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Mean Shift: A Robust Approach
Toward Feature Space Analysis

Dorin Comaniciu, Member, IEEE, and Peter Meer, Senior Member, IEEE

Abstract—A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate
arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean
shift. We prove for discrete data the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying
density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-
Watson estimator from kernel regression and the robust M-estimators of location is also established. Algorithms for two low-level vision
tasks, discontinuity preserving smoothing and image segmentation, are described as applications. In these algorithms, the only user
set parameter is the resolution of the analysis and either gray level or color images are accepted as input. Extensive experimental

results illustrate their excellent performance.

Index Terms—Mean shift, clustering, image segmentation, image smoothing, feature space, low-level vision.

1 INTRODUCTION

LOW—LEVEL computer vision tasks are misleadingly diffi-
cult. Incorrect results can be easily obtained since the
employed techniques often rely upon the user correctly
guessing the values for the tuning parameters. To improve
performance, the execution of low-level tasks should be task
driven, i.e., supported by independent high-level informa-
tion. This approach, however, requires that, first, the low-
level stage provides a reliable enough representation of the
input and that the feature extraction process be controlled
only by very few tuning parameters corresponding to
intuitive measures in the input domain.

Feature space-based analysis of images is a paradigm
which can achieve the above-stated goals. A feature space is
a mapping of the input obtained through the processing of
the data in small subsets at a time. For each subset, a
parametric representation of the feature of interest is
obtained and the result is mapped into a point in the
multidimensional space of the parameter. After the entire
input is processed, significant features correspond to denser
regions in the feature space, i.e., to clusters, and the goal of
the analysis is the delineation of these clusters.

The nature of the feature space is application dependent.
The subsets employed in the mapping can range from
individual pixels, as in the color space representation of an
image, to a set of quasi-randomly chosen data points, as in
the probabilistic Hough transform. Both the advantage and
the disadvantage of the feature space paradigm arise from
the global nature of the derived representation of the input.
On one hand, all the evidence for the presence of a
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significant feature is pooled together, providing excellent
tolerance to a noise level which may render local decisions
unreliable. On the other hand, features with lesser support
in the feature space may not be detected in spite of being
salient for the task to be executed. This disadvantage,
however, can be largely avoided by either augmenting the
feature space with additional (spatial) parameters from the
input domain or by robust postprocessing of the input
domain guided by the results of the feature space analysis.

Analysis of the feature space is application independent.
While there are a plethora of published clustering techni-
ques, most of them are not adequate to analyze feature
spaces derived from real data. Methods which rely upon
a priori knowledge of the number of clusters present
(including those which use optimization of a global
criterion to find this number), as well as methods which
implicitly assume the same shape (most often elliptical) for
all the clusters in the space, are not able to handle the
complexity of a real feature space. For a recent survey of
such methods, see [29, Section 8].

In Fig. 1, a typical example is shown. The color image in
Fig. 1a is mapped into the three-dimensional L*u*v* color
space (to be discussed in Section 4). There is a continuous
transition between the clusters arising from the dominant
colors and a decomposition of the space into elliptical tiles
will introduce severe artifacts. Enforcing a Gaussian
mixture model over such data is doomed to fail, e.g., [49],
and even the use of a robust approach with contaminated
Gaussian densities [67] cannot be satisfactory for such
complex cases. Note also that the mixture models require
the number of clusters as a parameter, which raises its own
challenges. For example, the method described in [45]
proposes several different ways to determine this number.

Arbitrarily structured feature spaces can be analyzed
only by nonparametric methods since these methods do not
have embedded assumptions. Numerous nonparametric
clustering methods were described in the literature and
they can be classified into two large classes: hierarchical
clustering and density estimation. Hierarchical clustering
techniques either aggregate or divide the data based on
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Fig. 1. Example of a feature space. (a) A 400 x 276 color image. (b) Corresponding L*u*v* color space with 110, 400 data points.

some proximity measure. See [28, Section 3.2] for a survey
of hierarchical clustering methods. The hierarchical meth-
ods tend to be computationally expensive and the definition
of a meaningful stopping criterion for the fusion (or
division) of the data is not straightforward.

The rationale behind the density estimation-based non-
parametric clustering approach is that the feature space can
be regarded as the empirical probability density function
(p.d.f.) of the represented parameter. Dense regions in the
feature space thus correspond to local maxima of the p.d.f.,
that is, to the modes of the unknown density. Once the
location of a mode is determined, the cluster associated
with it is delineated based on the local structure of the
feature space [25], [60], [63].

Our approach to mode detection and clustering is based on
the mean shift procedure, proposed in 1975 by Fukunaga and
Hostetler [21] and largely forgotten until Cheng’s paper [7]
rekindled interest in it. In spite of its excellent qualities, the
mean shift procedure does not seem to be known in statistical
literature. While the book [54, Section 6.2.2] discusses [21], the
advantages of employing a mean shift type procedure in
density estimation were only recently rediscovered [8].

As will be proven in the sequel, a computational module
based on the mean shift procedure is an extremely versatile
tool for feature space analysis and can provide reliable
solutions for many vision tasks. In Section 2, the mean shift
procedure is defined and its properties are analyzed. In
Section 3, the procedure is used as the computational
module for robust feature space analysis and implementa-
tional issues are discussed. In Section 4, the feature space
analysis technique is applied to two low-level vision tasks:
discontinuity preserving filtering and image segmentation.
Both algorithms can have as input either gray level or color
images and the only parameter to be tuned by the user is
the resolution of the analysis. The applicability of the mean
shift procedure is not restricted to the presented examples.
In Section 5, other applications are mentioned and the
procedure is put into a more general context.

2 THE MEAN SHIFT PROCEDURE

Kernel density estimation (known as the Parzen window
technique in pattern recognition literature [17, Section 4.3]) is
the most popular density estimation method. Given n data

points x;, i =1,...,n in the d-dimensional space R’ the
multivariate kernel density estimator with kernel K (x) and a
symmetric positive definite d x d bandwidth matrix H,
computed in the point x is given by

Fox) = 3 Kl — %), )

where
Ku(x)=[H|[? K(H *x). (2)

The d-variate kernel K(x) is a bounded function with
compact support satisfying [62, p. 95]

K(x)dx =1 lim x||'K(x) =0

R [l —o0

(3)
/ xK(x)dx =0 / xx| K(x)dx = cgT,
Rd Rd
where ¢y is a constant. The multivariate kernel can be
generated from a symmetric univariate kernel K (z) in two
different ways

d
K" (x) = [ ] Ki () K*(x) = araKa(x]),  (4)
i=1

where K”(x) is obtained from the product of the univariate
kernels and K*(x) from rotating K;(z) in R?, i.e.,, K°(x) is
radially symmetric. The constant a} =[5, Ki(||x[|)dx
assures that K¥(x) integrates to one, though this condition
can be relaxed in our context. Either type of multivariate
kernel obeys (3), but, for our purposes, the radially
symmetric kernels are often more suitable.

We are interested only in a special class of radially
symmetric kernels satisfying

K(x) = cpak((Ix]*), ()

in which case it suffices to define the function k(z) called
the profile of the kernel, only for x > 0. The normalization
constant ¢4, which makes K(x) integrate to one, is
assumed strictly positive.

Using a fully parameterized H increases the complexity
of the estimation [62, p. 106] and, in practice, the bandwidth
matrix H is chosen either as diagonal H = diag[h?,...,h2],
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or proportional to the identity matrix H = h’L. The clear
advantage of the latter case is that only one bandwidth
parameter ~ > 0 must be provided; however, as can be seen
from (2), then the validity of an Euclidean metric for the
feature space should be confirmed first. Employing only
one bandwidth parameter, the kernel density estimator (1)
becomes the well-known expression

0 = K (), )

The quality of a kernel density estimator is measured by
the mean of the square error between the density and its
estimate, integrated over the domain of definition. In practice,
however, only an asymptotic approximation of this measure
(denoted as AMISE) can be computed. Under the asympto-
tics, the number of data points n — oo, while the bandwidth
h— 0 at a rate slower than n~!. For both types of multivariate
kernels, the AMISE measure is minimized by the Epanechni-
kov kernel [51, p. 139], [62, p. 104] having the profile

1—z 0<z<1
Fe(z) = {O xz>1, (™)
which yields the radially symmetric kernel
1.1 2
Kp(x) = 426 (@d+2)A = [x[7)  [x] <1
5(x) { 0 otherwise, ®)

where ¢; is the volume of the unit d-dimensional sphere.
Note that the Epanechnikov profile is not differentiable at
the boundary. The profile

o () = exp (—%x) 2>0 )

yields the multivariate normal kernel

Ri(x) = (2m) " exp 5 (10)
for both types of composition (4). The normal kernel is often
symmetrically truncated to have a kernel with finite support.
While these two kernels will suffice for most applications
we are interested in, all the results presented below are valid
for arbitrary kernels within the conditions to be stated.
Employing the profile notation, the density estimator (6) can
be rewritten as
2
) . (11)

The first step in the analysis of a feature space with the
underlying density f(x) is to find the modes of this density.
The modes are located among the zeros of the gradient
V f(x) = 0 and the mean shift procedure is an elegant way
to locate these zeros without estimating the density.

At =S

2.1 Density Gradient Estimation

The density gradient estimator is obtained as the gradient of
the density estimator by exploiting the linearity of (11)

_ 201“1 & Ny X —X; 2
= ppdt2 - (x —x;)k (H h )
(12)

Vg (x) = Vg (x)

We define the function

g(z) = =K (x),

assuming that the derivative of the kernel profile k exists for
all z € [0,00), except for a finite set of points. Now, using
g(z) for profile, the kernel G(x) is defined as

6(x) = cqag(IxI°)

where ¢, 4 is the corresponding normalization constant. The
kernel K (x) was called the shadow of G(x) in [7] in a slightly
different context. Note that the Epanechnikov kernel is the
shadow of the uniform kernel, i.e., the d-dimensional unit
sphere, while the normal kernel and its shadow have the same
expression.

Introducing g(z) into (12) yields,

V k(%)
2
)

_ Zd § (Xi*X)g(HX;LXi
s
Se() )

T nhd+2? -
(15)

(13)

(14)

214 | X — X;
T phie? {290’ h

where >"" g(HX;""’ ) is assumed to be a positive number.
This condition is easy to satisfy for all the profiles met in
practice. Both terms of the product in (15) have special
significance. From (11), the first term is proportional to the

density estimate at x computed with the kernel G

2). (16)

I

n
o) = 2237 (K
flL,G (X) nhd - g( h

The second term is the mean shift

i)
S o)

i.e., the difference between the weighted mean, using the
kernel G for weights, and x, the center of the kernel
(window). From (16) and (17), (15) becomes

my, g (x) -x, (17)

Y ; 2
thAK(X) = fh,G(X) hfﬂ mIL,G(X)7 (18)
Cg.d
yielding
my, g(x) = lh%w o

2 f}LG (X) .

The expression (19) shows that, at location x, the mean shift
vector computed with kernel G is proportional to the normal-
ized density gradient estimate obtained with kernel K. The
normalization is by the density estimate in x computed with
the kernel G. The mean shift vector thus always points toward
the direction of maximum increase in the density. This is a
more general formulation of the property first remarked by
Fukunaga and Hostetler [20, p. 535], [21], and discussed in [7].

The relation captured in (19) is intuitive, the local mean is
shifted toward the region in which the majority of the
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points reside. Since the mean shift vector is aligned with the
local gradient estimate, it can define a path leading to a
stationary point of the estimated density. The modes of the
density are such stationary points. The mean shift procedure,
obtained by successive

e computation of the mean shift vector my, ¢(x),

e translation of the kernel (window) G(x) by my, ¢(x),
isguaranteed to converge atanearby point where the estimate
(11) has zero gradient, as will be shown in the next section. The
presence of the normalization by the density estimate is a
desirable feature. The regions of low-density values are of no
interest for the feature space analysis and, in such regions, the
mean shift steps are large. Similarly, near local maxima the
steps are small and the analysis more refined. The mean shift
procedure thus is an adaptive gradient ascent method.

2.2 Sufficient Condition for Convergence

Denote by {y;},_,»  the sequence of successive locations of
the kernel G, where, from (17),

S xig([154°)
zz;lg(nxmf)

is the weighted mean at y; computed with kernel GG and y,
is the center of the initial position of the kernel. The
corresponding sequence of density estimates computed
with kernel K, {.}z‘hﬁK(]‘)}]‘:LQm/ is given by

Fric(3) = Furc(y;)

As stated by the following theorem, a kernel K that obeys

some mild conditions suffices for the convergence of the
sequences {y;};_15. and {fix()};-12.-

Theorem 1. If the kernel K has a convex and monotonically

decreasing profile, the sequences {y]} 1, and

{fhh 7)}j=12. converge and {f;LA( )}j—1o. 18 monotoni-
cally increasing.

yj+1 ]: 1727"' (20)

j=1,2.... (21)

The proof is given in the Appendix. The theorem
generalizes the result derived differently in [13], where K
was the Epanechnikov kernel and G the uniform kernel. The
theorem remains valid when each data point x; is associated
with a nonnegative weight w;. An example of nonconver-
gence when the kernel K is not convex is shown in [10, p. 16].

The convergence property of the mean shift was also
discussed in [7, Section iv]. (Note, however, that almost all the
discussion there is concerned with the “blurring” process in
which the input is recursively modified after each mean shift
step.) The convergence of the procedure as defined in this
paper wasattributed in [7] to the gradientascentnature of (19).
However, as shown in [4, Section 1.2], moving in the direction
of the local gradient guarantees convergence only for
infinitesimal steps. The step size of a gradient-based algo-
rithm is crucial for the overall performance. If the step size is
toolarge, the algorithm will diverge, whileif the step size is too
small, the rate of convergence may be very slow. A number of
costly procedures have been developed for step size selection
[4, p. 24]. The guaranteed convergence (as shown by
Theorem 1) is due to the adaptive magnitude of the mean
shift vector, which also eliminates the need for additional

procedures to chose the adequate step sizes. This is a major
advantage over the traditional gradient-based methods.

For discrete data, the number of steps to convergence
depends on the employed kernel. When G is the uniform
kernel, convergence is achieved in a finite number of steps
since the number of locations generating distinct mean
values is finite. However, when the kernel G' imposes a
weighting on the data points (according to the distance
from its center), the mean shift procedure is infinitely
convergent. The practical way to stop the iterations is to set
a lower bound for the magnitude of the mean shift vector.

2.3 Mean Shift-Based Mode Detection

Let us denote by y, and fh x = Fnx(y.) the convergence
points of the sequences {y;},_;, and {Frnx( N}z
respectively. The implications of Theorem 1 are the following.
First, the magnitude of the mean shift vector converges to
zero. Indeed, from (17) and (20) the jth mean shift vector is
(22)

mh,G(Yj) =Yi+17Y;

and, at the limit, m;, ¢(y,) =y, — y. = 0. In other words, the
gradient of the density estimate (11) computed at y, is zero

v.fh K(yc) = O

due to (19). Hence, y. is a stationary point of fh K. Second,
since {frx(j)} j—12.. is monotonically increasing, the mean
shift iterations satisfy the conditions required by the Capture
Theorem [4, p. 45], which states that the trajectories of such
gradient methods are attracted by local maxima if they are
unique (within a small neighborhood) stationary points.
That is, once y; gets sufficiently close to a mode of fj g, it
converges to it. The set of all locations that converge to the
same mode defines the basin of attraction of that mode.

The theoretical observations from above suggest a
practical algorithm for mode detection:

(23)

e Run the mean shift procedure to find the stationary
points of fh,K,
e Prune these points by retaining only the local
maxima.
The local maxima points are defined, according to the
Capture Theorem, as unique stationary points within some
small open sphere. This property can be tested by
perturbing each stationary point by a random vector of
small norm and letting the mean shift procedure converge
again. Should the point of convergence be unchanged (up to
a tolerance), the point is a local maximum.

2.4 Smooth Trajectory Property
The mean shift procedure employing a normal kernel has
an interesting property. Its path toward the mode follows a
smooth trajectory, the angle between two consecutive mean
shift vectors being always less than 90 degrees.

Using the normal kernel (10), the jth mean shift vector is
given by

S xiexp ([
iy e [=2]°)

The following theorem holds true for all j=1,2,...,
according to the proof given in the Appendix.

mh,N(y]') =Y 7 Y; = —Y;- (24)
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Theorem 2. The cosine of the angle between two consecutive
mean shift vectors is strictly positive when a normal kernel is
employed, i.e.,

my N (yj)Tmh,N(y]-H)
Hmh,N(yj) | Hmh,N(YjH) l

> 0. (25)

As a consequence of Theorem 2, the normal kernel
appears to be the optimal one for the mean shift procedure.
The smooth trajectory of the mean shift procedure is in
contrast with the standard steepest ascent method [4, p. 21]
(local gradient evaluation followed by line maximization)
whose convergence rate on surfaces with deep narrow
valleys is slow due to its zigzagging trajectory.

In practice, the convergence of the mean shift procedure
based on the normal kernel requires large number of steps,
as was discussed at the end of Section 2.2. Therefore, in
most of our experiments, we have used the uniform kernel,
for which the convergence is finite, and not the normal
kernel. Note, however, that the quality of the results almost
always improves when the normal kernel is employed.

2.5 Relation to Kernel Regression

Important insight can be gained when (19) is obtained
approaching the problem differently. Considering the
univariate case suffices for this purpose.

Kernel regression is a nonparametric method to estimate
complex trends from noisy data. See [62, chapter 5] for an
introduction to the topic, [24] for a more in-depth treatment.
Let n measured data points be (X;, Z;) and assume that the
values X; are the outcomes of a random variable z with
probability density function f(z), z; =X;, i=1,...,n,
while the relation between Z; and X; is

Zi:m(Xi)—i—ei i=1,...,n, (26)

where m(z) is called the regression function and ¢; is an
independently distributed, zero-mean error, E[¢;] = 0.

A natural way to estimate the regression function is by
locally fitting a degree p polynomial to the data. For a window
centered at z, the polynomial coefficients then can be obtained
by weighted least squares, the weights being computed froma
symmetric function g(z). The size of the window is controlled
by the parameter h, g, (x) = h~'g(x/h). The simplest case is
that of fitting a constant to the data in the window, i.e.,p = 0.1t
can be shown, [24, Section 3.1], [62, Section 5.2], that
the estimated constant is the value of the Nadaraya-
Watson estimator,

Yign(z — X)) Z;
S gn(z —X;) 7
introduced in the statistical literature 35 years ago. The

asymptotic conditional bias of the estimator has the
expression [24, p. 109], [62, p. 125],

m(x;h) = (27)

E[ (m(z;h) —m(x)) | X1,..., Xy ]
e ) (@) + 2 (@) f (2)
2f(x)
where (9] = [u?g(u)du. Defining m(z) =z reduces the

Nadaraya-Watson estimator to (20) (in the univariate case),
while (28) becomes

(28)

2(gl,

f (@)
f@)pslg)”
which is similar to (19). The mean shift procedure thus
exploits to its advantage the inherent bias of the zero-order

kernel regression.
The connection to the kernel regression literature opens

many interesting issues, however, most of these are more of
a theoretical than practical importance.

E[(z—2z)| X1,...,X, | =~ R? (29)

2.6 Relation to Location M-Estimators

The M-estimators are a family of robust techniques which can
handle data in the presence of severe contaminations, i.e.,
outliers. See [26], [32] for introductory surveys. In our context

only, the problem of location estimation has to be considered.
Given the data x;, i =1,...,n, and the scale h, will

2
) ; (30)

where, p(u) is a symmetric, nonnegative valued function,
with a unique minimum at the origin and nondecreasing for
u > 0. The estimator is obtained from the normal equations

define é, the location estimator as

A . . - 06— X;
0= argiin J(0) = arguiin ; p(H N

H—Xi
h

V() = 2h72(0 — x;)w =0, (31)

where

du

Therefore, the iterations to find the location M-estimate are

n -x||?
Doy Xiw H o
R 2 ’
n 6—x;
Zi:lw(H 7 )

which is identical to (20) when w(u) = g(u). Taking into
account (13), the minimization (30) becomes

based on

é:

n 12
é:argmeax;kﬂ‘e th >7 (33)
which can also be interpreted as
6= argm;ix fth(G | X1,...,Xn)- (34)

That is, the location estimator is the mode of the density
estimated with the kernel K from the available data. Note that
the convexity of the k(z) profile, the sufficient condition for
the convergence of the mean shift procedure (Section 2.2) is in
accordance with the requirements to be satisfied by the

objective function p(u).
The relation between location M-estimators and kernel

density estimation is not well-investigated in the statistical
literature, only [9] discusses it in the context of an edge
preserving smoothing technique.
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3 RoOBUST ANALYSIS OF FEATURE SPACES

Multimodality and arbitrarily shaped clusters are the defin-
ing properties of a real feature space. The quality of the mean
shift procedure to move toward the mode (peak) of the hill on
which it was initiated makes it the ideal computational
module to analyze such spaces. To detect all the significant
modes, the basic algorithm given in Section 2.3 should be run
multiple times (evolving in principle in parallel) with
initializations that cover the entire feature space.

Before the analysis is performed, two important (and
somewhat related) issues should be addressed: the metric of
the feature space and the shape of the kernel. The mapping
from the input domain into a feature space often associates
a non-Euclidean metric to the space. The problem of color
representation will be discussed in Section 4, but the
employed parameterization has to be carefully examined
even in a simple case like the Hough space of lines, e.g.,
[48], [61].

The presence of a Mahalanobis metric can be accommo-
dated by an adequate choice of the bandwidth matrix (2). In
practice, however, it is preferable to have assured that the
metric of the feature space is Euclidean and, thus, the
bandwidth matrix is controlled by a single parameter,
H = 1’I. To be able to use the same kernel size for all the
mean shift procedures in the feature space, the necessary
condition is that local density variations near a significant
mode are not as large as the entire support of a significant
mode somewhere else.

The starting points of the mean shift procedures should
be chosen to have the entire feature space (except the very
sparse regions) tessellated by the kernels (windows).
Regular tessellations are not required. As the windows
evolve toward the modes, almost all the data points are
visited and, thus, all the information captured in the feature
space is exploited. Note that the convergence to a given
mode may yield slightly different locations due to the
threshold that terminates the iterations. Similarly, on flat
plateaus, the value of the gradient is close to zero and the
mean shift procedure could stop.

These artifacts are easy to eliminate through postproces-
sing. Mode candidates at a distance less than the kernel
bandwidth are fused, the one corresponding to the highest
density being chosen. The global structure of the feature
space can be confirmed by measuring the significance of the
valleys defined along a cut through the density in the
direction determined by two modes.

The delineation of the clusters is a natural outcome of the
mode seeking process. After convergence, the basin of
attraction of a mode, i.e., the data points visited by all the
mean shift procedures converging to that mode, automati-
cally delineates a cluster of arbitrary shape. Close to the
boundaries, where a data point could have been visited by
several diverging procedures, majority logic can be em-
ployed. It is important to notice that, in computer vision,
most often we are not dealing with an abstract clustering
problem. The input domain almost always provides an
independent test for the validity of local decisions in the
feature space. That is, while it is less likely that one can
recover from a severe clustering error, allocation of a few
uncertain data points can be reliably supported by input
domain information.

The multimodal feature space analysis technique was
discussed in detail in [12]. It was shown experimentally,
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that for a synthetic, bimodal normal distribution, the
technique achieves a classification error similar to the
optimal Bayesian classifier. The behavior of this feature
space analysis technique is illustrated in Fig. 2. A two-
dimensional data set of 110,400 points (Fig. 2a) is decom-
posed into seven clusters represented with different colors
in Fig. 2b. A number of 159 mean shift procedures with
uniform kernel were employed. Their trajectories are shown
in Fig. 2¢, overlapped over the density estimate computed
with the Epanechnikov kernel. The pruning of the mode
candidates produced seven peaks. Observe that some of the
trajectories are prematurely stopped by local plateaus.

3.1 Bandwidth Selection

The influence of the bandwidth parameter h was assessed
empirically in [12] through a simple image segmentation
task. In a more rigorous approach, however, four different
techniques for bandwidth selection can be considered.

e  The first one has a statistical motivation. The optimal
bandwidth associated with the kernel density esti-
mator (6) is defined as the bandwidth that achieves the
best compromise between the bias and variance of the
estimator, over all x € R, i.e., minimizes AMISE. In
the multivariate case, the resulting bandwidth for-
mula [54, p. 85], [62, p. 99] is of little practical use, since
it depends on the Laplacian of the unknown density
being estimated, and its performance is not well
understood [62, p. 108]. For the univariate case, a
reliable method for bandwidth selection is the plug-in
rule [53], which was proven to be superior to least-
squares cross-validation and biased cross-validation
[42], [55, p. 46]. Its only assumption is the smoothness
of the underlying density.

e The second bandwidth selection technique is related
to the stability of the decomposition. The bandwidth
is taken as the center of the largest operating range
over which the same number of clusters are obtained
for the given data [20, p. 541].

o For the third technique, the best bandwidth max-
imizes an objective function that expresses the quality
of the decomposition (i.e., the index of cluster
validity). The objective function typically compares
the inter- versus intra-cluster variability [30], [28] or
evaluates the isolation and connectivity of the
delineated clusters [43].

e  Finally, since in most of the cases the decomposition
is task dependent, top-down information provided
by the user or by an upper-level module can be used
to control the kernel bandwidth.

We present in [15], a detailed analysis of the bandwidth
selection problem. To solve the difficulties generated by the
narrow peaks and the tails of the underlying density, two
locally adaptive solutions are proposed. One is nonpara-
metric, being based on a newly defined adaptive mean shift
procedure, which exploits the plug-in rule and the sample
point density estimator. The other is semiparametric,
imposing a local structure on the data to extract reliable
scale information. We show that the local bandwidth
should maximize the magnitude of the normalized mean
shift vector. The adaptation of the bandwidth provides
superior results when compared to the fixed bandwidth
procedure. For more details, see [15].
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Fig. 2. Example of a 2D feature space analysis. (a) Two-dimensional data set of 110, 400 points representing the first two components of the L*u*v*
space shown in Fig. 1b. (b) Decomposition obtained by running 159 mean shift procedures with different initializations. (c) Trajectories of the mean
shift procedures drawn over the Epanechnikov density estimate computed for the same data set. The peaks retained for the final classification are

marked with red dots.

3.2 Implementation Issues

An efficient computation of the mean shift procedure first
requires the resampling of the input data with a regular grid.
This is a standard technique in the context of density
estimation which leads to a binned estimator [62, Appendix
D]. The procedure is similar to defining a histogram where
linear interpolation is used to compute the weights associated
with the grid points. Further reduction in the computation
time is achieved by employing algorithms for multidimen-
sional range searching [52, p. 373] used to find the data points
falling in the neighborhood of a given kernel. For the efficient
Euclidean distance computation, we used the improved
absolute error inequality criterion, derived in [39].

4 APPLICATIONS

The feature space analysis technique introduced in the
previous section is application independent and, thus, can
be used to develop vision algorithms for a wide variety of
tasks. Two somewhat related applications are discussed in
the sequel: discontinuity preserving smoothing and image
segmentation. The versatility of the feature space analysis
enables the design of algorithms in which the user controls

performance through a single parameter, the resolution of
the analysis (i.e., bandwidth of the kernel). Since the control
parameter has clear physical meaning, the new algorithms
can be easily integrated into systems performing more
complex tasks. Furthermore, both gray level and color
images are processed with the same algorithm, in the
former case, the feature space containing two degenerate
dimensions that have no effect on the mean shift procedure.

Before proceeding to develop the new algorithms, the
issue of the employed color space has to be settled. To obtain
a meaningful segmentation, perceived color differences
should correspond to Euclidean distances in the color space
chosen to represent the features (pixels). An Euclidean
metric, however, is not guaranteed for a color space [65,
Sections 6.5.2, 8.4]. The spaces L*u*v* and L*a*b* were
especially designed to best approximate perceptually uni-
form color spaces. In both cases, L*, the lightness (relative
brightness) coordinate, is defined the same way, the two
spaces differ only through the chromaticity coordinates. The
dependence of all three coordinates on the traditional
RGB color values is nonlinear. See [46, Section 3.5] for a
readily accessible source for the conversion formulae. The
metric of perceptually uniform color spaces is discussed in
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the context of feature representation for image segmentation
in [16]. In practice, there is no clear advantage between using
L*u*v* or L*a*b*; in the proposed algorithms, we employed
L*u*v* motivated by a linear mapping property [65, p.166].

Our first image segmentation algorithm was a straightfor-
ward application of the feature space analysis technique to an
L*u*v* representation of the color image [11]. The modularity
of the segmentation algorithm enabled its integration by other
groups to a large variety of applications like image retrieval
[1], face tracking [6], object-based video coding for MPEG-4
[22],shape detectionand recognition [33], and texture analysis
[47], to mention only a few. However, since the feature space
analysis can be applied unchanged to moderately higher
dimensional spaces (see Section 5), we subsequently also
incorporated the spatial coordinates of a pixel into its feature
space representation. This joint domain representation is
employed in the two algorithms described here.

An image is typically represented as a two-dimensional
lattice of p-dimensional vectors (pixels), where p =1 in the
gray-level case, three for color images, and p > 3 in the
multispectral case. The space of the lattice is known as the
spatial domain, while the gray level, color, or spectral
information is represented in the range domain. For both
domains, Euclidean metric is assumed. When the location
and range vectors are concatenated in the joint spatial-range
domain of dimension d = p + 2, their different nature has to
be compensated by proper normalization. Thus, the multi-
variate kernel is defined as the product of two radially
symmetric kernels and the Euclidean metric allows a single
bandwidth parameter for each domain

)

H

where x° is the spatial part, x” is the range part of a feature
vector, k(z) the common profile used in both two domains,
hs and h, the employed kernel bandwidths, and C the
corresponding normalization constant. In practice, an
Epanechnikov or a (truncated) normal kernel always
provides satisfactory performance, so the user only has to
set the bandwidth parameter h = (hy,h,), which, by
controlling the size of the kernel, determines the resolution
of the mode detection.

4.1 Discontinuity Preserving Smoothing

Smoothing through replacing the pixel in the center of a
window by the (weighted) average of the pixels in the
window indiscriminately blurs the image, removing not
only the noise but also salient information. Discontinuity
preserving smoothing techniques, on the other hand,
adaptively reduce the amount of smoothing near abrupt
changes in the local structure, i.e., edges.

There are a large variety of approaches to achieve this
goal, from adaptive Wiener filtering [31], to implementing
isotropic [50] and anisotropic [44] local diffusion processes,
a topic which recently received renewed interest [19], [37],
[56]. The diffusion-based techniques, however, do not have
a straightforward stopping criterion and, after a sufficiently
large number of iterations, the processed image collapses
into a flat surface. The connection between anisotropic
diffusion and M-estimators is analyzed in [5].

S T

X
hg

X

I (35)

C
K]L,,h, (X) = W k <

A recently proposed noniterative discontinuity preserving
smoothing technique is the bilateral filtering [59]. The relation
between bilateral filtering and diffusion-based techniques
was analyzed in [3]. The bilateral filters also work in the joint
spatial-range domain. The data is independently weighted in
the two domains and the center pixel is computed as the
weighted average of the window. The fundamental differ-
ence between the bilateral filtering and the mean shift-based
smoothing algorithm is in the use of local information.

4.1.1 Mean Shift Filtering

Let x; and z;,i =1,...,n, be the d-dimensional input and
filtered image pixels in the joint spatial-range domain. For
each pixel,

1. Initialize j =1 and y;; = x;.
2. Compute Viji according to (20) until convergence,
Y =VYic
3. Assign z, = (x{,y!.).
The superscripts s and r denote the spatial and range
components of a vector, respectively. The assignment
specifies that the filtered data at the spatial location x; will
have the range component of the point of convergence y7 .

The kernel (window) in the mean shift procedure moves in
the direction of the maximum increase in the joint density
gradient, while the bilateral filtering uses a fixed, static
window. In the image smoothed by mean shift filtering,
information beyond the individual windows is also taken into
account.

An important connection between filtering in the joint
domain and robust M-estimation should be mentioned. The
improved performance of the generalized M-estimators (GM
or bounded-influence estimators) is due to the presence of a
second weight function which offsets theinfluence of leverage
points, i.e., outliers in the input domain [32, Section 8E]. A
similar (atleastin spirit) twofold weighting is employed in the
bilateral and mean shift-based filterings, which is the main
reason for their excellent smoothing performance.

Mean shift filtering with uniform kernel having (h;, h,) =
(8,4) has been applied to the often used 256 x 256 gray-level
cameraman image (Fig. 3a), the result being shown in Fig. 3b.
The regions containing the grass field have been almost
completely smoothed, while details such as the tripod and the
buildings in the background were preserved. The processing
required fractions of a second on a standard PC (600 Mhz
Pentium III) using an optimized C++ implementation of the
algorithm. Ontheaverage, 3.06iterations were necessary until
the filtered value of a pixel was defined, i.e., its mean shift
procedure converged.

Tobetter visualize the filtering process, the 40 x 20 window
marked in Fig. 3aisrepresented in three dimensions in Fig. 4a.
Note that the data was reflected over the horizontal axis of the
window for a more informative display. In Fig. 4b, the mean
shift paths associated with every other pixel (in both
coordinates) from the plateau and the line are shown. Note
that convergence points (black dots) are situated in the center
of the plateau, away from the discontinuities delineating it.
Similarly, the mean shift trajectories on the line remain on it.
As a result, the filtered data (Fig. 4c) shows clean quasi-
homogeneous regions.

The physical interpretation of the mean shift-based
filtering is easy to see by examining Fig. 4a, which, in fact,
displays the three dimensions of the joint domain of a
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Fig. 3. Cameraman image. (a) Original. (b) Mean shift filtered (hs, h,) =

gray-level image. Take a pixel on the line. The uniform
kernel defines a parallelepiped centered on this pixel and
the computation of the mean shift vector takes into account
only those pixels which have both their spatial coordinates
and gray-level values inside the parallelepiped. Thus, if the
parallelepiped is not too large, only pixels on the line are
averaged and the new location of the window is
guaranteed to remain on it.

A second filtering example is shown in Fig. 5. The
512 %512 color image baboon was processed with mean shift
filters employing normal kernels defined using various
spatial and range resolutions, (h,h,) = (8 + 32,4 + 16).
While the texture of the fur has been removed, the details of
the eyes and the whiskers remained crisp (up to a certain
resolution). One can see that the spatial bandwidth has a
distinct effect on the output when compared to the range

i A
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(8,4).

(color) bandwidth. Only features with large spatial support
arerepresented in the filtered image when h, increases. On the
other hand, only features with high color contrast survive
when h, is large. Similar behavior was also reported for the
bilateral filter [59, Fig. 3].

4.2 Image Segmentation

Image segmentation, decomposition of a gray level or color
image into homogeneous tiles, is arguably the mostimportant
low-level vision task. Homogeneity is usually defined as
similarity in pixel values, i.e., a piecewise constant model is
enforced over the image. From the diversity of image
segmentation methods proposed in the literature, we will
mention only some whose basic processing relies on the joint
domain. In each case, a vector field is defined over the
sampling lattice of the image.

Il ', ¥
P n,.,'n';
Vo e S oo e,
G ,..
“

LA
Rt
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Fig. 4. Visualization of mean shift-based filtering and segmentation for gray-level data. (a) Input. (b) Mean shift paths for the pixels on the plateau and

on the line. The black dots are the points of convergence. (c) Filtering result (hs, h,) =

(8,4). (d) Segmentation result.
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(liss i) =

(32,4)

Fig. 5. Baboon image. Original and filtered.

The attraction force field defined in [57] is computed at
each pixel as a vector sum of pairwise affinities between the
current pixel and all other pixels, with similarity measured
in both spatial and range domains. The region boundaries
are then identified as loci where the force vectors diverge. It
is interesting to note that, for a given pixel, the magnitude
and orientation of the force field are similar to those of the
joint domain mean shift vector computed at that pixel and
projected into the spatial domain. However, in contrast to
[57], the mean shift procedure moves in the direction of this
vector, away from the boundaries.

The edge flow in [34] is obtained at each location for a
given set of directions as the magnitude of the gradient of a
smoothed image. The boundaries are detected at image
locations which encounter two opposite directions of flow.
The quantization of the edge flow direction, however, may
introduce artifacts. Recall that the direction of the mean
shift is dictated solely by the data.

The mean shift procedure-based image segmentation is a
straightforward extension of the discontinuity preserving
smoothing algorithm. Each pixel is associated with a
significant mode of the joint domain density located in its
neighborhood, after nearby modes were pruned as in the
generic feature space analysis technique (Section 3).

(h's, hr) = (87 8)

(e, Br)

(s, ) = (32,8)
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= (16,8) (s, hy) = (16,16)

(hs, he) = (32,16)

4.2.1 Mean Shift Segmentation

Let x; and z;,i =1,...,n, be the d-dimensional input and
filtered image pixels in the joint spatial-range domain and
L; the label of the ith pixel in the segmented image.

1. Run the mean shift filtering procedure for the image
and store all the information about the d-dimensional
convergence point in z;, i.e., z; =y, .

2. Delineate in the joint domain the clusters {C,} _,
by grouping together all z; which are closer than h;
in the spatial domain and h, in the range domain,
i.e., concatenate the basins of attraction of the
corresponding convergence points.

3. Foreachi=1,...,n,assign L, = {p | z; € C,}.

4. Optional: Eliminate spatial regions containing less
than M pixels.

The cluster delineation step can be refined according to
a priori information and, thus, physics-based segmentation
algorithms, e.g., [2], [35], can be incorporated. Since this
process is performed on region adjacency graphs, hierarch-
ical techniques like [36] can provide significant speed-up.
The effect of the cluster delineation step is shown in Fig. 4d.
Note the fusion into larger homogeneous regions of the
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Fig. 6. MIT image. (a) Original. (b) Segmented (hs, h,, M) = (8,7,20). (c) Region boundaries.

2
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Fig. 7. Room image. (a) Original. (b) Region boundaries delineated with (hs, h,, M) = (8,5,20), drawn over the input.

result of filtering shown in Fig. 4c. The segmentation step
does not add a significant overhead to the filtering process.

The region representation used by the mean shift
segmentation is similar to the blob representation employed
in [64]. However, while the blob has a parametric description
(multivariate Gaussians in both spatial and color domain), the
partition generated by the mean shift is characterized by a
nonparametric model. An image region is defined by all the
pixels associated with the same mode in the joint domain.

In [43], a nonparametric clustering method is described in
which, after kernel density estimation with a small band-
width, the clusters are delineated through concatenation of
the detected modes’ neighborhoods. The merging process is
based on two intuitive measures capturing the variations in
the local density. Being a hierarchical clustering technique,
the method is computationally expensive; it takes several
minutes in MATLAB to analyze a 2,000 pixel subsample of
the feature space. The method is not recommended to be used
in the joint domain since the measures employed in the
merging process become ineffective. Comparing the results
for arbitrarily shaped synthetic data [43, Fig. 6] with a
similarly challenging example processed with the mean shift
method [12, Fig. 1] shows that the use of a hierarchical
approach can be successfully avoided in the nonparametric
clustering paradigm.

All the segmentation experiments were performed using
uniform kernels. The improvement due to joint space
analysis can be seen in Fig. 6 where the 256 x 256 gray-
level image MIT was processed with (hs, h,, M) = (8,7,20).

A number of 225 homogeneous regions were identified in
fractions of a second, most of them delineating semantically
meaningful regions like walls, sky, steps, inscription on the
building, etc. Compare the results with the segmentation
obtained by one-dimensional clustering of the gray-level
values in [11, Fig. 4] or by using a Gibbs random fields-
based approach [40, Fig. 7].

The joint domain segmentation of the color 256 x 256 room
image presented in Fig. 7 is also satisfactory. Compare this
result with the segmentation presented in [38, Figs. 3e and 5c]
obtained by recursive thresholding. In both these examples,
one can notice that regions in which a small gradient of
illumination exists (like the sky in the MIT or the carpet in the
room image) were delineated as a single region. Thus, the joint
domain mean shift-based segmentation succeeds in over-
coming the inherent limitations of methods based only on
gray-level or color clustering which typically oversegment
small gradient regions.

The segmentation with (hy,h,, M) = (16,7,40) of the
512 x 512 color image lake is shown in Fig. 8. Compare this
result with that of the multiscale approach in [57, Fig. 11].
Finally, one can compare the contours of the color image
(hs, by, M) = (16,19,40) hand presented in Fig. 9 with those
from [66, Fig. 15], obtained through a complex global
optimization, and from [41, Fig. 4a], obtained with geodesic
active contours.

The segmentation is not very sensitive to the choice
of the resolution parameters h, and h,. Note that all
256 x 256 images used the same h, = 8, corresponding to a
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Fig. 9. Hand image. (a) Original. (b) Region boundaries delineated with (hs, h,, M) = (16,19,40) drawn over the input.

17 x 17 spatial window, while all 512 x 512 images used h, =
16 corresponding to a 31 x 31 window. The range
parameter h, and the smallest significant feature size
M control the number of regions in the segmented image.
The more an image deviates from the assumed piecewise
constant model, larger values have to be used for i, and M to
discard the effect of small local variations in the feature space.
For example, the heavily textured background in the hand
image is compensated by using h, = 19 and M = 40, values
which are much larger than those used for the room image
(hy =5, M = 20) since the latter better obeys the model. As
with any low-level vision algorithm, the quality of the
segmentation output can be assessed only in the context of
the whole vision task and, thus, the resolution parameters
should be chosen according to that criterion. An important
advantage of mean shift-based segmentation is its modularity
which makes the control of segmentation output very simple.

Other segmentation examples in which the original
image has the region boundaries superposed are shown in
Fig. 10 and in which the original and labeled images are
compared in Fig. 11.

Asapotential application of the segmentation, we return to
the cameraman image. Fig. 12a shows the reconstructed image
after the regions corresponding to the sky and grass were
manually replaced with white. The mean shift segmentation
has been applied with (hs, h,, M) = (8,4,10). Observe the
preservation of the details which suggests that the algorithm
can also be used for image editing, as shown in Fig. 12b.

The code for the discontinuity preserving smoothing and
image segmentation algorithms integrated into a single
system with graphical interface is available at http://
www.caip.rutgers.edu/riul/research/code.html.

5 DISCUSSION

The mean shift-based feature space analysis technique
introduced in this paper is a general tool which is not
restricted to the two applications discussed here. Since the
quality of the output is controlled only by the kernel
bandwidth, i.e., the resolution of the analysis, the technique
should be also easily integrable into complex vision systems
where the control is relinquished to a closed loop process.
Additional insights on the bandwidth selection can be
obtained by testing the stability of the mean shift direction
across the different bandwidths, as investigated in [57] in
the case of the force field. The nonparametric toolbox
developed in this paper is suitable for a large variety of
computer vision tasks where parametric models are less
adequate, for example, modeling the background in visual
surveillance [18].

The complete solution toward autonomous image seg-
mentation is to combine a bandwidth selection technique
(like the ones discussed in Section 3.1) with top-down task-
related high-level information. In this case, each mean shift
process is associated with a kernel best suited to the local
structure of the joint domain. Several interesting theoretical
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Fig. 10. Landscape images. All the region boundaries were delineated with (h, h,, M) = (8,7,100) and are drawn over the original image.

issues have to be addressed, though, before the benefits of
such a data driven approach can be fully exploited. We are
currently investigating these issues.

The ability of the mean shift procedure to be attracted by
the modes (local maxima) of an underlying density function,
can be exploited in an optimization framework. Cheng [7]
already discusses a simple example. However, by introdu-
cing adequate objective functions, the optimization problem
can acquire physical meaning in the context of a computer
vision task. For example, in [14], by defining the distance
between the distributions of the model and a candidate of the
target, nonrigid objects were tracked in an image sequence
under severe distortions. The distance was defined at every
pixel in the region of interest of the new frame and the mean
shift procedure was used to find the mode of this measure
nearest to the previous location of the target.

The above-mentioned tracking algorithm can be re-
garded as an example of computer vision techniques which
are based on in situ optimization. Under this paradigm, the
solution is obtained by using the input domain to define the
optimization problem. The in situ optimization is a very
powerful method. In [23] and [58], each input data point
was associated with a local field (voting kernel) to produce
a more dense structure from where the sought information
(salient features, the hyperplane representing the funda-
mental matrix) can be reliably extracted.

The mean shift procedure is not computationally expen-
sive. Careful C++ implementation of the tracking algorithm
allowed real time (30 frames/second) processing of the video
stream. While it is not clear if the segmentation algorithm
described in this paper canbe madeso fast, given the quality of
the region boundaries it provides, it can be used to support
edge detection without significant overhead in time.

Kernel density estimation, in particular, and nonpara-
metric techniques, in general, do not scale well with the

dimension of the space. This is mostly due to the empty space
phenomenon [20,p.70], [54, p. 93] by which most of themassin
a high-dimensional space is concentrated in a small region of
the space. Thus, whenever the feature space has more than
(say) six dimensions, the analysis should be approached
carefully. Employing projection pursuit, in which the density
is analyzed along lower dimensional cuts, e.g., [27], is a
possibility.

To conclude, the mean shift procedure is a valuable
computational module whose versatility can make it an
important component of any computer vision toolbox.

APPENDIX

Proof of Theorem 1. If the kernel K has a convex and
monotonically decreasing profile, the sequences {y;};_, ,  and
{Fnic(§)} o1 5. converge, and { fu i (j)} . o is monotonically
increasing.

Since n is finite, the sequence fh,K (21) is bounded,
therefore, it is sufficient to show that fj x is strictly
monotonic increasing, i.e., if y; #y;.;, then

Fnrx() < fox(G+1),

for j=1,2.... Without loss of generality, it can be
assumed that y; = 0 and, thus, from (16) and (21)

FuxG+1) = frr(i) =

Cra n Vit —Xi 2 B X; 2 (Al)
a2 P ()
The convexity of the profile k(x) implies that
k(wz) > k(l‘l) + k’(l‘l)(l‘g - 1‘1) (AQ)

for all z1,29 € [0,00), z1 # 22, and since g(z) = —K'(z),
(A.2) becomes

k(xq) — k(z1) > g(x1) (21 — 22). (A.3)
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Fig. 11. Some other segmentation examples with (h,, h,, M) = (8,7,20). Left: original. Right: segmented.

Now, using (A.1) and (A.3), we obtain and, recalling (20), yields
AL j + 1) — AL (J 3 . 3 . Ck, = X 2
TuaclG 1) = fuk () FuG+1) = Frrc(d) =2 =S5yl Y g || ) (A5)
Chi N X ||? 2 2 mhet i1 h
> ot S o) [0 = b =
" i=1 The profile k(x) being monotonically decreasing for all
Chd O X;|[2 T 9 z >0, the sum >, g(H%HQ) is strictly positive. Thus, as
= nhitz g ’ﬁ [QYJ-HXi - ||y]‘+1|| } 1 _ he righ ¢ . iotl
n = ong as y,,1 # ;= 0, the rig t term of (A.5) is strictly
Cha . x; |2 y x; |2 positive, i.?., fnx(G+1) > frr(j). Consequently, the
T hd2 2Yjn Z Xig ‘ ) [y 41l Z g ’ n sequence {fyx(j)};—; o is convergent.
=1 i=1 A4 To prove the convergence of the sequence {y;},_, ,

(A.5) is rewritten for an arbitrary kernel location y; # 0.
After some algebra, we have
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Fig. 12. Cameraman image. (a) Segmentation with (hs, h,, M) =
grass. (b) Supervised texture insertion.

.y i Ch.d - Y —Xi|?
Trx(G+1) = forx(d) > W ||yj+1 - YjH2 ZQ<HJT >
i=1
(A.6)

Now, summing the two terms of (A.6) for indices
7,7+ 1...5+m — 1, it results that

fh,K(j + m) - fh.,K (])

n
e Wi = YD
h ) jt+m j+m— Zl h
Ck,d Y — X
el =l o(

Cl,d

2 2
2 W |:Hyj+m ~Yirmall” oy =yl }M

yj+m71 — X

)+

2
hd+2 ||yj+m y]” M7

(A7)
where M represents the minimum (always strictly

positive) of the sum >, g( H%‘P) for all {Yj}j:m.:

Since {fix(j)} =12, is convergent, it is also a Cauchy
sequence. This property in conjunction with (A.7) implies
that {y;},_;» is a Cauchy sequence, hence, it is con-
vergent in the Euclidean space. ]

Proof of Theorem 2. The cosine of the angle between two
consecutive mean shift vectors is strictly positive when a
normal kernel is employed.

We can assume, without loss of generality that y; = 0 and
Y11 # Yj+o 7# 0since, otherwise, convergence has already

been achieved. Therefore, the mean shift vector my, 5(0) is

Sy xiexp (- [%]°)
@

We will show first that, when the weights are given by a

mh,N(O) =Y =

normal kernel centered at y;., the weighted sum of the

projections of (y,,; — x;) ontoy;,, is strictly negative, i.e.,

(8,4,10) and reconstruction after the elimination of regions representing sky and

n

2 Yisn — X
S (Il - v]ax) emo(—(\fT
i=1

The space R? can be decomposed into the following three
domains:

2) <0. (B.2)

Dlz{XERd

1 2
Vux <5 Iyl

D, (B.3)

1
[ee Ryl < vjox < vy}

Dy = {x € R'|lly,ll* < ].1x

and after some simple manipulations from (B.1), we can
derive the equality

2 T x; (|2
> (Iysall? = yjox) exp (=3
X; €Dy ( 4)
T 2 X; |2 .
= Z (y]'+1xi =1yl )exp —’ i)
x;€D,UD;3
In addition, for x € Dy, we have ||yj+1|| —yjax >0,

which implies

2 2
=2y % > [Pl =yl
(B.5)

2 2 2
11 = %ill™ = 1y l” + Il

from where

2 Yir1 —Xi
N R e

x;, €Dy

yj+1H2
< s
<en([57) =

Now, introducing (B.4) in (B.6), we have

2 Vi1 — X2
Z (||Yj+1|| —ij+1Xi) eXP(—H]T )

X, €Dy

Yjt1||?
<en([52) S (37 - sl e
x,€D,UD;3

)

2
(Hy]‘+1 [ Y;':-lxi) exp(

Xi 2),

(B.6)

7'2
i)

(B.7)
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and, by adding to both sides of (B.7), the quantity

2 Vit — Xi|?
S (Iyal? =) e[,

after some algebra, it results that

x,€D,UD;3
n

2 Vi1 — Xi||?
S (Il = ¥ oo <[22 )
=1

Yin|?
<o) 3 (1wl -viax)ess(-]
x,€D,UD;3

2
 foxp |~ 5 (Il = ¥ox) | - 1}

The right side of (B.8) is negative because

X
h

)
(B.8)

2
(HYj-HH - yJTHXi)

and the last product term has opposite signs in both the
D; and D3 domains. Therefore, the left side of (B.8) is
also negative, which proves (B.2).

We can use now (B.2) to write

> esp (- [)

2 T T
||Yj+1|| <VYjt . TN Yi+1Yi+2 (B.9)
i=1 eXp(*H h H )
from where
T . —_ .
Vi (Vs = ¥in) >0 (B.10)
||Yj+1H||yj+2 - Yj+1||
or by taking into account (24)
my, v (y;) oy v (y50) 50
([ (v ) | 0,3 (y )
O
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