if one labels
them all as errors (see the Appendix). If one labels them all as “correct”, one arrives at gap
tolerant classifiers.

On the other hand, it is known how to do structural risk minimization for systems where
the structure does depend on the data (Shawe-Taylor et al., 1996a; Shawe-Taylor et al.,
1996b). Unfortunately the resulting bounds are much looser than the VC bounds above,
which are already very loose (we will examine a typical case below where the VC bound
is a factor of 100 higher than the measured test error). Thus at the moment structural risk
minimization alone does not provide arigorous explanation as to why SVMs often have
good generalization performance. However, the above arguments strongly suggest that
algorithms that minimizeD2/M2 can be expected to give better generalization performance.
Further evidence for this is found in the following theorem of (Vapnik, 1998), which we
quote without proof22:

Theorem 7 For optimal hyperplanes passing through the origin, we have

E[P (error)] ≤ E[D2/M2]
l

(86)

SUPPORT VECTOR MACHINES 155

whereP (error) is the probability of error on the test set, the expectation on the left is
over all training sets of sizel − 1, and the expectation on the right is over all training sets
of sizel.

However, in order for these observations to be useful for real problems, we need a way
to compute the diameter of the minimal enclosing sphere described above, for any number
of training points and for any kernel mapping.

7.3. How to Compute the Minimal Enclosing Sphere

Again letΦ be the mapping to the embedding spaceH. We wish to compute the radius
of the smallest sphere inH which encloses the mapped training data: that is, we wish to
minimizeR2 subject to

‖Φ(xi) − C‖2 ≤ R2 ∀i (87)

whereC ∈ H is the (unknown) center of the sphere. Thus introducing positive Lagrange
multipliersλi, the primal Lagrangian is

LP = R2 −
∑

i

λi(R2 − ‖Φ(xi) − C‖2). (88)

This is again a convex quadratic programming problem, so we can instead maximize the
Wolfe dual

LD =
∑

i

λiK(xi, xi) −
∑
i,j

λiλjK(xi, xj) (89)

(where we have again replacedΦ(xi) · Φ(xj) by K(xi, xj)) subject to:

∑
i

λi = 1 (90)

λi ≥ 0 (91)

with solution given by

C =
∑

i

λiΦ(xi). (92)

Thus the problem is very similar to that of support vector training, and in fact the code
for the latter is easily modified to solve the above problem. Note that we were in a sense
“lucky”, because the above analysis shows us that thereexistsan expansion (92) for the
center; there is noa priori reason why we should expect that the center of the sphere inH
should be expressible in terms of the mapped training data in this way. The same can be
said of the solution for the support vector problem, Eq. (46). (Had we chosen some other
geometrical construction, we might not have been so fortunate. Consider the smallest area
equilateral triangle containing two given points inR2. If the points’ position vectors are
linearly dependent, the center of the triangle cannot be expressed in terms of them.)

156 BURGES

Figure 13.Support vectors (circles) can become errors (cross) after removal and re-training (the dotted line denotes
the new decision surface).

7.4. A Bound from Leave-One-Out

(Vapnik, 1995) gives an alternative bound on the actual risk of support vector machines:

E[P (error)] ≤ E[Number of support vectors]
Number of training samples

, (93)

whereP (error) is the actual risk for a machine trained onl− 1 examples,E[P (error)]
is the expectation of the actual risk over all choices of training set of sizel − 1, and
E[Number of support vectors] is the expectation of the number of support vectors over all
choices of training sets of sizel. It’s easy to see how this bound arises: consider the typical
situation after training on a given training set, shown in Figure 13.

We can get an estimate of the test error by removing one of the training points, re-training,
and then testing on the removed point; and then repeating this, for all training points. From
the support vector solution we know that removing any training points that are not support
vectors (the latter include the errors) will have no effect on the hyperplane found. Thus
the worst that can happen is that every support vector will become an error. Taking the
expectation over all such training sets therefore gives an upper bound on the actual risk, for
training sets of sizel − 1.

Although elegant, I have yet to find a use for this bound. There seem to be many situations
where the actual error increases even though the number of support vectors decreases, so
the intuitive conclusion (systems that give fewer support vectors give better performance)
often seems to fail. Furthermore, although the bound can be tighter than that found using
the estimate of the VC dimension combined with Eq. (3), it can at the same time be less
predictive, as we shall see in the next Section.

7.5. VC, SV Bounds and the Actual Risk

Let us put these observations to some use. As mentioned above, training an SVM RBF
classifier will automatically give values for the RBF weights, number of centers, center

SUPPORT VECTOR MACHINES 157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900 1000

A
ct

ua
l R

is
k

: S
V

 B
ou

nd
 :

V
C

 B
ou

nd

Sigma Squared

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 100 200 300 400 500 600 700 800 900 1000

V
C

 B
ou

nd
 :

A
ct

ua
l R

is
k

*
10

0

Sigma Squared

Figure 14.The VC bound can be predictive even when loose.

positions, and threshold. For Gaussian RBFs, there is only one parameter left: the RBF
width (σ in Eq. (80)) (we assume here only one RBF width for the problem). Can we
find the optimal value for that too, by choosing thatσ which minimizesD2/M2? Figure
14 shows a series of experiments done on 28x28 NIST digit data, with 10,000 training
points and 60,000 test points. The top curve in the left hand panel shows the VC bound
(i.e. the bound resulting from approximating the VC dimension in Eq. (3)23 by Eq. (85)),
the middle curve shows the bound from leave-one-out (Eq. (93)), and the bottom curve
shows the measured test error. Clearly, in this case, the bounds are very loose. The right
hand panel shows just the VC bound (the top curve, forσ2 > 200), together with the test
error, with the latter scaled up by a factor of 100 (note that the two curves cross). It is
striking that the two curves have minima in the same place: thus in this case, the VC bound,
although loose, seems to be nevertheless predictive. Experiments on digits 2 through 9
showed that the VC bound gave a minimum for whichσ2 was within a factor of two of that
which minimized the test error (digit 1 was inconclusive). Interestingly, in those cases the
VC bound consistently gave a lower prediction forσ2 than that which minimized the test
error. On the other hand, the leave-one-out bound, although tighter, does not seem to be
predictive, since it had no minimum for the values ofσ2 tested.

8. Limitations

Perhaps the biggest limitation of the support vector approach lies in choice of the kernel.
Once the kernel is fixed, SVM classifiers have only one user-chosen parameter (the error
penalty), but the kernel is a very big rug under which to sweep parameters. Some work
has been done on limiting kernels using prior knowledge (Sch¨olkopf et al., 1998a; Burges,
1998), but the best choice of kernel for a given problem is still a research issue.

A second limitation is speed and size, both in training and testing. While the speed
problem in test phase is largely solved in (Burges, 1996), this still requires two training
passes. Training for very large datasets (millions of support vectors) is an unsolved problem.

158 BURGES

Discrete data presents another problem, although with suitable rescaling excellent results
have nevertheless been obtained (Joachims, 1997). Finally, although some work has been
done on training a multiclass SVM in one step24, the optimal design for multiclass SVM
classifiers is a further area for research.

9. Extensions

We very briefly describe two of the simplest, and most effective, methods for improving
the performance of SVMs.

The virtual support vector method (Sch¨olkopf, Burges and Vapnik, 1996; Burges and
Schölkopf, 1997), attempts to incorporate known invariances of the problem (for example,
translation invariance for the image recognition problem) by first training a system, and then
creating new data by distorting the resulting support vectors (translating them, in the case
mentioned), and finally training a new system on the distorted (and the undistorted) data.
The idea is easy to implement and seems to work better than other methods for incorporating
invariances proposed so far.

The reduced set method (Burges, 1996; Burges and Sch¨olkopf, 1997) was introduced to
address the speed of support vector machines in test phase, and also starts with a trained
SVM. The idea is to replace the sum in Eq. (46) by a similar sum, where instead of support
vectors, computed vectors (which are not elements of the training set) are used, and instead
of the αi, a different set of weights are computed. The number of parameters is chosen
beforehand to give the speedup desired. The resulting vector is still a vector inH, and
the parameters are found by minimizing the Euclidean norm of the difference between the
original vectorw and the approximation to it. The same technique could be used for SVM
regression to find much more efficient function representations (which could be used, for
example, in data compression).

Combining these two methods gave a factor of 50 speedup (while the error rate increased
from 1.0% to 1.1%) on the NIST digits (Burges and Sch¨olkopf, 1997).

10. Conclusions

SVMs provide a new approach to the problem of pattern recognition (together with re-
gression estimation and linear operator inversion) with clear connections to the underlying
statistical learning theory. They differ radically from comparable approaches such as neural
networks: SVM training always finds a global minimum, and their simple geometric inter-
pretation provides fertile ground for further investigation. An SVM is largely characterized
by the choice of its kernel, and SVMs thus link the problems they are designed for with a
large body of existing work on kernel based methods. I hope that this tutorial will encourage
some to explore SVMs for themselves.

Acknowledgments

I’m very grateful to P. Knirsch, C. Nohl, E. Osuna, E. Rietman, B. Sch¨olkopf, Y. Singer, A.
Smola, C. Stenard, and V. Vapnik, for their comments on the manuscript. Thanks also to

SUPPORT VECTOR MACHINES 159

the reviewers, and to the Editor, U. Fayyad, for extensive, useful comments. Special thanks
are due to V. Vapnik, under whose patient guidance I learned the ropes; to A. Smola and
B. Schölkopf, for many interesting and fruitful discussions; and to J. Shawe-Taylor and D.
Schuurmans, for valuable discussions on structural risk minimization.

Appendix

A.1. Proofs of Theorems

We collect here the theorems stated in the text, together with their proofs. The Lemma has
a shorter proof using a “Theorem of the Alternative,” (Mangasarian, 1969) but we wished
to keep the proofs as self-contained as possible.

Lemma 1 Two sets of points inRn may be separated by a hyperplane if and only if the
intersection of their convex hulls is empty.

Proof: We allow the notions of points inRn, and position vectors of those points, to be
used interchangeably in this proof. LetCA, CB be the convex hulls of two sets of points
A, B in Rn. Let A − B denote the set of points whose position vectors are given by
a− b, a ∈ A, b ∈ B (note thatA−B does not contain the origin), and letCA −CB have
the corresponding meaning for the convex hulls. Then showing thatA andB are linearly
separable (separable by a hyperplane) is equivalent to showing that the setA−B is linearly
separable from the originO. For suppose the latter: then∃ w ∈ Rn, b ∈ R, b < 0 such
thatx · w + b > 0 ∀x ∈ A − B. Now pick somey ∈ B, and denote the set of all points
a− b + y, a ∈ A, b ∈ B by A − B + y. Thenx · w + b > y · w ∀x ∈ A − B + y, and
clearlyy ·w + b < y ·w, so the setsA−B + y andy are linearly separable. Repeating this
process shows thatA − B is linearly separable from the origin if and only ifA andB are
linearly separable.

We now show that, ifCA

⋂
CB = ∅, thenCA − CB is linearly separable from the

origin. ClearlyCA − CB does not contain the origin. FurthermoreCA − CB is convex,
since∀x1 = a1 − b1, x2 = a2 − b2, λ ∈ [0, 1], a1, a2 ∈ CA, b1, b2 ∈ CB , we have
(1−λ)x1+λx2 = ((1−λ)a1+λa2)−((1−λ)b1+λb2) ∈ CA−CB . Hence it is sufficient
to show that any convex setS, which does not containO, is linearly separable fromO.
Let xmin ∈ S be that point whose Euclidean distance fromO, ‖xmin‖, is minimal. (Note
there can be only one such point, since if there were two, the chord joining them, which
also lies inS, would contain points closer toO.) We will show that∀x ∈ S, x · xmin > 0.
Suppose∃ x ∈ S such thatx · xmin ≤ 0. Let L be the line segment joiningxmin andx.
Then convexity implies thatL ⊂ S. ThusO /∈ L, since by assumptionO /∈ S. Hence the
three pointsO, x andxmin form an obtuse (or right) triangle, with obtuse (or right) angle
occurring at the pointO. Definen̂ ≡ (x − xmin)/‖x − xmin‖. Then the distance from
the closest point inL to O is ‖xmin‖2 − (xmin · n̂)2, which is less than‖xmin‖2. Hence
x · xmin > 0 andS is linearly separable fromO. ThusCA −CB is linearly separable from
O, anda fortiori A−B is linearly separable fromO, and thusA is linearly separable from
B.

It remains to show that, if the two sets of pointsA,B are linearly separable, the intersection
of their convex hulls if empty. By assumption there exists a pairw ∈ Rn, b ∈ R, such that

160 BURGES

∀ai ∈ A, w·ai+b > 0and∀bi ∈ B, w·bi+b < 0. Consider a general pointx ∈ CA. It may
be writtenx =

∑
i λiai,

∑
λi = 1, 0 ≤ λi ≤ 1. Thenw ·x+ b =

∑
i λi{w ·ai + b} > 0.

Similarly, for pointsy ∈ CB , w · y + b < 0. HenceCA

⋂
CB = ∅, since otherwise we

would be able to find a pointx = y which simultaneously satisfies both inequalities.

Theorem 1: Consider some set ofm points inRn. Choose any one of the points as
origin. Then them points can be shattered by oriented hyperplanes if and only if the
position vectors of the remaining points are linearly independent.
Proof: Label the originO, and assume that them − 1 position vectors of the remaining
points are linearly independent. Consider any partition of them points into two subsets,
S1 andS2, of orderm1 andm2 respectively, so thatm1 + m2 = m. Let S1 be the subset
containingO. Then the convex hullC1 of S1 is that set of points whose position vectorsx
satisfy

x =
m1∑
i=1

αis1i,

m1∑
i=1

αi = 1, αi ≥ 0 (A.1)

where thes1i are the position vectors of them1 points inS1 (including the null position
vector of the origin). Similarly, the convex hullC2 of S2 is that set of points whose position
vectorsx satisfy

x =
m2∑
i=1

βis2i,

m2∑
i=1

βi = 1, βi ≥ 0 (A.2)

where thes2i are the position vectors of them2 points inS2. Now suppose thatC1 and
C2 intersect. Then there exists anx ∈ Rn which simultaneously satisfies Eq. (A.1) and
Eq. (A.2). Subtracting these equations gives a linear combination of them − 1 non-null
position vectors which vanishes, which contradicts the assumption of linear independence.
By the lemma, sinceC1 andC2 do not intersect, there exists a hyperplane separatingS1

andS2. Since this is true for any choice of partition, them points can be shattered.
It remains to show that if them−1 non-null position vectors are not linearly independent,

then them points cannot be shattered by oriented hyperplanes. If them−1 position vectors
are not linearly independent, then there existm − 1 numbers,γi, such that

m−1∑
i=1

γisi = 0 (A.3)

If all theγi are of the same sign, then we can scale them so thatγi ∈ [0, 1] and
∑

i γi = 1.
Eq. (A.3) then states that the origin lies in the convex hull of the remaining points; hence,
by the lemma, the origin cannot be separated from the remaining points by a hyperplane,
and the points cannot be shattered.

If the γi are not all of the same sign, place all the terms with negativeγi on the right:∑
j∈I1

|γj |sj =
∑
k∈I2

|γk|sk (A.4)

SUPPORT VECTOR MACHINES 161

whereI1, I2 are the indices of the corresponding partition ofS\O (i.e. of the setS
with the origin removed). Now scale this equation so that either

∑
j∈I1

|γj | = 1 and∑
k∈I2

|γk| ≤ 1, or
∑

j∈I1
|γj | ≤ 1 and

∑
k∈I2

|γk| = 1. Suppose without loss of
generality that the latter holds. Then the left hand side of Eq. (A.4) is the position vector of
a point lying in the convex hull of the points{⋃j∈I1

sj}
⋃

O (or, if the equality holds, of
the points{⋃j∈I1

sj}), and the right hand side is the position vector of a point lying in the
convex hull of the points

⋃
k∈I2

sk, so the convex hulls overlap, and by the lemma, the two
sets of points cannot be separated by a hyperplane. Thus them points cannot be shattered.

Theorem 4: If the data isd-dimensional (i.e.L = Rd), the dimension of the minimal
embedding space, for homogeneous polynomial kernels of degreep (K(x1, x2) = (x1 ·
x2)p, x1, x2 ∈ Rd), is

(
d+p−1

p

)
.

Proof: First we show that the the number of components ofΦ(x) is
(
p+d−1

p

)
. Label the

components ofΦ as in Eq. (79). Then a component is uniquely identified by the choice
of thed integersri ≥ 0,

∑d
i=1 ri = p. Now considerp objects distributed amongstd − 1

partitions (numbered1 throughd − 1), such that objects are allowed to be to the left of
all partitions, or to the right of all partitions. Supposem objects fall between partitionsq
andq + 1. Let this correspond to a termxm

q+1 in the product in Eq. (79). Similarly,m
objects falling to the left of all partitions corresponds to a termxm

1 , andm objects falling
to the right of all partitions corresponds to a termxm

d . Thus the number of distinct terms
of the formxr1

1 xr2
2 · · ·xrd

d ,
∑d

i=1 ri = p, ri ≥ 0 is the number of way of distributing
the objects and partitions amongst themselves, modulo permutations of the partitions and
permutations of the objects, which is

(
p+d−1

p

)
.

Next we must show that the set of vectors with componentsΦr1r2···rd
(x) span the spaceH.

This follows from the fact that the components ofΦ(x) are linearly independent functions.
For suppose instead that the image ofΦ acting onx ∈ L is a subspace ofH. Then there
exists a fixed nonzero vectorV ∈ H such that

dim(H)∑
i=1

ViΦi(x) = 0 ∀x ∈ L. (A.5)

Using the labeling introduced above, consider a particular component ofΦ:

Φr1r2···rd
(x),

d∑
i=1

ri = p. (A.6)

Since Eq. (A.5) holds for allx, and since the mappingΦ in Eq. (79) certainly has all
derivatives defined, we can apply the operator

(
∂

∂x1
)r1 · · · (∂

∂xd
)rd (A.7)

to Eq. (A.5), which will pick that one term with corresponding powers of thexi in Eq.
(79), giving

162 BURGES

Vr1r2···rd
= 0. (A.8)

Since this is true for all choices ofr1, · · · , rd such that
∑d

i=1 ri = p, every component
of V must vanish. Hence the image ofΦ acting onx ∈ L spansH.

A.2. Gap Tolerant Classifiers and VC Bounds

The following point is central to the argument. One normally thinks of a collection of
points as being “shattered” by a set of functions, if for any choice of labels for the points,
a function from the set can be found which assigns those labels to the points. The VC
dimension of that set of functions is then defined as the maximum number of points that
can be so shattered. However, consider a slightly different definition. Let a set of points
be shattered by a set of functions if for any choice of labels for the points, a function from
the set can be found which assigns theincorrect labels to all the points. Again let the VC
dimension of that set of functions be defined as the maximum number of points that can be
so shattered.

It is in fact this second definition (which we adopt from here on) that enters the VC bound
proofs (Vapnik, 1979; Devroye, Gy¨orfi and Lugosi, 1996). Of course for functions whose
range is{±1} (i.e. all data will be assigned either positive or negative class), the two
definitions are the same. However, if all points falling in some region are simply deemed to
be “errors”, or “correct”, the two definitions are different. As a concrete example, suppose
we define “gap intolerant classifiers”, which are like gap tolerant classifiers, but which label
all points lying in the margin or outside the sphere aserrors. Consider again the situation
in Figure 12, but assign positive class to all three points. Then a gap intolerant classifier
with margin width greater than the ball diameter cannot shatter the points if we use the first
definition of “shatter”, but can shatter the points if we use the second (correct) definition.

With this caveat in mind, we now outline how the VC bounds can apply to functions with
range{±1, 0}, where the label0 means that the point is labeled “correct.” (The bounds
will also apply to functions where0 is defined to mean “error”, but the corresponding VC
dimension will be higher, weakening the bound, and in our case, making it useless). We
will follow the notation of (Devroye, Gy¨orfi and Lugosi, 1996).

Consider pointsx ∈ Rd, and letp(x) denote a density onRd. Let φ be a function onRd

with range{±1, 0}, and letΦ be a set of such functions. Let eachx have an associated
labelyx ∈ {±1}. Let {x1, · · · , xn} be any finite number of points inRd: then we require
Φ to have the property that there exists at least oneφ ∈ Φ such thatφ(xi) ∈ {±1} ∀ xi.
For givenφ, define the set of pointsA by

A = {x : yx = 1, φ(x) = −1} ∪ {x : yx = −1, φ(x) = 1} (A.9)

We require that theφ be such that all setsA are measurable. LetA denote the set of all
A.

Definition: Let xi, i = 1, · · · , n be n points. We define the empirical risk for the set
{xi, φ} to be

SUPPORT VECTOR MACHINES 163

νn({xi, φ}) = (1/n)
n∑

i=1

Ixi∈A. (A.10)

whereI is the indicator function. Note that the empirical risk is zero ifφ(xi) = 0 ∀ xi.
Definition: We define the actual risk for the functionφ to be

ν(φ) = P (x ∈ A). (A.11)

Note also that those pointsx for whichφ(x) = 0 do not contribute to the actual risk.
Definition: For fixed(x1, · · · , xn) ∈ Rd, let NA be the number of different sets in

{{x1, · · · , xn} ∩ A : A ∈ A} (A.12)

where the setsA are defined above. The n-th shatter coefficient ofA is defined

s(A, n) = max
x1,···,xn∈{Rd}n

NA(x1, · · · , xn). (A.13)

We also define the VC dimension for the classA to be the maximum integerk ≥ 1 for
whichs(A, k) = 2k.

Theorem 8 (adapted from Devroye, Györfi and Lugosi, 1996, Theorem 12.6):Given
νn({xi, φ}), ν(φ) ands(A, n) defined above, and givenn points(x1, ..., xn) ∈ Rd, let Φ′

denote that subset ofΦ such that allφ ∈ Φ′ satisfyφ(xi) ∈ {±1} ∀ xi. (This restriction
may be viewed as part of the training algorithm). Then for any suchφ,

P (|νn({xi, φ}) − ν(φ)| > ε) ≤ 8s(A, n) exp−nε2/32 (A.14)

The proof is exactly that of (Devroye, Gy¨orfi and Lugosi, 1996), Sections 12.3, 12.4 and
12.5, Theorems 12.5 and 12.6. We have dropped the “sup” to emphasize that this holds
for any of the functionsφ. In particular, it holds for thoseφ which minimize the empirical
error and for which all training data take the values{±1}. Note however that the proof only
holds for the second definition of shattering given above. Finally, note that the usual form
of the VC bounds is easily derived from Eq. (A.14) by usings(A, n) ≤ (en/h)h (whereh

is the VC dimension) (Vapnik, 1995), settingη = 8s(A, n) exp−nε2/32, and solving forε.
Clearly these results apply to our gap tolerant classifiers of Section 7.1. For them, a

particular classifierφ ∈ Φ is specified by a set of parameters{B, H, M}, whereB is a
ball in Rd, D ∈ R is the diameter ofB, H is ad − 1 dimensional oriented hyperplane in
Rd, andM ∈ R is a scalar which we have called the margin.H itself is specified by its
normal (whose direction specifies which pointsH+ (H−) are labeled positive (negative)
by the function), and by the minimal distance fromH to the origin. For a givenφ ∈ Φ,
the margin setSM is defined as the set consisting of those points whose minimal distance

164 BURGES

to H is less thanM/2. DefineZ ≡ S̄M

⋂
B, Z+ ≡ Z

⋂
H+, andZ− ≡ Z

⋂
H−. The

functionφ is then defined as follows:

φ(x) = 1 ∀x ∈ Z+, φ(x) = −1 ∀x ∈ Z−, φ(x) = 0 otherwise (A.15)

and the corresponding setsA as in Eq. (A.9).

Notes

1. K. Müller, Private Communication

2. The reader in whom this elicits a sinking feeling is urged to study (Strang, 1986; Fletcher, 1987; Bishop, 1995).
There is a simple geometrical interpretation of Lagrange multipliers: at a boundary corresponding to a single
constraint, the gradient of the function being extremized must be parallel to the gradient of the function whose
contours specify the boundary. At a boundary corresponding to the intersection of constraints, the gradient
must be parallel to a linear combination (non-negative in the case of inequality constraints) of the gradients of
the functions whose contours specify the boundary.

3. In this paper, the phrase “learning machine” will be used for any function estimation algorithm, “training” for
the parameter estimation procedure, “testing” for the computation of the function value, and “performance”
for the generalization accuracy (i.e. error rate as test set size tends to infinity), unless otherwise stated.

4. Given the name “test set,” perhaps we should also use “train set;” but the hobbyists got there first.

5. We use the term “oriented hyperplane” to emphasize that the mathematical object considered is the pair{H, n},
whereH is the set of points which lie in the hyperplane andn is a particular choice for the unit normal. Thus
{H, n} and{H,−n} are different oriented hyperplanes.

6. Such a set ofm points (which span anm−1 dimensional subspace of a linear space) are said to be “in general
position” (Kolmogorov, 1970). The convex hull of a set ofm points in general position defines anm − 1
dimensional simplex, the vertices of which are the points themselves.

7. The derivation of the bound assumes that the empirical risk converges uniformly to the actual risk as the
number of training observations increases (Vapnik, 1979). A necessary and sufficient condition for this is that
liml→∞ H(l)/l = 0, wherel is the number of training samples andH(l) is the VC entropy of the set of
decision functions (Vapnik, 1979; Vapnik, 1995). For any set of functions with infinite VC dimension, the VC
entropy isl log 2: hence for these classifiers, the required uniform convergence does not hold, and so neither
does the bound.

8. There is a nice geometric interpretation for the dual problem: it is basically finding the two closest points of
convex hulls of the two sets. See (Bennett and Bredensteiner, 1998).

9. One can define the torque to be

Γµ1...µn−2 = εµi...µnxµn−1Fµn (A.16)

where repeated indices are summed over on the right hand side, and whereε is the totally antisymmetric tensor
with ε1...n = 1. (Recall that Greek indices are used to denote tensor components). The sum of torques on
the decision sheet is then:∑

i

εµ1...µnsiµn−1Fiµn =
∑

i

εµ1...µnsiµn−1αiyiŵµn = εµ1...µnwµn−1 ŵµn = 0 (A.17)

10. In the original formulation (Vapnik, 1979) they were called “extreme vectors.”

11. By “decision function” we mean a functionf(x) whose sign represents the class assigned to data pointx.

12. By “intrinsic dimension” we mean the number of parameters required to specify a point on the manifold.

13. Alternatively one can argue that, given the form of the solution, the possiblew must lie in a subspace of
dimensionl.

SUPPORT VECTOR MACHINES 165

14. Work in preparation.

15. Thanks to A. Smola for pointing this out.

16. Many thanks to one of the reviewers for pointing this out.

17. The core quadratic optimizer is about 700 lines of C++. The higher level code (to handle caching of dot
products, chunking, IO, etc) is quite complex and considerably larger.

18. Thanks to L. Kaufman for providing me with these results.

19. Recall that the “ceiling” signde means “smallest integer greater than or equal to.” Also, there is a typo in the
actual formula given in (Vapnik, 1995), which I have corrected here.

20. Note, for example, that the distance between every pair of vertices of the symmetric simplex is the same: see
Eq. (26). However, a rigorous proof is needed, and as far as I know is lacking.

21. Thanks to J. Shawe-Taylor for pointing this out.

22. V. Vapnik, Private Communication.

23. There is an alternative bound one might use, namely that corresponding to the set of totally bounded non-
negative functions (Equation (3.28) in (Vapnik, 1995)). However, for loss functions taking the value zero or one,

and if the empirical risk is zero, this bound is looser than that in Eq. (3) wheneverh(log(2l/h)+1)−log(η/4)
l

>

1/16, which is the case here.

24. V. Blanz, Private Communication

References

Aizerman, M.A., Braverman, E.M. and Rozoner, L.I. Theoretical foundations of the potential function method in
pattern recognition learning.Automation and Remote Control, 25:821–837, 1964.

Anthony, M. and Biggs, N. Pac learning and neural networks. InThe Handbook of Brain Theory and Neural
Networks, pages 694–697, 1995.

Bennett, K.P. and Bredensteiner, E. Geometry in learning. InGeometry at Work, page to appear, Washington,
D.C., 1998. Mathematical Association of America.

Bishop, C.M.Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
Blanz, V., Sch¨olkopf, B., Bülthoff, H., Burges, C., Vapnik, V. and Vetter, T. Comparison of view–based object

recognition algorithms using realistic 3d models. In C. von der Malsburg, W. von Seelen, J. C. Vorbr¨uggen, and
B. Sendhoff, editors,Artificial Neural Networks — ICANN’96, pages 251 – 256, Berlin, 1996. Springer Lecture
Notes in Computer Science, Vol. 1112.

Boser, B.E., Guyon, I.M. and Vapnik, V. A training algorithm for optimal margin classifiers. InFifth Annual
Workshop on Computational Learning Theory, Pittsburgh, 1992. ACM.

Bunch, J.R. and Kaufman, L. Some stable methods for calculating inertia and solving symmetric linear systems.
Mathematics of computation, 31(137):163–179, 1977.

Bunch, J.R. and Kaufman, L. A computational method for the indefinite quadratic programming problem.Linear
Algebra and its Applications, 34:341–370, 1980.

Burges, C.J.C. and Sch¨olkopf, B. Improving the accuracy and speed of support vector learning machines. In
M. Mozer, M. Jordan, and T. Petsche, editors,Advances in Neural Information Processing Systems 9, pages
375–381, Cambridge, MA, 1997. MIT Press.

Burges, C.J.C. Simplified support vector decision rules. In Lorenza Saitta, editor,Proceedings of the Thirteenth
International Conference on Machine Learning, pages 71–77, Bari, Italy, 1996. Morgan Kaufman.

Burges, C.J.C. Geometry and invariance in kernel based methods. InAdvances in Kernel Methods - Support Vector
Learning,Bernhard Sch¨olkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge,
MA, 1998 (to appear).

Burges, C.J.C., Knirsch, P. and Haratsch, R. Support vector web page: http://svm.research.bell-labs.com. Tech-
nical report, Lucent Technologies, 1996.

Cortes, C. and Vapnik, V. Support vector networks.Machine Learning, 20:273–297, 1995.
Courant, R. and Hilbert, D.Methods of Mathematical Physics. Interscience, 1953.
Devroye, L., Györfi, L. and Lugosi, G.A Probabilistic Theory of Pattern Recognition. Springer Verlag, Applica-

tions of Mathematics Vol. 31, 1996.

166 BURGES

Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V. Support vector regression machines.Advances
in Neural Information Processing Systems, 9:155–161, 1997.

Fletcher, R.Practical Methods of Optimization. John Wiley and Sons, Inc., 2nd edition, 1987.
Geman, S. and Bienenstock, E. Neural networks and the bias / variance dilemma.Neural Computation, 4:1–58,

1992.
Girosi, F. An equivalence between sparse approximation and support vector machines.Neural Computation (to

appear); CBCL AI Memo 1606, MIT, 1998.
Guyon, I., Vapnik, V., Boser, B., Bottou, L. and Solla. S.A. Structural risk minimization for character recognition.

Advances in Neural Information Processing Systems, 4:471–479, 1992.
Halmos, P.R.A Hilbert Space Problem Book. D. Van Nostrand Company, Inc., 1967.
Horn, R.A. and Johnson, C.R.Matrix Analysis. Cambridge University Press, 1985.
Joachims, T. Text categorization with support vector machines. Technical report, LS VIII Number 23, University

of Dortmund, 1997. ftp://ftp-ai.informatik.uni-dortmund.de/pub/Reports/report23.ps.Z.
Kaufman, L. Solving the quadratic programming problem arising in support vector classification. InAdvances

in Kernel Methods - Support Vector Learning,Bernhard Sch¨olkopf, Chrisopher J.C. Burges and Alexander J.
Smola (eds.), MIT Press, Cambridge, MA, 1998 (to appear).

Kolmogorov, A.N. and Fomin, S.V.Introductory Real Analysis. Prentice-Hall, Inc., 1970.
Mangarasian, O.L.Nonlinear Programming. McGraw Hill, New York, 1969.
McCormick, G.P.Non Linear Programming: Theory, Algorithms and Applications. John Wiley and Sons, Inc.,

1983.
Montgomery, D.C. and Peck, E.A.Introduction to Linear Regression Analysis. John Wiley and Sons, Inc., 2nd

edition, 1992.
Moré and Wright.Optimization Guide. SIAM, 1993.
Moré, J.J. and Toraldo, G. On the solution of large quadratic programming problems with bound constraints.

SIAM J. Optimization, 1(1):93–113, 1991.
Mukherjee, S., Osuna, E. and Girosi, F. Nonlinear prediction of chaotic time series using a support vector machine.

In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing 7, pages 511–519, Amelia
Island, FL, 1997.

Müller, K.-R., Smola, A., R¨atsch, G., Sch¨olkopf, B., Kohlmorgen, J. and Vapnik, V. Predicting time series with
support vector machines. InProceedings, International Conference on Artificial Neural Networks, page 999.
Springer Lecture Notes in Computer Science, 1997.

Osuna, E., Freund, R. and Girosi, F. An improved training algorithm for support vector machines. InProceedings
of the 1997 IEEE Workshop on Neural Networks for Signal Processing, Eds. J. Principe, L. Giles, N. Morgan,
E. Wilson, pages 276 – 285, Amelia Island, FL, 1997.

Osuna, E., Freund, R. and Girosi, F. Training support vector machines: an application to face detection. InIEEE
Conference on Computer Vision and Pattern Recognition, pages 130 – 136, 1997.

Osuna, E. and Girosi. F. Reducing the run-time complexity of support vector machines. InInternational
Conference on Pattern Recognition (submitted), 1998.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vettering, W.T.Numerical recipes in C: the art of scientific
computing. Cambridge University Press, 2nd edition, 1992.

Schmidt, M. Identifying speaker with support vector networks. InInterface ’96 Proceedings, Sydney, 1996.
Schölkopf, B. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.
Schölkopf, B., Burges, C. and Vapnik, V. Extracting support data for a given task. In U. M. Fayyad and

R. Uthurusamy, editors,Proceedings, First International Conference on Knowledge Discovery & Data Mining.
AAAI Press, Menlo Park, CA, 1995.

Schölkopf, B., Burges, C. and Vapnik, V. Incorporating invariances in support vector learning machines. In
C. von der Malsburg, W. von Seelen, J. C. Vorbr¨uggen, and B. Sendhoff, editors,Artificial Neural Networks —
ICANN’96, pages 47 – 52, Berlin, 1996. Springer Lecture Notes in Computer Science, Vol. 1112.

Schölkopf, B., Simard, P., Smola, A. and Vapnik, V. Prior knowledge in support vector kernels. In M. Jordan,
M. Kearns, and S. Solla, editors,Advances in Neural Information Processing Systems 10, Cambridge, MA,
1998. MIT Press. In press.

Schölkopf, B., Smola, A. and M¨uller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem.Neural
Computation, 1998. In press.

Schölkopf, B., Smola, A., M¨uller, K.-R., Burges, C.J.C. and Vapnik, V. Support vector methods in learning and
feature extraction. InNinth Australian Congress on Neural Networks (to appear), 1998.

SUPPORT VECTOR MACHINES 167

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik. V. Comparing support vector
machines with gaussian kernels to radial basis function classifiers.IEEE Trans. Sign. Processing, 45:2758 –
2765, 1997.

Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C. and Anthony, M. A framework for structural risk minimization.
In Proceedings, 9th Annual Conference on Computational Learning Theory, pages 68–76, 1996.

Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C. and Anthony, M. Structural risk minimization over data-
dependent hierarchies. Technical report, NeuroCOLT Technical Report NC-TR-96-053, 1996.

Smola, A. and Sch¨olkopf, B. On a kernel-based method for pattern recognition, regression, approximation and
operator inversion.Algorithmica (to appear), 1998.

Smola, A., Sch¨olkopf, B. and Müller, K.-R. General cost functions for support vector regression. InNinth
Australian Congress on Neural Networks (to appear), 1998.

Smola, A.J., Sch¨olkopf, B. and Müller, K.-R. The connection between regularization operators and support vector
kernels.Neural Networks (to appear), 1998.

Stitson, M.O., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C. and Weston, J. Support vector anova decom-
position. Technical report, Royal Holloway College, Report number CSD-TR-97-22, 1997.

Strang, G.T.Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.
Vanderbei, R.J. Interior point methods : Algorithms and formulations.ORSA J. Computing, 6(1):32–34, 1994.
Vanderbei, R.J. LOQO: An interior point code for quadratic programming. Technical report, Program in Statistics

& Operations Research, Princeton University, 1994.
Vapnik, V. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, 1979. (English

translation: Springer Verlag, New York, 1982).
Vapnik, V. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.
Vapnik, V. Statistical Learning Theory. John Wiley and Sons, Inc., New York, in preparation.
Vapnik, V., Golowich, S. and Smola, A. Support vector method for function approximation, regression estimation,

and signal processing.Advances in Neural Information Processing Systems, 9:281–287, 1996.
G. Wahba. Support vector machines, reproducing kernel hilbert spaces and the randomized gacv. InAdvances

in Kernel Methods - Support Vector Learning, Bernhard Sch¨olkopf, Christopher J.C. Burges and Alexander J.
Smola (eds.), MIT Press, Cambridge, MA, 1998 (to appear).

Weston, J., Gammerman, A., Stitson, M.O., Vapnik, V., Vovk, V., and Watkins, C. Density estimation using
support vector machines. Technical report, Royal Holloway College, Report number CSD-TR-97-23, 1997.

Christopher J.C. Burgesis a Distinguished Member of Technical Staff at Bell Laboratories, Lucent Technologies.
Educated at Oxford, Brandeis and MIT as a particle physicist, he joined AT&T in 1986 and developed the routing
algorithm now used to route CCS7 signaling links. He has since worked on handwriting recognition systems now
used by several banks, and for the last few years has concentrated on the theory and applications of support vector
machines.

