
Experiments with a New Boosting Algorithm
DRAFT — PLEASE DO NOT DISTRIBUTE

Yoav Freund Robert E. Schapire

AT&T Research

600 Mountain Avenue

Rooms
�
2B-428, 2A-424 �

Murray Hill, NJ 07974-0636
�
yoav, schapire � @research.att.com

http://www.research.att.com/orgs/ssr/people/
�
yoav,schapire � /

January 22, 1996

Abstract

In an earlier paper [9], we introduced a new “boosting” algorithm called AdaBoost which,
theoretically, can be used to significantly reduce the error of any learning algorithm that
consistently generates classifiers whose performance is a little better than random guessing.
We also introduced the related notion of a “pseudo-loss” which is a method for forcing a learning
algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate.
In this paper, we describe experiments we carried out to assess how well AdaBoost with and
without pseudo-loss, performs on real learning problems.

We performed two sets of experiments. The first set compared boosting to Breiman’s [1]
“bagging” method when used to aggregate various classifiers (including decision trees and
single attribute-value tests). We compared the performance of the two methods on a collection
of machine-learning benchmarks. In the second set of experiments, we studied in more detail
the performance of boosting using a nearest-neighbor classifier on an OCR problem.

1 Introduction

“Boosting” is a general method for improving the performance of any learning algorithm. In
theory, boosting can be used to significantly reduce the error of any “weak” learning algorithm
that consistently generates classifiers which need only be a little bit better than random guessing.
Despite the potential benefits of boosting promised by the theoretical results, the true practical
value of boosting can only be assessed by testing the method on “real” learning problems. In this
paper, we present such an experimental assessment of a new boosting algorithm called AdaBoost.

Boosting works by repeatedly running a given weak1 learning algorithm on various distributions
over the training data, and then combining the classifiers produced by the weak learner into a
single composite classifier. The first provably effective boosting algorithms were presented by
Schapire [19] and Freund [8]. More recently, we described and analyzed AdaBoost, and we argued
that this new boosting algorithm has certain properties which make it more practical and easier
to implement than its predecessors [9]. This algorithm, which we used in all our experiments, is
described in detail in Section 2.

This paper describes two distinct sets of experiments. In the first set of experiments, described
in Section 3, we compared boosting to “bagging,” a method described by Breiman [1] which works
in the same general fashion (i.e., by repeatedly rerunning a given weak learning algorithm, and
combining the computed classifiers), but which constructs each distribution in a simpler manner.
(Details given below.) We compared boosting with bagging because both methods work by
combining many classifiers. This comparison allows us to separate out the effect of modifying the
distribution on each round (which is done differently by each algorithm) from the effect of voting
multiple classifiers (which is done the same by each).

In our experiments, we compared boosting to bagging using a number of different weak learning
algorithms of varying levels of sophistication. These include: (1) an algorithm that searches for very
simple prediction rules which test on a single attribute (similar to Holte’s very simple classification
rules [13]); (2) an algorithm that searches for a single good decision rule that tests on a conjunction
of attribute tests (similar in flavor to the rule-formation part of Cohen’s RIPPER algorithm [2] and
Fürnkranz and Widmer’s IREP algorithm [10]); and (3) Quinlan’s C4.5decision-tree algorithm [17].
We tested these algorithms on a collection of 27 benchmark learning problems taken from the UCI
repository.

The main conclusion of our experiments is that boosting performs significantly and uniformly
better than bagging when the weak learning algorithm generates fairly simple classifiers (algo-
rithms (1) and (2) above). When combined with C4.5, boosting still seems to outperform bagging
slightly, but the results are less compelling.

We also found that boosting can be used with very simple rules (algorithm (1)) to construct
classifiers that are quite good relative, say, to C4.5. Kearns and Mansour [15] argue that C4.5 can
itself be viewed as a kind of boosting algorithm, so a comparison of AdaBoost and C4.5 can be
seen as a comparison of two competing boosting algorithms. See Dietterich, Kearns and Mansour’s
paper [3] for more detail on this point.

In the second set of experiments, we test the performance of boosting on a nearest neighbor
classifier for handwritten digit recognition. In this case the weak learning algorithm is very simple,

1We use the term “weak” learning algorithm, even though, in practice, boosting might be combined with a quite
strong learning algorithm such as C4.5.

1

and this lets us gain some insight to the interaction between the boosting algorithm and the nearest
neighbor classifier. We show that the boosting algorithm is an effective way for finding a small
subset of prototypes that performs almost as well as the complete set. We also show that it compares
favorably to the standard method of Condensed Nearest Neighbor [12] in terms of its test error.

There seem to be two separate reasons for the improvement in performance that is achieved by
boosting. The first and better understood effect of boosting is that it generates a hypothesis whose
error on the training set is small by combining many hypotheses whose error may be large (but
still better than random guessing). It seems that boosting may be helpful on learning problems
having either of the following two properties. The first property, which holds for many real-world
problems, is that the observed examples tend to have varying degrees of hardness. For such
problems, the boosting algorithm tends to generate distributions that concentrate on the harder
examples, thus challanging the weak learning algorithm to perform well on these harder parts of
the sample space.

The second property is that the learning algorithm be sensitive to changes in the training
examples so that significantly different hypotheses are generated for different training sets. In this
sense, boosting is similar to Breiman’s bagging [1] which performs best when the weak learner
exhibits such “unstable” behavior. However, unlike bagging, boosting tries actively to force the
weak learning algorithm to change its hypotheses by constructing a “hard” distribution over the
examples based on the performance of previously generated hypotheses.

The second effect of boosting has to do with variance reduction. Intuitively, taking a weighted
majority over many hypotheses, all of which were trained on different samples taken out of the
same training set, has the effect of reducing the random variability of the combined hypothesis.
Thus, like bagging, boosting may have the effect of producing a combined hypothesis whose
variance is significantly lower than those produced by the weak learner. However, unlike bagging,
boosting may also reduce the bias of the learning algorithm, as discussed above. (See Kong and
Dietterich [16] for further discussion of the bias and variance reducing effects of voting multiple
hypotheses.) In our first set of experiments, we compare boosting and bagging, and try to use that
comparison to separate between the bias and variance reducing effects of boosting.

Previous work. Drucker, Schapire and Simard [7, 6] performed the first experiments using
a boosting algorithm. They used Schapire’s [19] original boosting algorithm combined with a
neural net for an OCR problem. Follow-up comparisons to other ensemble methods were done
by Drucker et al. [5]. More recently, Drucker and Cortes [4] used AdaBoost with a decision-tree
algorithm for an OCR task. Jackson and Craven [14] used AdaBoost to learn classifiers represented
by sparse perceptons, and tested the algorithm on a set of benchmarks. Finally, Quinlan [18] recently
conducted an independent comparison of boosting and bagging combined with C4.5 on a collection
of UCI benchmarks.

2 The boosting algorithm

In this section, we describe our boosting algorithm, called AdaBoost. See our earlier paper [9] for
more details about the algorithm and its theoretical properties.

We describe two versions of the algorithm which we denote AdaBoost.M1 and AdaBoost.M2.
The two versions are equivalent for binary classification problems and differ only in their handling

2

Algorithm AdaBoost.M1
Input: sequence of � examples

�����
1 ��� 1 ���
	�	�	�� ����
 ���
 ��� with labels �
��������� 1 �
	�	�	������

weak learning algorithm WeakLearn
integer � specifying number of iterations

Initialize � 1
��� ��� 1 � for all

�
.

Do for ! � 1 � 2 ��	�	"	�� �
1. Call WeakLearn, providing it with the distribution �$# .
2. Get back a hypothesis %&# : ')(� .
3. Calculate the error of % # : * # � +� : ,"-/.10�243�56�7 2 � #

��� � . If * #98 1 2, then set � � !;: 1 and abort loop.

4. Set <�# � *�#� � 1 :=*�# � .
5. Update distribution �># : �?#A@ 1

��� �B� �C# ��� �D # E
F < # if % # ��� � ���G� �

1 otherwise
where

D # is a normalization constant (chosen so that � #H@ 1 will be a distribution).

Output the final hypothesis: %JILK ��� ��� arg max7"MON +# : ,"-P.Q0�3 6�7 log
1<R# 	

Figure 1: The algorithm AdaBoost.M1.

of problems with more than two classes.

2.1 AdaBoost.M1

We begin with the simpler version, AdaBoost.M1. The boosting algorithm takes as input a training
set of S examples TVUXWZY�[1 \^] 1 _^\O`O`O`�\ Y�[
 \"]
 _ba where [� is an instance drawn from some spacec

and represented in some manner (typically, a vector of attribute values), and]R�9dfe is the class
label associated with [� . In this paper, we always assume that the set of possible labels e is of
finite cardinality g .

In addition, the boosting algorithm has access to another unspecified learning algorithm, called
the weak learning algorithm, which is denoted generically as WeakLearn. The boosting algorithm
calls WeakLearn repeatedly in a series of rounds. On round h , the booster provides WeakLearn
with a distribution i�# over the training set T . In response, WeakLearn computes a classifier or
hypothesis j�# :

c k e which should misclassify a non trivial fraction of the training examples,
relative to il# . That is, the weak learner’s goal is to find a hypothesis jm# which minimizes the
(training) error n�#�U Pr�poRq -Or jR#�Y�[�s_utU]v�Aw . Note that this error is measured with respect to the
distribution il# that was provided to the weak learner. This process continues for x rounds, and, at
last, the booster combines the weak hypotheses j 1 \O`O`O`O\ j�y into a single final hypothesis j�ILK .

Still unspecified are (1) the manner in which iz# is computed on each round, and (2) howjJILK is computed. Different boosting schemes answer these two questions in different ways.
AdaBoost.M1 uses the simple rule shown in Figure 1. The initial distribution i 1 is uniform overT so i 1 Y�{ _ U 1 |}S for all { . To compute distribution iz#H@ 1 from il# and the last weak hypothesisjR# , we multiply the weight of example { by some number ~B# d�� 0 \ 1 _ if j�# classifies [� correctly,
and otherwise the weight is left unchanged. The weights are then renormalized by dividing by
the normalization constant � # . Effectively, “easy” examples that are correctly classified by many

3

Algorithm AdaBoost.M2
Input: sequence of � examples

�����
1 ��� 1 ���
	�	�	�� ����
 ���
 ��� with labels �
��������� 1 �
	�	�	������

weak learning algorithm WeakLearn
integer � specifying number of iterations

Let
� � � ��� ���&� :

� � � 1 ��	
	�	�� � �J�b� ��G�
�s�
Initialize � 1

��� ���&�B� 1 �� � � for
��� �b���;� � .

Do for ! � 1 � 2 ��	�	"	�� �
1. Call WeakLearn, providing it with mislabel distribution � # .
2. Get back a hypothesis % # : ' E � (�� 0 � 1 � .
3. Calculate the pseudo-loss of %R# : *�# � 1

2 +.Q��� 7 3 M
	 �?# ��� ���&��� 1 : %�# ��� �����
� ��
 %�# ��� ���b����� 	
4. Set <�# � *�#� � 1 :=*�# � .
5. Update �C# : �?#H@ 1

��� �b���m� �?# ��� �b���D # � < . 1 � 2 3P. 1 @ ,"-4.Q0�2�� 7 2p3��&,"-s.Q0�2�� 7 3A3#
where

D # is a normalization constant (chosen so that �$#H@ 1 will be a distribution).

Output the hypothesis: % fin
��� ��� arg max7"MON

y+ # 6 1

�
log

1<R#�� %�# ��� ���&��	
Figure 2: The algorithm AdaBoost.M2.

of the previous weak hypotheses get lower weight, and “hard” examples which tend often to be
misclassified get higher weight. Thus, AdaBoost focuses the most weight on the examples which
seem to be hardest for WeakLearn.

The number ~ # is computed as shown in the figure as a function of n^# . The final hypothesis j ILK
is a weighted vote (i.e. a weighted linear threshold) of the weak hypotheses. That is, for a given
instance [, jLILK outputs the label] that maximizes the sum of the weights of the weak hypotheses
predicting that label. The weight of hypothesis jm# is defined to be ln Y 1 |v~m# _ so that greater weight
is given to hypotheses with lower error.

The important theoretical property about AdaBoost.M1 is stated in the following theorem. This
theorem shows that if the weak hypotheses consistently have error only slightly better than 1 | 2,
then the error of the final hypothesis j&ILK drops to zero exponentially fast. For binary classification
problems, this means that the weak hypotheses need be only slightly better than random.

Theorem 1 ([9]) Suppose the weak learning algorithm WeakLearn, when called by
AdaBoost.M1, generates hypotheses with errors n 1 \O`O`O`�\ n y , where n # is as defined in Figure 1.
Assume each n #�� 1 | 2, and let � # U 1 | 2 � n # . Then the following upper bound holds on the error
of the final hypothesis j fin:

1S�� � { : j fin Y�[�s_utU] � � � � y�
6 1 � 1 � 4 � 2# � exp ��� 2

y+ # 6 1

� 2#! `
The main disadvantage of AdaBoost.M1 is that it is unable to handle weak hypotheses with

error greater than 1 | 2. The expected error of a hypothesis which randomly guesses the label is
1 � 1 |Jg , where g is the number of possible labels. Thus AdaBoost.M1 requirement for g U 2
is that the prediction is just slightly better than random guessing. However, when g#" 2, the
requirement of AdaBoost.M1 is much stronger than that, and might be hard to meet.

4

2.2 AdaBoost.M2

The second version of AdaBoost attempts to overcome this difficulty by extending the communi-
cation between the boosting algorithm and the weak learner. First, we allow the weak learner to
generate more expressive hypotheses whose output is a vector in � 0 \ 1 ��� , rather than a single label
in e . Intuitively, the] th component of this vector represents a “degree of belief” that the correct
label is] . The components with values close to 1 or 0 correspond to those labels considered to be
plausible or implausible, respectively.

While we give the weak learning algorithm more expressive power, we also place a more
complex requirement on the performance of the weak hypotheses. Rather than using the usual
prediction error, we ask that the weak hypotheses do well with respect to a more sophisticated
error measure that we call the pseudo-loss. Unlike ordinary error which is computed with respect
to a distribution over examples, pseudo-loss is computed with respect to a distribution over the
set of all pairs of examples and incorrect labels. By manipulating this distribution, the boosting
algorithm can focus the weak learner not only on hard-to-classify examples, but more specifically,
on the incorrect labels that are hardest to discriminate. We will see that the boosting algorithm
AdaBoost.M2, which is based on these ideas, achieves boosting if each weak hypothesis has
pseudo-loss slightly better than random guessing.

More formally, a mislabel is a pair Y�{ \"] _ where { is the index of a training example and] is an
incorrect label associated with example { . Let � be the set of all mislabels:

� U � Y�{ \"] _ : { d �
1 \O`O` `
\ S � \"] tU] � � `

A mislabel distribution is a distribution defined over the set � of all mislabels.
On each round h of boosting, AdaBoost.M2 (Figure 2) supplies the weak learner with a

mislabel distribution i # . In response, the weak learner computes a hypothesis j # of the formj # :
c � e k � 0 \ 1 � .
Intuitively, we interpret each mislabel Y�{ \^] _ as representing a binary question of the form: “Do

you predict that the label associated with example [� is]v� (the correct label) or] (one of the
incorrect labels)?” With this interpretation, the weight i #ZY�{ \"] _ assigned to this mislabel represents
the importance of distinguishing incorrect label] on example [� .

A weak hypothesis j�# is then interpreted in the following manner. If j #ZY�[��\"]v�s_ U 1 andjR#ZY�[��\^] _ U 0, then j�# has (correctly) predicted that [� ’s label is] � , not] (since j�# deems] � to
be “plausible” and] “implausible”). Similarly, if j #ZY�[��\^] �s_ U 0 and jR#ZY�[� \"] _ U 1, then j�# has
(incorrectly) made the opposite prediction. If j #ZY�[��\"]v�s_ U j�#ZY�[��\"] _ , then j�# ’s prediction is taken to
be a random guess. (Values for j # in Y 0 \ 1 _ are interpreted probabilistically.)

This interpretation leads us to define the pseudo-loss of hypothesis jm# with respect to mislabel
distribution il# by the formula

nZ#�U 1
2 +.Q� � 7 3 M
	 i #ZY�{ \^] _ � 1 � jR#ZY�[��\^] �P_�� jR#ZY�[��\"] _ �v`

Space limitations prevent us from giving a complete derivation of this formula which is explained
in detail in our earlier paper [9]. It should be clear, however, that the pseudo-loss is minimized
when correct labels] � are given values near 1 and incorrect labels]�tU] � values near 0. Further,
note that pseudo-loss 1 | 2 is trivially achieved by any constant-valued hypothesis j # , and moreover

5

that a hypothesis j # with pseudo-loss greater than 1 | 2 can be replaced by the hypothesis 1 � j #
whose pseudo-loss is less than 1 | 2.

The weak learner’s goal is to find a weak hypothesis j # with small pseudo-loss. Thus, standard
“off-the-shelf” learning algorithms may need some modification to be used in this manner, although
this modification is often straightforward. After receiving jm# , the mislabel distribution is updated
using a rule similar to the one used in AdaBoost.M1. The final hypothesis j�ILK outputs, for a given
instance [, the label] that maximizes a weighted average of the weak hypothesis values jB#ZY�[\"] _ .

The following theorem gives a bound on the training error of the final hypothesis. Note that
this theorem requires only that the weak hypotheses have pseudo-loss less than 1 | 2, i.e., only
slightly better than a trivial (constant-valued) hypothesis, regardless of the number of classes.
Also, although the weak hypotheses j # are evaluated with respect to the pseudo-loss, we of course
evaluate the final hypothesis j ILK using the ordinary error measure.

Theorem 2 ([9]) Suppose the weak learning algorithm WeakLearn, when called by AdaBoost.M2
generates hypotheses with pseudo-losses n 1 \O` `O`O\ nZy , where n�# is as defined in Figure 2. Let��# U 1 | 2 � nZ# . Then the following upper bound holds on the error of the final hypothesis j fin:

1S � � { : j fin Y�[� _utU]v� � � � Y�g � 1 _ y�# 6 1 � 1 � 4 � 2# � Y�g � 1 _ exp ��� 2
y+ # 6 1

� 2#
where g is the number of classes.

3 Boosting and bagging

In this section, we describe our experiments comparing boosting and bagging on the UCI bench-
marks.

We first mention briefly a small implementation issue: Many learning algorithms can be
modified to handle examples that are weighted by a distribution such as the one created by the
boosting algorithm. When this is possible, the booster’s distribution i # is supplied directly to
the weak learning algorithm, a method we call boosting by reweighting. However, some learning
algorithms require an unweighted set of examples. For such a weak learning algorithm, we instead
choose a set of examples from T independently at random according to the distribution i # with
replacement. The number of examples to be chosen on each round is a matter of discretion; in our
experiments, we chose S examples on each round, where S is the size of the original training setT . We refer to this method as boosting by resampling.

Boosting by resampling is also possible when using the pseudo-loss. In this case, a set of
mislabels are chosen from the set � of all mislabels with replacement according to the given
distribution i # . Such a procedure is consistent with the interpretation of mislabels discussed in
Section 2.2. In our experiments, we chose a sample of size � � � U�SfYZg � 1 _ on each round when
using the resampling method.

3.1 The weak learning algorithms

As mentioned in the introduction, we used three weak learning algorithms in these experiments.
In all cases, the examples are described by a vector of values which corresponds to a fixed set of

6

features or attributes. These values may be discrete or continuous. Some of the examples may
have missing values. All three of the weak learners build hypotheses which classify examples by
repeatedly testing the values of chosen attributes.

The first and simplest weak learner, which we call FindAttrTest, searches for the single
attribute-value test with minimum error (or pseudo-loss) on the training set. More precisely,
FindAttrTest computes a classifier which is defined by an attribute � , a value � and three predictions

�
0, �

1 and �
?. This classifier classifies a new example [as follows: if the value of attribute � is

missing on [, then predict �
?; if attribute � is discrete and its value on example [is equal to � , or

if attribute � is continuous and its value on [is at most � , then predict �
0; otherwise predict �

1. If
using ordinary error (AdaBoost.M1), these “predictions” �

0, �
1, �

? would be simple classifications;
for pseudo-loss, the “predictions” would be vectors in � 0 \ 1 � � (where g is the number of classes).

The algorithm FindAttrTest searches exhaustively for the classifier of the form given above
with minimum error or pseudo-loss with respect to the distribution provied by the booster. In other
words, all possible values of � , � , �

0, �
1 and �

? are considered. This search can be carried out in
time linear in the size of the training set (per round of boosting).

For this algorithm, we used boosting with reweighting.
The second weak learner does a somewhat more sophisticated search for a decision rule that

tests on a conjunction of attribute-value tests. We sketch the main ideas of this algorithm, which
we call FindDecRule, but omit some of the finer details for lack of space. These details will be
provided in the full paper.

First, the algorithm requires an unweighted training set, so we use the resampling version of
boosting. The given training set is randomly divided into a growing set using 70% of the data, and
a pruning set with the remaining 30%. In the first phase, the growing set is used to grow a list of
attribute-value tests. Each test compares an attribute � to a value � , similar to the tests used by
FindAttrTest. We use an entropy-based potential function to guide the growth of the list of tests.
The list is initially empty, and one test is added at a time, each time choosing the test that will cause
the greatest drop in potential. After the test is chosen, only one branch is expanded, namely, the
branch with the highest remaining potential. The list continues to be grown in this fashion until no
test remains which will further reduce the potential.

In the second phase, the list is pruned by selecting the prefix of the list with minimum error (or
pseudo-loss) on the pruning set.

The third weak learner is Quinlan’s C4.5 decision-tree algorithm [17]. We used all the default
options with pruning turned on. Since C4.5 expects an unweighted training sample, we used
resampling. Also, we did not attempt to use AdaBoost.M2 since C4.5 is designed to minimize
error, not pseudo-loss.

3.2 Bagging

We compared boosting to Breiman’s [1] “bootstrap aggregating” or “bagging” method for training
and combining multiple copies of a learning algorithm. Briefly, the method works by training
each copy of the algorithm on a bootstrap sample, i.e., a sample of size S chosen uniformly at
random with replacement from the original training set T (of size S). The multiple hypotheses
that are computed are then combined using simple voting; that is, the final composite hypothesis
classifies an example [to the class most often assigned by the underlying “weak” hypotheses. See

7

his paper for more details. The method can be quite effective, especially, according to Breiman,
for “unstable” learning algorithms for which a small change in the data effects a large change in
the computed hypothesis.

In order to compare AdaBoost.M2, which uses pseudo-loss, to bagging, we also extended
bagging in a natural way for use with a weak learning algorithm that minimizes pseudo-loss
rather than ordinary error. As described in Section 2.2, such a weak learning algorithm expects
to be provided with a distribution over the set � of all mislabels. On each round of bagging,
we construct this distribution using the bootstrap method; that is, we select � � � mislabels from �
(chosen uniformly at random with replacement), and assign each mislabel weight 1 | � � � times the
number of times it was chosen. The hypotheses j # computed in this manner are then combined
using voting in a natural manner; namely, given [, the combined hypothesis outputs the label]
which maximizes

� # j # Y�[\^] _ .
For either error or pseudo-loss, the differences between bagging and boosting can be summarized

as follows: (1) bagging always uses resampling rather than reweighting; (2) bagging does not
modify the distribution over examples or mislabels, but instead always uses the uniformdistribution;
and (3) in forming the final hypothesis, bagging gives equal weight to each of the weak hypotheses.

3.3 The experiments

We conducted our experiments on a collection of machine learning datasets available from the
repository at University of California at Irvine.2 A summary of some of the properties of these
datasets is given in Table 3 in the appendix. Some datasets are provided with a test set. For these,
we reran each algorithm 20 times (since some of the algorithms are randomized), and averaged the
results. For datasets with no provided test set, we used 10-fold cross validation, and averaged the
results over 10 runs (for a total of 100 runs of each algorithm on each dataset).

In all our experiments, we set the number of rounds of boosting or bagging to be x U 100.

3.4 Results and discussion

The results of our experiments are shown in Table 1. The figures indicate test error rate averaged
over multiple runs of each algorithm. Columns indicate which weak learning algorithm was used,
and whether pseudo-loss (AdaBoost.M2) or error (AdaBoost.M1) was used. Columns labeled
“–” indicate that the weak learning algorithm was used by itself (with no boosting or bagging).
Columns using boosting or bagging are marked “boost” and “bag,” respectively.

One of our goals in carrying out these experiments was to determine if boosting using pseudo-
loss (rather than error) is worthwhile. These experiments indicate that pseudo-loss is definitely
worth the effort. Using pseudo-loss did dramatically better than error on every non-binary problem
(except it did slightly worse on “iris” with three classes). Because AdaBoost.M2 did so much
better than AdaBoost.M1, we will only discuss AdaBoost.M2 in the remaining discussion.

Using pseudo-loss with bagging gave mixed results in comparison to ordinary error. Overall,
pseudo-loss gave better results, but occassionally, using pseudo-loss hurt considerably.

For the simpler weak learning algorithms (FindAttrTest and FindDecRule), boosting did
significantly and uniformly better than bagging. The boosting error rate was worse than the bagging

2URL “http://www.ics.uci.edu/˜mlearn/MLRepository.html”

8

FindAttrTest FindDecRule C4.5
error pseudo-loss error pseudo-loss error

name – boost bag boost bag – boost bag boost bag – boost bag
soybean-small 57.6 56.4 48.7 0.2 20.5 51.8 56.0 45.7 0.4 2.9 2.2 3.4 2.2
labor 25.1 8.8 19.1 9.0 18.9 24.0 7.3 14.6 7.2 15.7 15.8 13.1 11.3
promoters 29.7 8.9 16.6 9.1 17.2 25.9 8.3 13.7 8.5 14.2 22.0 5.0 12.7
iris 35.2 4.7 28.4 4.8 7.1 38.3 4.3 18.8 4.8 5.5 5.9 5.0 5.0
hepatitis 19.7 18.6 16.8 18.3 17.4 21.6 18.0 20.1 18.4 20.6 21.2 16.3 17.5
sonar 25.9 16.5 25.9 16.8 25.9 31.4 16.2 26.1 15.4 25.7 28.9 19.0 24.3
glass 51.5 51.1 50.9 29.4 54.2 49.7 48.5 47.2 25.0 52.0 31.7 22.7 25.7
audiology.stand 57.7 57.7 57.7 26.9 77.2 57.7 57.7 57.7 18.5 63.5 15.4 15.4 10.2
cleve 27.8 18.8 22.4 18.8 21.9 27.4 19.7 20.3 20.6 19.9 26.6 21.7 20.9
soybean-large 64.8 64.5 59.0 9.8 74.2 73.6 73.6 73.6 7.2 66.0 13.3 6.8 12.2
ionosphere 17.8 8.5 17.3 8.5 17.2 10.3 6.6 9.3 6.4 9.4 8.9 5.8 6.2
house-votes-84 4.4 3.7 4.4 3.7 4.4 5.0 4.4 4.4 4.3 4.5 3.5 5.1 3.6
votes1 12.7 8.9 12.7 8.9 12.7 13.2 9.4 11.2 9.4 10.7 10.3 10.4 9.2
crx 14.5 14.4 14.5 14.4 14.5 14.5 13.5 14.5 13.6 14.5 15.8 13.8 13.6
breast-cancer-w 8.4 4.4 6.7 4.4 6.6 8.1 4.1 5.3 4.0 5.2 5.0 3.3 3.2
pima-indians-di 26.1 24.4 26.1 24.5 26.0 27.8 25.3 26.4 25.4 26.6 28.4 25.7 24.4
vehicle 64.3 64.4 57.6 26.1 56.1 61.3 61.2 61.0 25.0 54.3 29.9 22.6 26.1
vowel 81.8 81.8 76.8 18.2 74.7 82.0 72.7 71.6 6.5 63.2 2.2 0.0 0.0
german 30.0 24.9 30.4 24.9 30.3 30.0 25.4 29.6 25.6 29.7 29.4 25.0 24.6
segmentation 75.8 75.8 54.5 4.2 72.5 73.7 53.3 54.3 2.4 58.0 3.6 1.4 2.7
hypothyroid 2.2 1.0 2.2 1.0 2.2 0.8 1.0 0.7 1.0 0.7 0.8 1.0 0.8
sick-euthyroid 5.6 3.0 5.6 3.0 5.6 2.4 2.4 2.2 2.4 2.1 2.2 2.1 2.1
splice 37.0 9.2 35.6 4.4 33.4 29.5 8.0 29.5 4.0 29.5 5.8 4.9 5.2
kr-vs-kp 32.8 4.4 30.7 4.4 31.3 24.6 0.7 20.8 0.6 21.7 0.5 0.3 0.6
satimage 58.3 58.3 58.3 14.9 41.6 57.6 56.5 56.7 13.1 30.0 14.8 8.9 10.6
agaricus-lepiot 11.3 0.0 11.3 0.0 11.3 8.2 0.0 8.2 0.0 8.2 0.0 0.0 0.0
letter-recognit 92.9 92.9 91.9 34.1 93.7 92.3 91.8 91.8 30.4 93.7 13.8 3.3 6.8

Table 1: Test error rates of various algorithms on benchmark problems.

error rate (using either pseudo-loss or error) on a very small number of benchmark problems, and
on these, the difference in performance was quite small. On average, for FindAttrTest, boosting
improved the error rate over using FindAttrTest alone by 55.1%, compared to bagging which gave
an improvement of only 10.6% using pseudo-loss or 8.4% using error. For FindDecRule, boosting
improved the error rate by 53.1%, bagging by only 19.0% using pseudo-loss, 13.1% using error.

When using C4.5 as the weak learning algorithm, boosting and bagging seem more evenly
matched, although boosting still seems to have a slight advantage. On average, boosting improved
the error rate by 23.6%, bagging by 20.7%. Boosting beat bagging by more than 2% on 6 of the
benchmarks; while bagging beat boosting by this amount on only 1 benchmark. For the remaining
20 benchmarks, the difference in performance was less than 2%.

Using boosting with FindAttrTest does quite well as a learning algorithm in its own right, in
comparison, say, to C4.5. This algorithm beat C4.5 on 10 of the benchmarks (by at least 2%), tied
on 13, and lost on 4. As mentioned above, its average performance relative to using FindAttrTest
by itself was 55.1%. In comparison, C4.5’s improvement in performance over FindAttrTest was
49.9%.

Using boosting with FindDecRule did somewhat better. The win-tie-lose numbers for this

9

algorithm (compared to C4.5) were 12-12-3, and its average improvement over FindAttrTest was
58.2%.

4 Boosting a nearest-neighbor classifier

In this section we study the performance of a learning algorithm which combines AdaBoost and
a variant of the nearest-neighbor classifier. We test the combined algorithm on the problem of
reconizing handwritten digits. Our goal is not to improve on the accuracy of the nearest neighbor
classifier, but rather, to speed it up. Speedup is achieved by reducing the number of prototypes in
the hypothesis and the number of required distance calculations without increasing the error rate.
It is a similar approach to that of nearest-neighbor editing [11, 12] in which one tries to find the
minimal set of prototypes that is sufficient to label all the training set correctly.

The dataset comes from the US Postal Service (USPS) and consists of 9709 training examples
and 2007 test examples. The training and test examples are evidently drawn from rather different
distributions as there is a very significant improvement in the performance if the partition of the
data into training and testing is done at random (rather than using the given partition). We report
results both on the original partitioning and on a training set and a test set of the same sizes that
were generated by randomly partitioning the union of the original training and test sets.

Each image is represented by a 16
�

16-matrix of 8-bit pixels. The metric that we use is the
standard Euclidean distance between the images (viewed as vectors in

� 256). This is a very naive
metric, but it gives reasonably good performance. A nearest-neighbor classifier which uses all the
training examples as prototypes achieves a test error of 5 ` 7% (2 ` 3% on randomly partitioned data).
Using tangent distance [20] is in our future plans.

Our weak learning algorithm is simply to use a random set of examples as prototypes, chosen
according to the distribution provided by the boosting algorithm. A standard nearest-neighbor
classifier would predict the label of a test example according to the identity of its closest prototype.
However, we found that significant improvement was achieved by using a variant of this algorithm
that is optimized for use with AdaBoost.M2. To do this we consider all of the training set
examples that are closest to each selected prototype, and choose the fixed prediction that minimizes
the pseudo-loss for this (weighted) set of examples. This prediction choice is described in detail in
Example 5 in [9]. In addition, we make the following modifications to the basic scheme:

� When using AdaBoost.M2, it is possible that hypothesis jm# has pseudo-loss less than 1 | 2 on
distribution il#A@ 1. When this happens, we reuse in hypothesis j #H@ 1 the same set of prototypes
that were used for j�# . Without increasing the size of the final hypothesis, this method reduces
the theoretical error bound, and, as we observe in experiments, also the actual error on the
training set.

� Instead of just selecting the prototypes at random, the algorithm repeatedly selects ten random
prototypes and adds the one which causes the largest reduction in the pseudo-loss.

We ran 30 iterations of the boosting algorithm, and the number of prototypes we used were
10 for the first weak hypothesis, 20 for the second, 40 for the third, 80 for the next five, and 100
for the remaining weak hypotheses. These sizes were chosen so that the errors of all of the weak
hypotheses are approximately equal.

10

random partition given partition
Proto- AdaBoost Strawman AdaBoost Strawman

round types theory train test train test theory train test train test
1 10 524.6 42.8 43.5 44.8 43.5 536.3 49.1 47.6 39.2 41.9
5 230 86.4 5.8 8.7 5.5 7.8 83.0 5.4 13.7 4.3 9.6

10 670 16.0 0.2 5.5 2.5 5.3 10.9 0.1 9.1 1.4 7.7
13 970 4.5 0.0 4.6 1.7 4.7 3.3 0.0 7.8 0.9 7.3
15 1170 2.4 0.0 3.9 1.4 4.7 1.5 0.0 7.8 0.7 7.4
20 1670 0.4 0.0 3.4 1.4 4.9 0.2 0.0 7.2 0.5 6.7
25 2170 0.1 0.0 3.3 1.2 4.2 0.0 0.0 6.8 0.3 7.1
30 2670 0.0 0.0 3.1 1.1 3.9 0.0 0.0 6.6 0.2 6.5

Table 2: Errors on randomly selected training and test sets, in percent. For columns labeled
“random partition,” a random partition of the union of the training and test sets was used; “given
partition” means the provided partition into training and test sets was used. Columns labeled
“theory” give theoretical upper bound on training error (see Theorem 2).

We compared the performance of our algorithm to a strawman algorithm which uses a single
set of prototypes. Similar to our algorithm, the prototype set is generated incrementally, comparing
ten prototype candidates at each step. We compared the performance of the boosting algorithm
to that of the strawman hypothesis that uses the same number of prototypes. We also compared
our performance to that of the condensed nearest neighbor rule [12] (CNN), a greedy method for
finding a small set of prototypes which correctly classify the entire training set.

4.1 Results and discussion

The results of our experiments are summarized in Table 2 and Figure 4.
In the left part of Table 2 we have the results of an experiment in which the test set was selected

randomly from the union of the test and training data of the USPS dataset. We see that the boosting
algorithm outperforms the strawman algorithm; the difference is dramatic on the training set but is
also significant on the test set. Comparing these results to those of CNN, we find that the boosting
algorithm reached zero error on the training set after 970 prototypes, which is about the same as
CNN which reduced the set of prototypes to 964. However, the test error of this CNN was 5 ` 7%,
while the test error achieved by the 970 prototypes found by boosting was 4 ` 5% and was further
reduced to 3 ` 1% when 2670 prototypes were used. Better editing algorithms might reduce the set
of prototypes further, but it seems unlikely that this will reduce the test error. The error achieved
by using the full training set (9709 prototypes) was 2 ` 3%.

These results are also described by the graphs in Figure 4. The uppermost jagged line is a
concatanation of the errors of the weak hypotheses with respect to the corresponding weights on
the training set. Each peak followed by a valley corresponds to the beginning and end errors of
a weak hypothesis. As we see the weighted error always started around 50% on the beginning
of a boosting iteration and reached 20% � 30% by its end. The heaviest line describes the upper
bound on the training error that is guaranteed by Theorem 2, and the two bottom lines describe the
training and test error of the final combined hypothesis.

11

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/0.17 2:3/0.27,2/0.19 8:2/0.30,8/0.21 4:1/0.27,4/0.18

4:1/0.28,4/0.20 2:8/0.22,2/0.17 0:2/0.26,0/0.19 5:3/0.25,5/0.20 4:1/0.26,4/0.19 7:2/0.22,3/0.18 2:0/0.23,6/0.18 0:6/0.20,5/0.15 8:2/0.20,3/0.20

4:1/0.23,4/0.22 8:6/0.18,8/0.18 4:9/0.16,4/0.16 4:1/0.23,4/0.22 3:5/0.18,3/0.17 0:6/0.22,0/0.22 7:9/0.20,7/0.19 3:5/0.29,3/0.29 9:9/0.15,4/0.15

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/0.17 7:7/0.20,9/0.20 8:8/0.18,6/0.18 4:4/0.19,1/0.19

4:9/0.16,4/0.16 4:1/0.23,4/0.22 4:1/0.21,4/0.20 9:9/0.17,4/0.17 9:9/0.19,7/0.18 9:9/0.19,4/0.19 9:9/0.19,4/0.18 9:9/0.21,7/0.21 7:7/0.17,9/0.17

9:9/0.16,4/0.14 3:3/0.19,5/0.17 9:9/0.20,7/0.17 9:9/0.25,7/0.22 4:4/0.22,1/0.19 7:7/0.20,9/0.18 5:5/0.20,3/0.17 4:4/0.18,9/0.15 4:4/0.20,9/0.17

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/0.17 4:4/0.19,9/0.16 9:9/0.16,4/0.14 5:5/0.19,3/0.17

Figure 3: A sample of the examples that have the largest weight after 3 out of the 30 boosting
iterations. The first line is after iteration 4, the second after iteration 12 and the third after
iteration 25. Underneath each image we have a line of the form

�
: � 1 |�� 1,� 2 |�� 2, where

�
is the

label of the example, � 1 and � 2 are the labels that get the highest and second highest vote from the
combined hypothesis at that point in the run of the algorithm, and � 1, � 2 are the corresponding
votes.

It is interesting that the performance of the boosting algorithm on the test set improved signif-
icantly after the error on the training set has already become zero. This is surprising because an
“Occam’s razor” argument would predict that increasing the complexity of the hypothesis after the
error has been reduced to zero is likely to degrade the performance on the test set.

The right hand side of Table 2 summarizes the results of running our algorithm on the training
and test set as they were defined. Here the performance of boosting was similar to that of the
strawman algorithm. However, it was still significantly better than that of CNN, which achieved a
test error of 7 ` 8% using 835 prototypes. It seems that the difference between the distribution of the
test set and the training set removed the advantage that boosting had over the strawman algorithm.

We observed that when calculating the prediction of the combined hypothesis as we add the
weighted vote of one weak hypothesis at a time, we can sometimes conclude what the final vote
will be before calculating all of the hypotheses. This is possible when the difference between
the current largest vote and the current second largest vote is larger than the total weight of the
remaining hypotheses. In our experiments we found that the average number of weak hypotheses
that had to be considered is 24 ` 0 for the randomly chosen training set and 23 ` 6 for the original
training set. We can thus, on average, reduce the number of distance claculations that are required
for evaluating the hypothesis from 2670 to 2070 without changing the predictions.

It is instructive to observe the examples that are given large weights by the boosting algorithm.
A sample of these is given in Figure 3. There seem to be two types of “hard” examples. First
are examples which are very atypical or wrongly labeled (such as example 2 on the first line and
examples 3, 4 and 9 on the second line). The second type, which tends to dominate on later
iterations, consists of examples that are very similar to each other but have different labels (such
as examples 3 versus 4 and 1 versus 8 on the third line). Although the algorithm at this point
was correct on all training examples, it is clear from the votes it assigned to different labels for
these example pairs that it was still trying to improve the discrimination between these hard to
discriminate pairs. This agrees with our intuition that the pseudo-loss is a mechanism that causes

12

0

0.1

0.2

0.3

0.4

0.5

err

0 500 1000 1500 2000 2500
num_prototypes

Figure 4: Graphs of the performance of the boosting algorithm on the randomly partitioned USPS
dataset. The horizontal axis indicates the total number of prototypes that were added to the
combined hypothesis, and the vertical axis indicates error. The topmost jagged line indicates the
error of the weak hypothesis that is trained at this point on the weighted training set. The bold
curve is the bound on the training error that is calculated based on the performance of the weak
learner. The lowest thin curve is the performance of the combined hypothesis on the training set.
The medium-bold curve is the performance of the combined hypothesis on the test set.

the boosting algorithm to concentrate on the hard to discriminate labels of hard examples.

Acknowledgements

Thanks to Jason Catlett and William Cohen for extensive advice on the design of our experiments.
Thanks to Ross Quinlan for first suggesting a comparison of boosting and bagging. Thanks also to
Leo Breiman, Corinna Cortes, Harris Drucker, Jeff Jackson, Michael Kearns, Ofer Matan, Partha
Niyogi, Warren Smith, and David Wolpert for helpful comments, suggestions and criticisms.

References

[1] Leo Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University
of California at Berkeley, 1994.

13

[2] William Cohen. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123, 1995.

[3] Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak learning framework
to understand and improve C4.5. Unpublished manuscript, 1996.

[4] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural Informa-
tion Processing Systems 8, 1996.

[5] Harris Drucker, Corinna Cortes, L. D. Jackel, Yann LeCun, and Vladimir Vapnik. Boosting
and other ensemble methods. Neural Computation, 6(6):1289–1301, 1994.

[6] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neural net-
works. International Journal of Pattern Recognition and Artificial Intelligence, 7(4):705–719,
1993.

[7] Harris Drucker, Robert Schapire, and Patrice Simard. Improving performance in neural
networks using a boosting algorithm. In Advances in Neural Information Processing Systems
5, pages 42–49, 1993.

[8] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121(2):256–285, 1995.

[9] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Unpublished manuscript available electronically (on our
web pages, or by email request). An extended abstract appeared in Computational Learning
Theory: Second European Conference, EuroCOLT ’95, pages 23–37, Springer-Verlag, 1995.

[10] Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning. In Machine
Learning: Proceedings of the Eleventh International Conference, pages 70–77, 1994.

[11] Geoffrey W. Gates. The reduced nearest neighbor rule. IEEE Transactions on Information
Theory, pages 431–433, 1972.

[12] Peter E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, IT-14:515–516, May 1968.

[13] Robert C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63–91, 1993.

[14] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances in Neural
Information Processing Systems 8, 1996.

[15] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, 1996.

[16] Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects bias and
variance. In Proceedings of the Twelfth International Conference on Machine Learning, pages
313–321, 1995.

14

[17] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[18] J. Ross Quinlan. Bagging, boosting, and C4.5. unpublished manuscript, 1996.

[19] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
1990.

[20] Patrice Simard, Yann Le Cun, and John Denker. Efficient pattern recognition using a new
transformation distance. In Advances in Neural Information Processing Systems, volume 5,
pages 50–58, 1993.

A The Irvine datasets

examples # classes # attributes missing
name train test discrete cont. values
soybean-small 47 - 4 35 - -
labor 57 - 2 8 8

�

promoters 106 - 2 57 - -
iris 150 - 3 - 4 -
hepatitis 155 - 2 13 6

�

sonar 208 - 2 - 60 -
glass 214 - 7 - 9 -
audiology.stand 226 - 24 69 -

�

cleve 303 - 2 7 6
�

soybean-large 307 376 19 35 -
�

ionosphere 351 - 2 - 34 -
house-votes-84 435 - 2 16 -

�

votes1 435 - 2 15 -
�

crx 690 - 2 9 6
�

breast-cancer-w 699 - 2 - 9
�

pima-indians-di 768 - 2 - 8 -
vehicle 846 - 4 - 18 -
vowel 528 462 11 - 10 -
german 1000 - 2 13 7 -
segmentation 2310 - 7 - 19 -
hypothyroid 3163 - 2 18 7

�

sick-euthyroid 3163 - 2 18 7
�

splice 3190 - 3 60 - -
kr-vs-kp 3196 - 2 36 - -
satimage 4435 2000 6 - 36 -
agaricus-lepiot 8124 - 2 22 - -
letter-recognit 16000 4000 26 - 16 -

Table 3: The benchmark machine learning problems used in the experiments.

15

