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Abstract

A fundamental problem in neural network research, as weh asany other disciplines, is finding a suitable
representation of multivariate data, i.e. random vectBos.reasons of computational and conceptual simplicity,
the representation is often sought as a linear transfoomafithe original data. In other words, each component
of the representation is a linear combination of the origiasiables. Well-known linear transformation methods
include principal component analysis, factor analysisl grojection pursuit. Independent component analysis
(ICA) is a recently developed method in which the goal is td finlinear representation of nongaussian data so
that the components are statistically independent, ordepigndent as possible. Such a representation seems to
capture the essential structure of the data in many apiglistincluding feature extraction and signal separation.
In this paper, we present the basic theory and applicatibi@Ay and our recent work on the subject.

Keywords: Independent component analysis, projectiosyyrblind signal separation, source separation, factor
analysis, representation

1 Motivation

Imagine that you are in a room where two people are speakingisineously. You have two microphones, which
you hold in different locations. The microphones give yoo tcorded time signals, which we could denote by
x1(t) andx(t), with x; andx, the amplitudes, andthe time index. Each of these recorded signals is a weighted
sum of the speech signals emitted by the two speakers, wreéatewote by (t) andsy(t). We could express this

as a linear equation:

x1(t) = a1181 + a12% 1)
Xo(t) = @151 + @z 2

whereay, a12, 821, andayp are some parameters that depend on the distances of thephmicres from the speakers.
It would be very useful if you could now estimate the two angispeech signaks (t) ands(t), using only the
recorded signalg; (t) andxx(t). This is called theocktail-party problem For the time being, we omit any time
delays or other extra factors from our simplified mixing mlode

As anillustration, consider the waveforms in Fig. 1 and Bigr'hese are, of course, not realistic speech signals,
but suffice for this illustration. The original speech silgn@ould look something like those in Fig. 1 and the mixed
signals could look like those in Fig. 2. The problem is to rexrdhe data in Fig. 1 using only the data in Fig. 2.

Actually, if we knew the parametegs;, we could solve the linear equation in (1) by classical mésharhe
point is, however, that if you don’'t know tregj, the problem is considerably more difficult.

One approach to solving this problem would be to use somenrdtion on the statistical properties of the
signalss () to estimate they;. Actually, and perhaps surprisingly, it turns out that gmugh to assume thaf(t)
andsy(t), at each time instart arestatistically independenthis is not an unrealistic assumption in many cases,



and it need not be exactly true in practice. The recentlyld@esl technique of Independent Component Analysis,
or ICA, can be used to estimate thg based on the information of their independence, which alosto separate
the two original source signatg(t) andsy(t) from their mixturesxy(t) andxz(t). Fig. 3 gives the two signals
estimated by the ICA method. As can be seen, these are vesy tdhe original source signals (their signs are
reversed, but this has no significance.)

Independent component analysis was originally develope@al with problems that are closely related to the
cocktail-party problem. Since the recent increase of @gein ICA, it has become clear that this principle has a
lot of other interesting applications as well.

Consider, for example, electrical recordings of brainwtgstias given by an electroencephalogram (EEG). The
EEG data consists of recordings of electrical potentialtmémy different locations on the scalp. These potentials
are presumably generated by mixing some underlying comqstoé brain activity. This situation is quite similar
to the cocktail-party problem: we would like to find the origl components of brain activity, but we can only
observe mixtures of the components. ICA can reveal int@igestformation on brain activity by giving access to
its independent components.

Another, very different application of ICA is on feature edtion. A fundamental problem in digital signal
processing is to find suitable representations for imag#ipaar other kind of data for tasks like compression and
denoising. Data representations are often based on (@stireear transformations. Standard linear transforma-
tions widely used in image processing are the Fourier, Hamgine transforms etc. Each of them has its own
favorable properties (Gonzales and Wintz, 1987).

It would be most useful to estimate the linear transfornmefiom the data itself, in which case the transform
could be ideally adapted to the kind of data that is beinggssed. Figure 4 shows the basis functions obtained by
ICA from patches of natural images. Each image window in #teo§training images would be a superposition
of these windows so that the coefficient in the superpos#ienindependent. Feature extraction by ICA will be
explained in more detail later on.

All of the applications described above can actually be fdated in a unified mathematical framework, that
of ICA. This is a very general-purpose method of signal pssiteg and data analysis.

In this review, we cover the definition and underlying prpies of ICA in Sections 2 and 3. Then, starting
from Section 4, the ICA problem is solved on the basis of mining or maximizing certain conrast functions;
this transforms the ICA problem to a numerical optimizatwoblem. Many contrast functions are given and
the relations between them are clarified. Section 5 coversefulpreprocessing that greatly helps solving the
ICA problem, and Section 6 reviews one of the most efficieatfcal learning rules for solving the problem, the
FastICA algorithm. Then, in Section 7, typical applicasasf ICA are covered: removing artefacts from brain
signal recordings, finding hidden factors in financial tireéiess, and reducing noise in natural images. Section 8
concludes the text.

2 Independent Component Analysis
2.1 Definition of ICA

To rigorously define ICA (Jutten and Hérault, 1991; ComorQ4)9 we can use a statistical “latent variables”
model. Assume that we obsemdinear mixtures«, ..., X, of nindependent components

Xj = aj1S1 +aj2S + ... + ajnSy, forall j. (3)

We have now dropped the time indgxin the ICA model, we assume that each mixtujeas well as each
independent componest is a random variable, instead of a proper time signal. Themesl values;(t), e.g.,
the microphone signals in the cocktail party problem, aemth sample of this random variable. Without loss of
generality, we can assume that both the mixture variabléstenindependent components have zero mean: If this
is not true, then the observable variabtesan always be centered by subtracting the sample mean, wlikbs
the model zero-mean.

Itis convenient to use vector-matrix notation instead efghims like in the previous equation. Let us denote by
x the random vector whose elements are the mixtyres, x,, and likewise bysthe random vector with elements



81,...,Sn. Let us denote by the matrix with elements;j. Generally, bold lower case letters indicate vectors and
bold upper-case letters denote matrices. All vectors aderstood as column vectors; thxs, or the transpose of
X, Is a row vector. Using this vector-matrix notation, theabdmixing model is written as

X = As. (4)

Sometimes we need the columns of ma#&ipdenoting them by; the model can also be written as

x:_iaas. (5)

The statistical model in Eq. 4 is called independent compbaralysis, or ICA model. The ICA model is a
generative model, which means that it describes how therebdelata are generated by a process of mixing the
components,. The independent components are latent variables, me#man¢hey cannot be directly observed.
Also the mixing matrix is assumed to be unknown. All we obsédsvthe random vector, and we must estimate
bothA andsusing it. This must be done under as general assumptionssaifeo

The starting point for ICA is the very simple assumption ttia& components are statisticallyindependent
Statistical independence will be rigorously defined in Bec3. It will be seen below that we must also assume that
the independent component must haeagaussiamistributions. However, in the basic model we miot assume
these distributions known (if they are known, the problerodssiderably simplified.) For simplicity, we are also
assuming that the unknown mixing matrix is square, but teisimption can be sometimes relaxed, as explained
in Section 4.5. Then, after estimating the matkixwe can compute its inverse, s&¥, and obtain the independent
component simply by:

s=WHx. (6)

ICA is very closely related to the method callelind source separatio(BSS) or blind signal separation. A
“source” means here an original signal, i.e. independemipament, like the speaker in a cocktail party problem.
“Blind” means that we no very little, if anything, on the mig matrix, and make little assumptions on the source
signals. ICA is one method, perhaps the most widely usegddforming blind source separation.

In many applications, it would be more realistic to assunag there is some noise in the measurements (see
e.g. (Hyvérinen, 1998a; Hyvarinen, 1999c)), which wouldamadding a noise term in the model. For simplicity,
we omit any noise terms, since the estimation of the noise+imodel is difficult enough in itself, and seems to be
sufficient for many applications.

2.2 Ambiguities of ICA
In the ICA model in Eqg. (4), itis easy to see that the followargbiguities will hold:
1. We cannot determine the variances (energies) of the @rdiEmt components.

The reason is that, bothand A being unknown, any scalar multiplier in one of the sourgesould always
be cancelled by dividing the corresponding coluaprof A by the same scalar; see eq. (5). As a consequence,
we may quite as well fix the magnitudes of the independent corapts; as they are random variables, the most
natural way to do this is to assume that each has unit vari&@{@@} = 1. Then the matriyA will be adapted in the
ICA solution methods to take into account this restrictibiote that this still leaves the ambiguity of the sign: we
could multiply the an independent component-by without affecting the model. This ambiguity is, forturigte
insignificant in most applications.

2. We cannot determine the order of the independent comp&nen

The reason is that, again batlandA being unknown, we can freely change the order of the ternisdrstim
in (5), and call any of the independent components the first &ormally, a permutation matrikand its inverse
can be substituted in the model to give- AP~ 1Ps The elements dPsare the original independent variabigs
but in another order. The matrixP 1 is just a new unknown mixing matrix, to be solved by the ICAcithms.



2.3 lllustration of ICA

To illustrate the ICA model in statistical terms, consideptindependent components that have the following

uniform distributions: .
Si= if[s[ < V3
p(s)= {23 "Bl @
0 otherwise

The range of values for this uniform distribution were chrose as to make the mean zero and the variance equal
to one, as was agreed in the previous Section. The joint iyenfss; ands, is then uniform on a square. This
follows from the basic definition that the joint density ofaundependent variables is just the product of their
marginal densities (see Eg. 10): we need to simply competprbduct. The joint density is illustrated in Figure 5
by showing data points randomly drawn from this distribatio

Now let as mix these two independent components. Let us kekbotlowing mixing matrix:

Ao— @ f) (®)

This gives us two mixed variables, andx,. It is easily computed that the mixed data has a uniformidistion
on a parallelogram, as shown in Figure 6. Note that the randoiablesx; andx; are not independent any more;
an easy way to see this is to consider, whether it is possijpeadict the value of one of them, sgy, from the
value of the other. Clearly if; attains one of its maximum or minimum values, then this catgly determines
the value of,. They are therefore not independent. (For variableands, the situation is different: from Fig. 5
it can be seen that knowing the valuespfdoes not in any way help in guessing the valugof

The problem of estimating the data model of ICA is now to eatarthe mixing matriXAo using only infor-
mation contained in the mixtures andx,. Actually, you can see from Figure 6 an intuitive way of estimgA:
The edges of the parallelogram are in the directions of thenwas of A. This means that we could, in principle,
estimate the ICA model by first estimating the joint densityxpandxz, and then locating the edges. So, the
problem seems to have a solution.

In reality, however, this would be a very poor method becatusely works with variables that have exactly
uniform distributions. Moreover, it would be computatitpauite complicated. What we need is a method that
works for any distributions of the independent componeartd,works fast and reliably.

Next we shall consider the exact definition of independergerk starting to develop methods for estimation
of the ICA model.

3 What s independence?

3.1 Definition and fundamental properties

To define the concept of independence, consider two scalaes random variableg andy,. Basically, the
variablesy; andy, are said to be independent if information on the valug;adoes not give any information on
the value ofy,, and vice versa. Above, we noted that this is the case witlvéhiabless;,s, but not with the
mixture variablex, xo.

Technically, independence can be defined by the probabiétysities. Let us denote hy(y1,y2) the joint
probability density function (pdf) of1 andy,. Let us further denote by (y1) the marginal pdf of, i.e. the pdf
of y; when it is considered alone:

Py = [ pOa.y2)dye ©

and similarly fory,. Then we define that andy» are independent if and only if the joint pdffisctorizablein the
following way:
P(Y1,Y2) = pr(Y1)p2(Y2)- (10)

This definition extends naturally for any numbreof random variables, in which case the joint density must be a
product ofn terms.



The definition can be used to derive a most important properigdependent random variables. Given two
functions,h; andhy, we always have

E{hi(y1)ha(y2)} = E{ha(y1) }E{h2(y2)}. (11)

This can be proven as follows:

Efhu(yDha(y2)} = | [ (yohe(ye) plys.y2)dysdye

— [ [ ) patynhalyz)a(y2)dysdye = [ ha(ya)paya)dya [ ha(yz)pe(yz)dye
= E{hu(y1)}E{h2(y2)}. (12)

3.2 Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness. Twoorandriables/; andy, are said to be uncorrelated,
if their covariance is zero:

E{yiy2} —E{y1}E{y2} =0 (13)

If the variables are independent, they are uncorrelatethabllows directly from Eq. (11), takindpi(y1) = va
andhz(yz) =Y.

On the other hand, uncorrelatedness doesimply independence. For example, assume thaty,) are
discrete valued and follow such a distribution that the peérwith probability ¥4 equal to any of the following
values:(0,1),(0,—1),(1,0),(—1,0). Theny; andy, are uncorrelated, as can be simply calculated. On the other
hand,

B3} = 0# ; = EDAIEMNR) a4)

so the condition in Eq. (11) is violated, and the variablesod be independent.

Since independence implies uncorrelatedness, many ICAadetconstrain the estimation procedure so that it
always gives uncorrelated estimates of the independenponents. This reduces the number of free parameters,
and simplifies the problem.

3.3 Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the independentponents must be nongaussian for ICA to be possible.
To see why gaussian variables make ICA impossible, assuaté¢hth mixing matrix is orthogonal and tlse
are gaussian. Theq andx; are gaussian, uncorrelated, and of unit variance. Theit gEnsity is given by

2 2
X7+ X35

) (15)

1

p(X1,%2) = 2T[exp(
This distribution is illustrated in Fig. 7. The Figure shothiat the density is completely symmetric. Therefore, it
does not contain any information on the directions of theicwls of the mixing matriA. This is whyA cannot
be estimated.

More rigorously, one can prove that the distribution of anfhogonal transformation of the gaussiagn, x»)

has exactly the same distribution @g,x), and thatx; andx; are independent. Thus, in the case of gaussian
variables, we can only estimate the ICA model up to an orthagwansformation. In other words, the matAx
is not identifiable for gaussian independent componentstu@ly, if just one of the independent components is
gaussian, the ICA model can still be estimated.)



4 Principles of ICA estimation

4.1 “Nongaussian is independent”

Intuitively speaking, the key to estimating the ICA modeh@ngaussianity. Actually, without nongaussianity the
estimation is not possible at all, as mentioned in Sec. 3i8s iF at the same time probably the main reason for
the rather late resurgence of ICA research: In most of aakstatistical theory, random variables are assumed to
have gaussian distributions, thus precluding any metheldted to ICA.

The Central Limit Theorem, a classical result in probapitiieory, tells that the distribution of a sum of
independent random variables tends toward a gaussiaibdi&in, under certain conditions. Thus, a sum of two
independent random variables usually has a distributiah ithcloser to gaussian than any of the two original
random variables.

Let us now assume that the data vectois distributed according to the ICA data model in Eq. 4, ite. i
is a mixture of independent components. For simplicity,ugtassume in this section that all the independent
components have identical distributions. To estimate drt@@independent components, we consider a linear
combination of the (see eq. 6); let us denote this py= W' x = T;wix;, wherew is a vector to be determined. If
w were one of the rows of the inverse Af this linear combination would actually equal one of theependent
components. The question is now: How could we use the Cdritral Theorem to determings so that it would
equal one of the rows of the inverseA? In practice, we cannot determine sual axactly, because we have no
knowledge of matriXA, but we can find an estimator that gives a good approximation.

To see how this leads to the basic principle of ICA estimatlehus make a change of variables, defining
z=ATw. Then we havg =w'x =w'As = z's. y s thus a linear combination &, with weights given by.
Since a sum of even two independent random variables is neargsgn than the original variables s is more
gaussian than any of tleeand becomes least gaussian when it in fact equals one ef thethis case, obviously
only one of the element of z is nonzero. (Note that the were here assumed to have identical distributions.)

Therefore, we could take a8 a vector thatmaximizes the nongaussianiy w'x. Such a vector would
necessarily correspond (in the transformed coordinatesydo az which has only one nonzero component. This
means thawv" x = z' s equals one of the independent components!

Maximizing the nongaussianity e x thus gives us one of the independent components. In facpptie
mization landscape for nongaussianity in thdimensional space of vectonshas 21 local maxima, two for each
independent component, correspondingitand —s (recall that the independent components can be estimated
only up to a multiplicative sign). To find several indepenomponents, we need to find all these local maxima.
This is not difficult, because the different independent ponents are uncorrelated: We can always constrain the
search to the space that gives estimates uncorrelatechaiffrévious ones. This corresponds to orthogonalization
in a suitably transformed (i.e. whitened) space.

Our approach here is rather heuristic, but it will be seemértext section and Sec. 4.3 that it has a perfectly
rigorous justification.

4.2 Measures of nongaussianity

To use nongaussianity in ICA estimation, we must have a dfatimé measure of nongaussianity of a random
variable, sayy. To simplify things, let us assume thais centered (zero-mean) and has variance equal to one.
Actually, one of the functions of preprocessing in ICA aitfoms, to be covered in Section 5, is to make this
simplification possible.

4.2.1 Kurtosis

The classical measure of nongaussianity is kurtosis oraheH-order cumulant. The kurtosis pis classically

defined by
kurt(y) = E{y*} - 3(E{y*}) (16)

Actually, since we assumed thats of unit variance, the right-hand side simplifiesg¢y*} — 3. This shows that
kurtosis is simply a normalized version of the fourth momefy*}. For a gaussiag, the fourth moment equals



3(E{y?})?. Thus, kurtosis is zero for a gaussian random variable. Fst fbut not quite all) nongaussian random
variables, kurtosis is nonzero.

Kurtosis can be both positive or negative. Random variatiies have a negative kurtosis are called sub-
gaussian, and those with positive kurtosis are called gapssian. In statistical literature, the corresponding
expressions platykurtic and leptokurtic are also used.e8gussian random variables have typically a “spiky”
pdf with heavy tails, i.e. the pdf is relatively large at zened at large values of the variable, while being small
for intermediate values. A typical example is the Laplastrifiution, whose pdf (normalized to unit variance) is
given by L

p(y) ﬁexp(ﬁlyl) (17)

This pdfis illustrated in Fig. 8. Subgaussian random vaeison the other hand, have typically a “flat” pdf, which
is rather constant near zero, and very small for larger gatighe variable. A typical example is the uniform
distibution in eq. (7).

Typically nongaussianity is measured by the absolute vaflaurtosis. The square of kurtosis can also be
used. These are zero for a gaussian variable, and greatezaghafor most nongaussian random variables. There
are nongaussian random variables that have zero kurtosithdy can be considered as very rare.

Kurtosis, or rather its absolute value, has been widely asealmeasure of nongaussianity in ICA and related
fields. The main reason is its simplicity, both computaticaral theoretical. Computationally, kurtosis can be
estimated simply by using the fourth moment of the sampla.detteoretical analysis is simplified because of the
following linearity property: Ifx; andx, are two independent random variables, it holds

kurt(xg +x2) = kurt(x1) 4 kurt(xp) (18)

and
kurt(ax;) = a®kurt(x;) (19)

wherea is a scalar. These properties can be easily proven usingeftiratibn.

To illustrate in a simple example what the optimization lscape for kurtosis looks like, and how independent
components could be found by kurtosis minimization or mazation, let us look at a 2-dimensional modek
As. Assume that the independent componests, have kurtosis values kug;), kurt(sy), respectively, both
different from zero. Remember that we assumed that they inaiv@ariances. We seek for one of the independent
components ag=w'x.

Let us again make the transformatipe= ATw. Then we havey =w'x = wW'As = z's = 715, + 25,. Now,
based on the additive property of kurtosis, we have (et kurt(zs;) + kurt(zs,) = Z kurt(s) + Z kurt(sp).

On the other hand, we made the constraint that the variangasoéqual to 1, based on the same assumption
concernings;,S,. This implies a constraint omt E{y?} = 22+ z = 1. Geometrically, this means that vectois
constrained to the unit circle on the 2-dimensional plartes @ptimization problem is now: what are the maxima
of the function| kurt(y)| = |} kurt(s;) + Z kurt(s)| on the unit circle? For simplicity, you may consider that the
kurtosis are of the same sign, in which case it absolute \@baeators can be omitted. The graph of this function
is the "optimization landscape" for the problem.

Itis not hard to show (Delfosse and Loubaton, 1995) that tarima are at the points when exactly one of the
elements of vectaz is zero and the other nonzero; because of the unit circleti@int the nonzero element must
be equal to 1 or -1. But these points are exactly the ones wieeuals one of the independent componeiss
and the problem has been solved.

In practice we would start from some weight veatgrcompute the direction in which the kurtosisyof w' x
is growing most strongly (if kurtosis is positive) or decsaay most strongly (if kurtosis is negative) based on the
available samplg(1),...,x(T) of mixture vectorx, and use a gradient method or one of their extensions fonigndi
a new vectow. The example can be generalized to arbitrary dimensiomsyigly that kurtosis can theoretically
be used as an optimization criterion for the ICA problem.

However, kurtosis has also some drawbacks in practice, vibemlue has to be estimated from a measured
sample. The main problem is that kurtosis can be very seesdioutliers (Huber, 1985). Its value may depend on
only a few observations in the tails of the distribution, @lhimay be erroneous or irrelevant observations. In other
words, kurtosis is not a robust measure of nongaussianity.



Thus, other measures of nongaussianity might be betterkhensis in some situations. Below we shall
consider negentropy whose properties are rather oppoghese of kurtosis, and finally introduce approximations
of negentropy that more or less combine the good propertiesth measures.

4.2.2 Negentropy

A second very important measure of nongaussianity is giyeregentropy. Negentropy is based on the information-
theoretic quantity of (differential) entropy.

Entropy is the basic concept of information theory. The @mgrof a random variable can be interpreted as
the degree of information that the observation of the végigives. The more “random”, i.e. unpredictable and
unstructured the variable is, the larger its entropy. Maerpusly, entropy is closely related to the coding length
of the random variable, in fact, under some simplifying aggtions, entropys the coding length of the random
variable. For introductions on information theory, see apver and Thomas, 1991; Papoulis, 1991).

EntropyH is defined for a discrete random variallas

H(Y) =~ 3 P(Y =a)logP(Y =) (20)

where they; are the possible valuesf This very well-known definition can be generalized for ¢onbus-valued
random variables and vectors, in which case it is often dallfferential entropy. The differential entropy of a
random vectoy with densityf(y) is defined as (Cover and Thomas, 1991; Papoulis, 1991):

H(Y) = - [ f(y)logf(y)dy. 1)

A fundamental result of information theory is thatgaussian variable has the largest entropy among all
random variables of equal varianc€or a proof, see e.g. (Cover and Thomas, 1991; Papouli4)198is means
that entropy could be used as a measure of nongaussianifgctinthis shows that the gaussian distribution is
the “most random” or the least structured of all distribnso Entropy is small for distributions that are clearly
concentrated on certain values, i.e., when the variable#sly clustered, or has a pdf that is very “spiky”.

To obtain a measure of nongaussianity that is zero for a gausariable and always nonnegative, one often
uses a slightly modified version of the definition of diffetiahentropy, called negentropy. Negentrapig defined
as follows

J(y) =H(Ygauss —H(y) (22)

whereygaussis a Gaussian random variable of the same covariance matgix ®@ue to the above-mentioned
properties, negentropy is always non-negative, and itrig #eand only ify has a Gaussian distribution. Negen-
tropy has the additional interesting property that it isair@nt for invertible linear transformations (Comon, 1994
Hyvarinen, 1999e).

The advantage of using negentropy, or, equivalently, difféal entropy, as a measure of nongaussianity is that
it is well justified by statistical theory. In fact, negeryas in some sense the optimal estimator of nongaussianity,
as far as statistical properties are concerned. The prdhlasing negentropy is, however, that itis computationally
very difficult. Estimating negentropy using the definitioowid require an estimate (possibly nonparametric) of
the pdf. Therefore, simpler approximations of negentrapyary useful, as will be discussed next.

4.2.3 Approximations of negentropy

The estimation of negentropy is difficult, as mentioned &hawnd therefore this contrast function remains mainly
a theoretical one. In practice, some approximation haveetoded. Here we introduce approximations that have
very promising properties, and which will be used in thedwling to derive an efficient method for ICA.

The classical method of approximating negentropy is usig@édr-order moments, for example as follows
(Jones and Sibson, 1987):

3y) = TEF+ gskurty)? 23



The random variablg is assumed to be of zero mean and unit variance. Howeveratldity of such approxima-
tions may be rather limited. In particular, these approxioms suffer from the nonrobustness encountered with
kurtosis.

To avoid the problems encountered with the preceding app@tions of negentropy, new approximations
were developed in (Hyvéarinen, 1998b). These approximatiere based on the maximum-entropy principle. In
general we obtain the following approximation:

P
W)= 3 KIEGH)} - E{Gi(v)})?, (24)

wherek; are some positive constants, ants a Gaussian variable of zero mean and unit variance (iandard-
ized). The variablg is assumed to be of zero mean and unit variance, and thedas@ij are some nonquadratic
functions (Hyvarinen, 1998b). Note that even in cases wtigseapproximation is not very accurate, (24) can be
used to construct a measure of nongaussianity that is ¢ensia the sense that it is always non-negative, and
equal to zero ify has a Gaussian distribution.

In the case where we use only one nonquadratic fun&iaghe approximation becomes

Jy) O[E{G(Y)} —E{GW)}]? (25)

for practically any non-quadratic functi@ This is clearly a generalization of the moment-based appration in
(23), ifyis symmetric. Indeed, taking(y) = y*, one then obtains exactly (23), i.e. a kurtosis-based apadion.

But the point here is that by choosirtg wisely, one obtains approximations of negentropy that anetm
better than the one given by (23). In particular, choogidpat does not grow too fast, one obtains more robust
estimators. The following choices &f have proved very useful:

Gi(u) = aillog coshaqu, Gp(u) = —exp(—u?/2) (26)
where 1< a; < 2 is some suitable constant.

Thus we obtain approximations of negentropy that give a gegd compromise between the properties of
the two classical nongaussianity measures given by ksrtosil negentropy. They are conceptually simple, fast
to compute, yet have appealing statistical propertie@alty robustness. Therefore, we shall use these contrast
functions in our ICA methods. Since kurtosis can be expeessthis same framework, it can still be used by our
ICA methods. A practical algorithm based on these contrasttfon will be presented in Section 6.

4.3 Minimization of Mutual Information

Another approach for ICA estimation, inspired by informattheory, is minimization of mutual information. We
will explain this approach here, and show that it leads tastrae principle of finding most nongaussian directions
as was described above. In particular, this approach givigeeous justification for the heuristic principles used
above.

4.3.1 Mutual Information

Using the concept of differential entropy, we define the raLitformationl betweerm (scalar) random variables,
yi,i = 1...mas follows

9. y) = 3 HO) = HY). @)

Mutual information is a natural measure of the dependentedem random variables. In fact, it is equivalent
to the well-known Kullback-Leibler divergence between jbimt density f(y) and the product of its marginal
densities; a very natural measure for independence. Wayal non-negative, and zero if and only if the variables
are statistically independent. Thus, mutual informatekes into account the whole dependence structure of the
variables, and not only the covariance, like PCA and relatethods.



Mutual information can be interpreted by using the intet@tien of entropy as code length. The terkh§y;)
give the lengths of codes for thg when these are coded separately, Big) gives the code length whenis
coded as a random vector, i.e. all the components are codleel &ame code. Mutual information thus shows what
code length reduction is obtained by coding the whole vangiead of the separate components. In general, better
codes can be obtained by coding the whole vector. Howeuw#eif are independent, they give no information on
each other, and one could just as well code the variablesatefpawithout increasing code length.

An important property of mutual information (Papoulis, 192over and Thomas, 1991) is that we have for an
invertible linear transformatiop = Wx:

(V2,22 ¥) = 3 H(%) — H(x) — log]| detw]. (28)

Now, let us consider what happens if we constrainyth® be uncorrelatedand of unit variance. This means
E{yy"} = WE{xx" }WT =1, which implies

detl =1 = (detWE{xx" }W") = (detwW)(detE{xx"})(detwT), (29)

and this implies that d&/ must be constant. Moreover, fgrof unit variance, entropy and negentropy differ only
by a constant, and the sign. Thus we obtain,

1(Y1,¥2, - ¥n) =C =3 I(Wi). (30)

whereC is a constant that does not dependwin This shows the fundamental relation between negentrogy an
mutual information.

4.3.2 Defining ICA by Mutual Information

Since mutual information is the natural information-thetar measure of the independence of random variables,
we could use it as the criterion for finding the ICA transfodmthis approach that is an alternative to the model
estimation approach, we define the ICA of a random vectas an invertible transformation as in (6), where the
matrix W is determined so that the mutual information of the tramafx components is minimized.

Itis now obvious from (30) that finding an invertible transfationW that minimizes the mutual informationis
roughly equivalent téinding directions in which the negentropy is maximizddre precisely, it is roughly equiva-
lent to finding 1-D subspaces such that the projections isdisobspaces have maximum negentropy. Rigorously,
speaking, (30) shows that ICA estimation by minimizatiomaftual information is equivalent to maximizing the
sum of nongaussianities of the estimates, wheretenates are constrained to be uncorrelat&the constraint
of uncorrelatedness is in fact not necessary, but simpttiecomputations considerably, as one can then use the
simpler form in (30) instead of the more complicated formag)

Thus, we see that the formulation of ICA as minimization oftuallinformation gives another rigorous justi-
fication of our more heuristically introduced idea of findimgximally nongaussian directions.

4.4 Maximum Likelihood Estimation
4.4.1 The likelihood

A very popular approach for estimating the ICA model is maximlikelihood estimation, which is closely con-
nected to the infomax principle. Here we discuss this apprpand show that it is essentially equivalent to
minimization of mutual information.

It is possible to formulate directly the likelihood in theise-free ICA model, which was done in (Pham et al.,
1992), and then estimate the model by a maximum likelihoothate Denoting by = (wy,...,w,)T the matrix
A1, the log-likelihood takes the form (Pham et al., 1992):

n

L :tiizmg fi(wi x(t)) + T log| detw| (31)
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where thef; are the density functions of the (here assumed to be known), and th€),t = 1,...,T are the
realizations ofx. The term logdetW| in the likelihood comes from the classic rule for (lineartygnsforming
random variables and their densities (Papoulis, 1991)etreal, for any random vectgmwith densitypy and for
any matrixW, the density ofy = Wx is given bypyx(Wx)|detw|.

4.4.2 The Infomax Principle

Another related contrast function was derived from a nenedvork viewpoint in (Bell and Sejnowski, 1995;
Nadal and Parga, 1994). This was based on maximizing theubetgropy (or information flow) of a neural
network with non-linear outputs. Assume thais the input to the neural network whose outputs are of thefor
@ (wx), where thep are some non-linear scalar functions, andwhere the weight vectors of the neurons. One
then wants to maximize the entropy of the outputs:

Lo = H(@: (W] X), ... n(W] X)). (32)

If the @4 are well chosen, this framework also enables the estimafitire ICA model. Indeed, several authors, e.g.,
(Cardoso, 1997; Pearlmutter and Parra, 1997), proved tipeising result that the principle of network entropy
maximization, or “infomax”, is equivalent to maximum likebod estimation. This equivalence requires that the
non-linearitiesp used in the neural network are chosen as the cumulativéodititm functions corresponding to
the densitied;, i.e.,{(.) = fi(.).

4.4.3 Connection to mutual information

To see the connection between likelihood and mutual inftionaconsider the expectation of the log-likelihood:
1 n
TE{L} = ZiE{Iog fi(wi x)} 4 log| detw|. (33)
i=

Actually, if the f; were equal to the actual distributions wf x, the first term would be equal te ¥;H (w/ x).
Thus the likelihood would be equal, up to an additive cortstarthe negative of mutual information as given in
Eq. (28).

Actually, in practice the connection is even stronger. T$izecause in practice we don’t know the distributions
of the independent components. A reasonable approach Wweutdestimate the density of x as part of the ML
estimation method, and use this as an approximation of theityeof 5. In this case, likelihood and mutual
information are, for all practical purposes, equivalent.

Nevertheless, there is a small difference that may be veppitant in practice. The problem with maximum
likelihood estimation is that the densitidsmust be estimated correctly. They need not be estimatedamigh
great precision: in fact it is enough to estimate whethey #ire sub- or supergaussian (Cardoso and Laheld, 1996;
Hyvarinen and Oja, 1998; Lee et al., 1999). In many casesadt) fve have enough prior knowledge on the
independent components, and we don’t need to estimaterthteire from the data. In any case, if the information
on the nature of the independent components is not corrdctedilmation will give completely wrong results.
Some care must be taken with ML estimation, therefore. Itragh using reasonable measures of nongaussianity,
this problem does not usually arise.

4.5 ICA and Projection Pursuit

It is interesting to note how our approach to ICA makes exptiee connection between ICA and projection
pursuit. Projection pursuit (Friedman and Tukey, 1974e@man, 1987; Huber, 1985; Jones and Sibson, 1987) is
a technique developed in statistics for finding “interegtiorojections of multidimensional data. Such projections
can then be used for optimal visualization of the data, anddoh purposes as density estimation and regression.
In basic (1-D) projection pursuit, we try to find directiongh that the projections of the data in those directions
have interesting distributions, i.e., display some strteetlt has been argued by Huber (Huber, 1985) and by Jones
and Sibson (Jones and Sibson, 1987) that the Gaussiarbdliigtni is the least interesting one, and that the most
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interesting directions are those that show the least Gawsstribution. This is exactly what we do to estimate
the ICA model.

The usefulness of finding such projections can be seen irBFighere the projection on the projection pursuit
direction, which is horizontal, clearly shows the clustes&ructure of the data. The projection on the first principal
component (vertical), on the other hand, fails to show ttriscsure.

Thus, in the general formulation, ICA can be considered mmaof projection pursuit. All the nongaussianity
measures and the corresponding ICA algorithms presentedcbald also be called projection pursuit “indices”
and algorithms. In particular, the projection pursuitafous to tackle the situation where there are less indepen-
dent components than original variables; is. Assuming that those dimensions of the space that argoaaohed
by the independent components are filled by gaussian nosegee that computing the nongaussian projection
pursuit directions, we effectively estimate the independemponents. When all the nongaussian directions have
been found, all the independent components have been &stin&uch a procedure can be interpreted as a hybrid
of projection pursuit and ICA.

However, it should be noted that in the formulation of préiat pursuit, no data model or assumption about
independent components is made. If the ICA model holdspopitng the ICA nongaussianity measures produce
independent components; if the model does not hold, themhwhaet are the projection pursuit directions.

5 Preprocessing for ICA

In the preceding section, we discussed the statisticatipiies underlying ICA methods. Practical algorithms
based on these principles will be discussed in the nextsedtowever, before applying an ICA algorithm on the
data, it is usually very useful to do some preprocessinghitngection, we discuss some preprocessing techniques
that make the problem of ICA estimation simpler and betteditioned.

5.1 Centering

The most basic and necessary preprocessing is to oenter subtract its mean vector = E{x} so as to maka
a zero-mean variable. This implies tlsds zero-mean as well, as can be seen by taking expectatidmnstbisides
of Eq. (4).

This preprocessing is made solely to simplify the ICA algoris: It does not mean that the mean could not be
estimated. After estimating the mixing matAxwith centered data, we can complete the estimation by addang
mean vector o§ back to the centered estimatessohe mean vector afis given byA~'m, wherem is the mean
that was subtracted in the preprocessing.

5.2 Whitening

Another useful preprocessing strategy in ICA is to first whithe observed variables. This means that before
the application of the ICA algorithm (and after centeringg, transform the observed vectolinearly so that we
obtain a new vectdk which is white, i.e. its components are uncorrelated ani tagiances equal unity. In other
words, the covariance matrix &fequals the identity matrix:

E{xX"} =1. (34)

The whitening transformation is always possible. One papulethod for whitening is to use the eigen-value
decomposition (EVD) of the covariance matExXxx" } = EDE', whereE is the orthogonal matrix of eigenvectors
of E{xx"} andD is the diagonal matrix of its eigenvalu@s= diag(dy, ...,dn). Note thatE {xx" } can be estimated
in a standard way from the available samp{&), ..., x(T). Whitening can now be done by

% =ED Y2E"x (35)

where the matrixD~1/2is computed by a simple component-wise operatioBa%¥?2 = diag(d[l/z, )1t
is easy to check that no@{xx"} = 1.
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Whitening transforms the mixing matrix into a new oAe,We have from (4) and (35):
% =ED Y?ETAs=As (36)
The utility of whitening resides in the fact that the new migimatrixA is orthogonal. This can be seen from
E{xX"} = AE{ss JAT = AAT =1. (37)

Here we see that whitening reduces the number of parametbesdéstimated. Instead of having to estimate the
n? parameters that are the elements of the original matriwe only need to estimate the new, orthogonal mixing
matrix A. An orthogonal matrix contains(n— 1)/2 degrees of freedom. For example, in two dimensions, an
orthogonal transformation is determined by a single anglaieter. In larger dimensions, an orthogonal matrix
contains only about half of the number of parameters of aitrarp matrix. Thus one can say that whitening
solves half of the problem of ICA. Because whitening is a \&émyple and standard procedure, much simpler than
any ICA algorithms, it is a good idea to reduce the complesitthe problem this way.

It may also be quite useful to reduce the dimension of the alattae same time as we do the whitening. Then
we look at the eigenvalues of E{xx"} and discard those that are too small, as is often done in #tistital
technique of principal component analysis. This has oftendffect of reducing noise. Moreover, dimension
reduction prevents overlearning, which can sometimes bergbd in ICA (Hyvarinen et al., 1999).

A graphical illustration of the effect of whitening can beerein Figure 10, in which the data in Figure 6
has been whitened. The square defining the distributionwsalearly a rotated version of the original square in
Figure 5. All that is left is the estimation of a single andlattgives the rotation.

In the rest of this paper, we assume that the data has beeropesped by centering and whitening. For
simplicity of notation, we denote the preprocessed datdjs, and the transformed mixing matrix By, omitting
the tildes.

5.3 Further preprocessing

The success of ICA for a given data set may depende crucialhedorming some application-dependent prepro-
cessing steps. For example, if the data consists of timealgsome band-pass filtering may be very useful. Note
that if we filter linearly the observed signaigt) to obtain new signals, say (t), the ICA model still holds for
X (t), with the same mixing matrix.

This can be seen as follows. DenoteXthe matrix that contains the observations), ..., x(T) as its columns,
and similarly forS. Then the ICA model can be expressed as:

X =AS (38)
Now, time filtering ofX corresponds to multiplyink from the rightby a matrix, let us call iM. This gives
X*=XM = ASM = AS*, (39)

which shows that the ICA model remains still valid.

6 The FastiCA Algorithm

In the preceding sections, we introduced different measafenongaussianity, i.e. objective functions for ICA

estimation. In practice, one also needs an algorithm forimiaing the contrast function, for example the one in

(25). In this section, we introduce a very efficient methodnaiximization suited for this task. It is here assumed
that the data is preprocessed by centering and whiteningasssed in the preceding section.
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6.1 FastICA for one unit

To begin with, we shall show the one-unit version of Fasti®4.a "unit" we refer to a computational unit,
eventually an artificial neuron, having a weight veatothat the neuron is able to update by a learning rule. The
FastICA learning rule finds a direction, i.e. a unit vestosuch that the projection” x maximizes nongaussianity.
Nongaussianity is here measured by the approximation afntegpyd (w' x) given in (25). Recall that the variance
of w'x must here be constrained to unity; for whitened data thigisvalent to constraining the norm wfto be
unity.

The FastICA is based on a fixed-point iteration scheme foirfind maximum of the nongaussianityf x,
as measured in (25), see (Hyvarinen and Oja, 1997; Hyvarir#99a). It can be also derived as an approximative
Newton iteration (Hyvarinen, 1999a). Denotedpthe derivative of the nonquadratic functi@used in (25); for
example the derivatives of the functions in (26) are:

01(u) =tanhau), (40)
g2(u) = uexp(—u?/2)

where 1< a; < 2 is some suitable constant, often takermas- 1. The basic form of the FastICA algorithm is as
follows:

1. Choose an initial (e.g. random) weight veator
2. Letwt = E{xg(w"x)} —E{g/(W"x)}w

3. Letw=w"/[jwT]]

4. If not converged, go back to 2.

Note that convergence means that the old and new valugpofnt in the same direction, i.e. their dot-product is
(almost) equal to 1. Itis not necessary that the vector agegto a single point, sinae and—w define the same
direction. This is again because the independent compsuantbe defined only up to a multiplicative sign. Note
also that it is here assumed that the data is prewhitened.

The derivation of FastICA is as follows. First note that thexima of the approximation of the negentropy of
w'x are obtained at certain optimaB{G(w'x)}. According to the Kuhn-Tucker conditions (Luenberger, 496
the optima ofE{G(w'x)} under the constrair{(w"x)?} = ||w|> = 1 are obtained at points where

E{xgw'x)} —pw=0 (41)

Let us try to solve this equation by Newton's method. Dergtire function on the left-hand side of (41) Bywe
obtain its Jacobian matriXF(w) as
JF(w) =E{xx"g'(w'x)} — Bl (42)

To simplify the inversion of this matrix, we decide to appiroate the first term in (42). Since the data is sphered,
a reasonable approximation seems t&Efex" g (W'x)} ~ E{xx" }E{g'(W'x)} = E{g/(W'x)}I. Thus the Jaco-
bian matrix becomes diagonal, and can easily be inverteds We obtain the following approximative Newton
iteration:

W =w— [E{xg(W"x)} — Bw]/[E{g(W'x)} — ] (43)

This algorithm can be further simplified by multiplying baldes of (43) by — E{g'(w'x)}. This gives, after
algebraic simplication, the FastICA iteration.

In practice, the expectations in FastiCA must be replacethbir estimates. The natural estimates are of
course the corresponding sample means. Ideally, all treeadailable should be used, but this is often not a good
idea because the computations may become too demanding.tAdaverages can be estimated using a smaller
sample, whose size may have a considerable effect on thesayaf the final estimates. The sample points should
be chosen separately at every iteration. If the convergisnoet satisfactory, one may then increase the sample
size.
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6.2 FastICA for several units

The one-unit algorithm of the preceding subsection estémaist one of the independent components, or one
projection pursuit direction. To estimate several indefeet components, we need to run the one-unit FastiICA
algorithm using several units (e.g. neurons) with weigltteeswy, ..., wp.

To prevent different vectors from converging to the sameimaxve mustiecorrelatehe outputsrv{x, ey W
after every iteration. We present here three methods fdaewicly this.

A simple way of achieving decorrelation is a deflation schémaged on a Gram-Schmidt-like decorrelation.
This means that we estimate the independent componentsyomeeb When we have estimat@dndependent
components, op vectorsws, ...,wp, we run the one-unit fixed-point algorithm fory 1, and after every iteration
step subtract fromwvp, 1 the “projections’\/v;rlewj ,] = 1,..., p of the previously estimated vectors, and then
renormalizenp1:

T
nX

1. LetWpy1 = Wpi1 — ZE):lW-l[;H_Wjo s
2. LetWpi1 =Wpy1/y /W, Wpi1
In certain applications, however, it may be desired to usgrangetric decorrelation, in which no vectors are
“privileged” over others (Karhunen et al., 1997). This cardocomplished, e.g., by the classical method involving
matrix square roots,
Letw = (WwT)~¥2w (45)

whereW is the matrix(ws, ...,wn)" of the vectors, and the inverse square raW T)~1/2 is obtained from the
eigenvalue decomposition W¥W T = FDFT as(WWT)~1/2 = FD~Y/2FT_ A simpler alternative is the following
iterative algorithm (Hyvéarinen, 1999a),

1. LetW = W/ /[[WWT]|

Repeat 2. until convergence: (46)
2. LetW = 3w — swwTw

The normin step 1 can be almost any ordinary matrix norm, g 2-norm or the largest absolute row (or column)
sum (but not the Frobenius norm).

6.3 FastICA and maximum likelihood

Finally, we give a version of FastICA that shows explicithgtconnection to the well-known infomax or maximum
likelihood algorithm introduced in (Amari et al., 1996; Bahd Sejnowski, 1995; Cardoso and Laheld, 1996;
Cichocki and Unbehauen, 1996). If we express FastICA usiagritermediate formula in (43), and write it in
matrix form (see (Hyvérinen, 1999b) for details), we see HzstICA takes the following form:

W =W+ diag() [diagiB) + E{g(y)y" }IW. (7)

wherey = WX, Bi = —E{yig(yi)}, anda; = —1/(Bi — E{d'(vi)}). The matrixW/ needs to be orthogonalized after
every step. In this matrix version, it is natural to orthoglize W symmetrically.

The above version of FastICA could be compared with the statahgradient method for maximizing likeli-
hood (Amari et al., 1996; Bell and Sejnowski, 1995; Cardasi laaheld, 1996; Cichocki and Unbehauen, 1996):

W =W+l +g(y)y"|W. (48)

wherep is the learning rate, not necessarily constant in time. Hgig a function of the pdf of the independent
componentsg = f//f; where thef; is the pdf of an independent component.

Comparing (47) and (48), we see that FastICA can be considesea fixed-point algorithm for maximum
likelihood estimation of the ICA data model. For details $€yvarinen, 1999b). In FastICA, convergence speed
is optimized by the choice of the matrices diag and diagfi). Another advantage of FastICA is that it can
estimate both sub- and super-gaussian independent comtgpoméich is in contrast to ordinary ML algorithms,
which only work for a given class of distributions (see Sed) 4
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6.4 Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast funddibave a number of desirable properties when compared
with existing methods for ICA.

1. The convergenceis cubic (or at least quadratic), unéeasbumption of the ICA data model (for a proof, see
(Hyvarinen, 1999a)). This is in contrast to ordinary ICA@&ilthms based on (stochastic) gradient descent
methods, where the convergence is only linear. This meaesyafast convergence, as has been confirmed
by simulations and experiments on real data (see (Gianmaitopet al., 1998)).

2. Contrary to gradient-based algorithms, there are no Stepparameters to choose. This means that the
algorithm is easy to use.

3. The algorithm finds directly independent components cddiically) any non-Gaussian distribution using
any nonlinearity. Thisis in contrast to many algorithms, where some estiwfetee probability distribution
function has to be first available, and the nonlinearity nim@sthosen accordingly.

4. The performance of the method can be optimized by cho@sBigtable nonlinearitg. In particular, one
can obtain algorithms that are robust and/or of minimumararé. In fact, the two nonlinearities in (40)
have some optimal properties; for details see (Hyvarin89a).

5. The independent components can be estimated one by oo, iwhoughly equivalent to doing projection
pursuit. This es useful in exploratory data analysis, armieeses the computational load of the method in
cases where only some of the independent components neeckstilmated.

6. The FastICA has most of the advantages of neural algosithtris parallel, distributed, computationally
simple, and requires little memory space. Stochastic gradnethods seem to be preferable only if fast
adaptivity in a changing environment is required.

A Matlab™ implementation of the FastICA algorithm is available on\erld Wide Web free of chargk.

7 Applications of ICA

In this section we review some applications of ICA. The mdassical application of ICA, the cocktail-party
problem, was already explained in the opening section effibper.

7.1 Separation of Artifacts in MEG Data

Magnetoencephalography (MEG) is a noninvasive technigughich the activity or the cortical neurons can be
measured with very good temporal resolution and moderatgaspesolution. When using a MEG record, as a
research or clinical tool, the investigator may face a probbf extracting the essential features of the neuromag-
netic signals in the presence of artifacts. The amplitudia@fdisturbances may be higher than that of the brain
signals, and the artifacts may resemble pathological gnahape.

In (Vigario et al., 1998), the authors introduced a new metttoseparate brain activity from artifacts using
ICA. The approach is based on the assumption that the bréitityaand the artifacts, e.g. eye movements or blinks,
or sensor malfunctions, are anatomically and physioldigisaparate processes, and this separation is reflected in
the statistical independence between the magnetic sigeakrated by those processes. The approach follows the
earlier experiments with EEG signals, reported in (Vigati®97). A related approach is that of (Makeig et al.,
1996).

The MEG signals were recorded in a magnetically shieldedhraith a 122-channel whole-scalp Neuromag-
122 neuromagnetometer. This device collects data at 6lidmsaover the scalp, using orthogonal double-loop
pick-up coils that couple strongly to a local source justemeath. The test person was asked to blink and make
horizontal saccades, in order to produce typical oculag)aytifacts. Moreover, to produce myographic (muscle)

IWWW addresshtt p: //www. ci s. hut . fi/projects/icalfastical
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artifacts, the subject was asked to bite his teeth for as &80 seconds. Yet another artifact was created by
placing a digital watch one meter away from the helmet intoshielded room.

Figure 11 presents a subset of 12 spontaneous MEG sigitgldrom the frontal, temporal, and occipital
areas (Vigario et al., 1998). The figure also shows the postof the corresponding sensors on the helmet. Due
to the dimension of the data (122 magnetic signals were ded)r it is impractical to plot all the MEG signals
xi(t),i=1,...,122. Also two electro-oculogram channels and the electdiegram are presented, but they were
not used in computing the ICA.

The signal vectok in the ICA model (4) consists now of the amplitude@) of the 122 signals at a certain
time point, so the dimensionality is= 122. In the theoretical model,is regarded as a random vector, and the
measurements(t) give a set of realizations of as time proceeds. Note that in the basic ICA model that we are
using, the temporal correlations in the signals are natatilat all.

Thex(t) vectors were whitened using PCA and the dimensionality weasaised at the same time. Then, using
the FastICA algorithm, a subset of the rows of the separatiatyix W of eq. (6) were computed. Once a vector
w; has become available, an ICA sigrsglt) can be computed from(t) = w x'(t) with x/(t) now denoting the
whitened and lower dimensional signal vector.

Figure 12 shows sections of 9 independent components (#¢fg)i = 1,...,9 found from the recorded data
together with the corresponding field patterns (Vigariolet E998). The first two IC’s are clearly due to the
musclular activity originated from the biting. Their seaiion into two components seems to correspond, on the
basis of the field patterns, to two different sets of musdiaswere activated during the process. IC3 and IC5 are
showing the horizontal eye movements and the eye blinkpeatively. IC4 represents the cardiac artifact that is
very clearly extracted.

To find the remaining artifacts, the data were high-pasgdittewith cutoff frequency at 1 Hz. Next, the
independent component IC8 was found. It shows clearly ttifaeiroriginated at the digital watch, located to the
right side of the magnetometer. The last independent comid@9 is related to a sensor presenting higher RMS
(root mean squared) noise than the others.

The results of Fig. 12 clearly show that using the ICA techrignd the FastICA algorithm, it is possible to
isolate both eye movement and eye blinking artifacts, akagalardiac, myographic, and other artifacts from MEG
signals. The FastICA algorithm is an especially suitab&, toecause artifact removal is an interactive technique
and the investigator may freely choose how many of the ICertghe wants.

In addition to reducing artifacts, ICA can be used to decosemyvoked fields (Vigario et al., 1998), which en-
ables direct access to the underlying brain functioningcivts likely to be of great significance in neuroscientific
research.

7.2 Finding Hidden Factors in Financial Data

It is a tempting alternative to try ICA on financial data. Té@re many situations in that application domain in
which parallel time series are available, such as currerclgange rates or daily returns of stocks, that may have
some common underlying factors. ICA might reveal some dgunechanisms that otherwise remain hidden. In
a recent study of a stock portfolio (Back and Weigend, 198%yas found that ICA is a complementary tool to
PCA, allowing the underlying structure of the data to be nresalily observed.

In (Kiviluoto and Oja, 1998), we applied ICA on a differenpptem: the cashflow of several stores belonging
to the same retail chain, trying to find the fundamental feeccmmmon to all stores that affect the cashflow data.
Thus, the cashflow effect of the factors specific to any paldicstore, i.e., the effect of the actions taken at the
individual stores and in its local environment could be gnedl.

The assumption of having some underlying independent coemis in this specific application may not be
unrealistic. For example, factors like seasonal variatitue to holidays and annual variations, and factors having
a sudden effect on the purchasing power of the customergtikze changes of various commodities, can be
expected to have an effect on all the retail stores, and saathrk can be assumed to be roughly independent of
each other. Yet, depending on the policy and skills of theviddal manager like e.g. advertising efforts, the effect
of the factors on the cash flow of specific retail outlets aightly different. By ICA, it is possible to isolate both
the underlying factors and the effect weights, thus alsoinggik possible to group the stores on the basis of their
managerial policies using only the cash flow time series.data
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The data consisted of the weekly cash flow in 40 stores thaineio the same retail chain; the cash flow
measurements cover 140 weeks. Some examples of the owgited (t) are shown in Fig. 13.

The prewhitening was performed so that the original sigeatars were projected to the subspace spanned
by their first five principal components and the variancesewmrmalized to 1. Thus the dimension of the signal
space was decreased from 40 to 5. Using the FastICA alggrftumIC's 5(t), i = 1,...,5 were estimated. As
depicted in Fig. 14, the FastICA algorithm has found sevelesdrly different fundamental factors hidden in the
original data.

The factors have clearly different interpretations. Thenopt two factors follow the sudden changes that are
caused by holidays etc.; the most prominent example is thist8tas time. The factor on the bottom row, on the
other hand, reflects the slower seasonal variation, witleffieet of the summer holidays clearly visible. The factor
on the third row could represent a still slower variatiormething resembling a trend. The last factor, on the fourth
row, is different from the others; it might be that this facfiollows mostly the relative competitive position of the
retail chain with respect to its competitors, but otheriiptetations are also possible.

More details on the experiments and their interpretationbzafound in (Kiviluoto and Oja, 1998).

7.3 Reducing Noise in Natural Images

The third example deals with finding ICA filters for naturakiges and, based on the ICA decomposition, removing
noise from images corrupted with additive Gaussian noise.

A set of digitized natural images were used. Denote the vextpixel gray levels in an image window by
X. Note that, contrary to the other two applications in thevjines sections, we are not this time considering
multivalued time series or images changing with time; iadtthe elements of are indexed by the location in the
image window or patch. The sample windows were taken at rarldoations. The 2-D structure of the windows
is of no significance here: row by row scanning was used todusguare image window into a vector of pixel
values. The independent components of such image wind@vspresented in Fig. 4. Each window in this Figure
corresponds to one of the colum@sof the mixing matrixA. Thus an observed image window is a superposition
of these windows as in (5), with independent coefficientdl@we Sejnowski, 1997; Olshausen and Field, 1996).

Now, suppose a noisy image model holds:

Z=X+n (49)

wheren is uncorrelated noise, with elements indexed in the imagelew in the same way as andz is the
measured image window corrupted with noise. Let us furtesume thah is Gaussian and is non-Gaussian.
There are many ways to clean the noise; one example is to maigasiormation to spatial frequency space by
DFT, do low-pass filtering, and return to the image space ByTipGonzales and Wintz, 1987). This is not very
efficient, however. A better method is the recently intraetligvavelet Shrinkage method (Donoho et al., 1995) in
which a transform based on wavelets is used, or methods loasetbdian filtering (Gonzales and Wintz, 1987).
None of these methods is explicitly taking advantage of tinege statistics, however.

We have recently introduced another, statistically ppledd method called Sparse Code Shrinkage (Hyvarinen,
1999d). Itis very closely related to independent compoagatysis. Briefly, if we model the density by ICA,
and assuma Gaussian, then the Maximum Likelihood (ML) solution forgiven the measurementcan be
developed in the signal model (49).

The ML solution can be simply computed, albeit approximatey using a decomposition that is an orthogo-
nalized version of ICA. The transform is given by

Wz =Wx +Wn = s+ Wn, (50)

whereW is here an orthogonal matrix that is the best orthognal agmration of the inverse of the ICA mixing
matrix. The noise terfidVn is still Gaussian and white. With a suitably chosen orthagtmansformW, however,
the density ofWx = s becomes highly non-Gaussian, e.g., super-Gaussian witbhaplositive kurtosis. This
depends of course on the originakignals, as we are assuming in fact that there exists a mogdelVTs for

the signal, such that the “source signals” or elementshave a positive kurtotic density, in which case the ICA
transform gives highly supergaussian components. Thimsézhold at least for image windows of natural scenes
(Mallat, 1989).
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It was shown in (Hyvéarinen, 1999d) that, assuming a Lapfadiensity fors, the ML solution fors is given
by a “shrinkage function§ = g([Wz};), or in vector form5= g(Wz). Functiong(.) has a characteristic shape: it
is zero close to the origin and then linear after a cuttingeaepending on the parameters of the Laplacian density
and the Gaussian noise density. Assuming other forms fal¢hsities, other optimal shrinkage functions can be
derived (Hyvérinen, 1999d).

In the Sparse Code Shrinkage method, the shrinkage operatperformed in the rotated space, after which
the estimate for the signal in the original space is givendbgting back:

x=WTs=wWTg(Wz). (51)

Thus we get the Maximum Likelihood estimate for the imagedasin x in which much of the noise has been
removed.

The rotation operatdWV is such that the sparsity of the componesis Wx is maximized. This operator can
be learned with a modification of the FastICA algorithm; dégu@rinen, 1999d) for details.

A noise cleaning result is shown in Fig. 15. A noiseless imaga noisy version, in which the noise level is
50 % of the signal level, are shown. The results of the Spaosie Shrinkage method and classic wiener filtering
are given, indicating that Sparse Code Shrinkage may beraigirgg approach. The noise is reduced without
blurring edges or other sharp features as much as in wietesirfig. This is largely due to the strongly nonlinear
nature of the shrinkage operator, that is optimally adafmehde inherent statistics of natural images.

7.4 Telecommunications

Finally, we mention another emerging application area efgpotential: telecommunications. An example of
a real-world communications application where blind sepan techniques are useful is the separation of the
user’s own signal from the interfering other users’ signal€DMA (Code-Division Multiple Access) mobile
communications (Ristaniemi and Joutsensalo, 1999). Tbid@m is semi-blind in the sense that certain additional
prior information is available on the CDMA data model. Bug thumber of parameters to be estimated is often so
high that suitable blind source separation techniquesi¢ggkito account the available prior knowledge provide a
clear performance improvement over more traditional esion techniques (Ristaniemi and Joutsensalo, 1999).

8 Conclusion

ICA is a very general-purpose statistical technique in Whobserved random data are linearly transformed into
components that are maximally independent from each aihdrsimultaneously have “interesting” distributions.
ICA can be formulated as the estimation of a latent varialdeleh The intuitive notion of maximum nongaus-
sianity can be used to derive different objective functisim®se optimization enables the estimation of the ICA
model. Alternatively, one may use more classical notidkes thaximum likelihood estimation or minimization of
mutual information to estimate ICA; somewhat surprisingigse approaches are (approximatively) equivalent. A
computationally very efficient method performing the attsiimation is given by the FastICA algorithm. Appli-
cations of ICA can be found in many different areas such amgudcessing, biomedical signal processing, image
processing, telecommunications, and econometrics.
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Figure 1: The original signals.
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Figure 2: The observed mixtures of the source signals inIFig.
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Figure 3: The estimates of the original source signalsmedéd using only the observed signals in Fig. 2. The
original signals were very accurately estimated, up to iplidative signs.
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Figure 4: Basis functions in ICA of natural images. The inpindow size was 16 16 pixels. These basis
functions can be considered as the independent featuresges.
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Figure 5: The joint distribution of the independent compure; ands; with uniform distributions. Horizontal
axis: s1, vertical axis:s,.

Figure 6: The joint distribution of the observed mixtukgsndx,. Horizontal axisxi, vertical axis:X,.
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Figure 7: The multivariate distribution of two independgatissian variables.

0.8

Figure 8: The density function of the Laplace distributievhich is a typical supergaussian distribution. For
comparison, the gaussian density is given by a dashed lioth. d&nsities are normalized to unit variance.

26



Figure 9: An illustration of projection pursuit and the ‘@méstingness” of nongaussian projections. The data in
this figure is clearly divided into two clusters. Howevee fbrincipal component, i.e. the direction of maximum
variance, would be vertical, providing no separation betwthe clusters. In contrast, the strongly nongaussian

projection pursuit direction is horizontal, providing opal separation of the clusters.

Figure 10: The joint distribution of the whitened mixtures.
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Figure 11: (From Vigario et al, 1998pamples of MEG signals, showing artifacts produced by imlsaccades,
biting and cardiac cycle. For each of the 6 positions shovre, two orthogonal directions of the sensors are
plotted.
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Figure 12: (From Vigario et al, 1998\ine independent components found from the MEG data. Fdr eampo-
nent the left, back and right views of the field patterns geteer by these components are shown — full line stands
for magnetic flux coming out from the head, and dotted lindltheinwards.
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Figure 13: (from Kiviluoto and Oja, 1998)Five samples of the original cashflow time series
normalized to unit standard deviation). Horizontal axigné in weeks.
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Figure 14: (from Kiviluoto and Oja, 1998)our independent components or fundamental factors foromd the

cashflow data.
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Figure 15: (from Hyvérinen, 1999d)An experiment in denoising. Upper left: original image. @ppight:
original image corrupted with noise; the noise level is 50 Uower left: the recovered image after applying
sparse code shrinkage. Lower right: for comparison, a widittered image.
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