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Abstract

We presentonditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy
Markov models (MEMMSs) and other discrimi-
native Markov models based on directed graph-
ical models, which can be biased towards states
with few successor states. We present iterative
parameter estimation algorithms for conditional
random fields and compare the performance of
the resulting models to HMMs and MEMMSs on

mize the joint likelihood of training examples. To define

a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

This difficulty is one of the main motivations for looking at
conditional models as an alternative. A conditional model
specifies the probabilities of possible label sequences given
an observation sequence. Therefore, it does not expend
modeling effort on the observations, which at test time
are fixed anyway. Furthermore, the conditional probabil-
ity of the label sequence can depend on arbitrary, non-
independent features of the observation sequence without

synthetic and natural-language data. forcing the model to account for the distribution of those
dependencies. The chosen features may represent attributes
at different levels of granularity of the same observations
(for example, words and characters in English text), or
aggregate properties of the observation sequence (for in-
The need to segment and label sequences arises in magjance, text layout). The probability of a transition between
different problems in several scientific fields. Hidden labels may depend not on|y on the current observation,
Markov models (HMMs) and stochastic grammars are wellpyt also on past and future observations, if available. In
understood and widely used probabilistic models for suchontrast, generative models must make very strict indepen-
problems. In computational biology, HMMs and stochas-dence assumptions on the observations, for instance condi-

tic grammars have been successfully used to align biotional independence given the labels, to achieve tractability.
logical sequences, find sequences homologous to a known

evolutionary family, and analyze RNA secondary structureMaximum entropy Markov models (MEMMs) are condi-
(Durbin et al., 1998). In computational linguistics and tional probabilistic sequence models that attain all of the

computer science, HMMs and stochastic grammars hav@Pove advantages (McCallum et al., 2000). In MEMMs,
been applied to a wide variety of problems in text and®ach source statdhas a exponential model that takes the
speech processing, including topic segmentation, part_opbservatlon features as input, and outputs a distribution

speech (POS) tagging, information extraction, and syntacoVer possible next states. These exponential models are
tic disambiguation (Manning & Schze, 1999). trained by an appropriate iterative scaling method in the

HMMs and stochastic grammars are generative models, as- 'Output labels are associated with states; it is possible for sev-

signing a joint probability to paired observation and label€ral states to have the same label, but for simplicity in the rest of
sequences; the parameters are typically trained to maxfb Is paper we assume a one-to-one correspondence.

1. Introduction



maximum entropy framework. Previously published exper-
imental results show MEMMs increasing recall and dou-
bling precision relative to HMMs in a FAQ segmentation
task.

MEMMs and other non-generative finite-state models
based on next-state classifiers, such as discriminative, . .
Markov models (Bottou, 1991), share a weakness we ca igure 1. Label bias example, after (Bottou, 1991). For concise-

. . ! - ) - ness, we place observation-label pairs [ on transitions rather
here thelabel bias problem: the transitions leaving a given

. . than states; the symbal represents the null output label.
state compete only against each other, rather than against y P P

all other transitions in the model. In probabilistic terms, e present the model, describe two training procedures and
transition scores are the conditional probabilities of possketch a proof of convergence. We also give experimental
sible next states given the current state and the observ@asylts on synthetic data showing that CRFs solve the clas-
tion sequence. This per-state normalization of transitionsica| version of the label bias problem, and, more signifi-
scores implies a “conservation of score mass” (BottoUcantly, that CRFs perform better than HMMs and MEMMs
1991) whereby all the mass that arrives at a state must bghen the true data distribution has higher-order dependen-
distributed among the possible successor states. An 0bSdfes than the model, as is often the case in practice. Finally,
vation can affect which destination states get the mass, bie confirm these results as well as the claimed advantages
not how much total mass to pass on. This causes a bias tgf conditional models by evaluating HMMs, MEMMs and

ward states with fewer outgoing transitions. In the extremecRFs with identical state structure on a part-of-speech tag-
case, a state with a single outgoing transition effectivelyying task.

ignores the observation. In those cases, unlike in HMMs,
Viterbi decoding cannot downgrade a branch based on ob- .
servations after the branch point, and models with state-z' The Label Bias Problem

transition structures that have sparsely connected chains @f|5ssical probabilistic automata (Paz, 1971), discrimina-
states are not properly handled. The Markovian assumpyye Markov models (Bottou, 1991), maximum entropy
tions in MEMMs and similar state-conditional models in- (544ers (Ratnaparkhi, 1996), and MEMMSs, as well as
sulate decisions at one state from future decisions in a Wa¥sn-probabilistic sequence tagging and segmentation mod-
that does not match the actual dependencies between Cogrs with independently trained next-state classifiers (Pun-
secutive states. yakanok & Roth, 2001) are all potential victims of the label
This paper introducesonditional random fields (CRFs), a  bias problem.

sequence modeling framework that has all the advantaggs,; example, Figure 1 represents a simple finite-state
of MEMMs but also solves the label bias problem in a 64| designed to distinguish between the two woibls

principle(_j way. The critical difference between CRFS a”dand rob. Suppose that the observation sequenceiis.
MEMMs is that a MEMM uses per-state exponential mod-|, he first time stepy matches both transitions from the

els for the conditional probabilities of next states given thegi state, so the probability mass gets distributed roughly
current state, while a CRF has a single exponential modeéqua"y among those two transitions. Next we obsérve

for the joint probability of the entire sequence of labels go, states 1 and 4 have only one outgoing transition. State
given the observation sequence. Therefore, the weights of )45 seen this observation often in training, state 4 has al-
different features at different states can be traded off againsf, st never seen this observation: but like state 1, state 4

each other. has no choice but to pass all its mass to its single outgoing

We can also think of a CRF as a finite state model with uniransition, since it is not generating the observation, only
normalized transition probabilities. However, unlike someconditioning on it. Thus, states with a single outgoing tran-
other weighted finite-state approaches (LeCun et al., 1998$ition effectively ignore their observations. More generally,
CRFs assign a well-defined probability distribution over States with low-entropy next state distributions will take lit-
possible labelings, trained by maximum likelihood or MAP tle notice of observations. Returning to the example, the
estimation. Furthermore, the loss function is confguar-  top path and the bottom path will be about equally likely,
anteeing convergence to the global optimum. CRFs alséhdependently of the observation sequence. If one of the
generalize easily to analogues of stochastic context-freBvo words is slightly more common in the training set, the
grammars that would be useful in such problems as RNAransitions out of the start state will slightly prefer its cor-
secondary structure prediction and natural language prdesponding transition, and that word’s state sequence will
cessing. always win. This behavior is demonstrated experimentally
in Section 5.

2In the case of fully observable states, as we are discussi% . .
here; if several states have the same label, the usual local maxin{e€0n Bottou (1991)_d|SCUSSGd two solutions for_ 'Fhe label
of Baum-Welch arise. bias problem. One is to change the state-transition struc-



ture of the model. In the above example we could collapséant example for modeling sequencésis a simple chain
states 1 and 4, and delay the branching until we get a diser line: G = (V = {1,2,...m},E = {(i,i + 1)}).
criminating observation. This operation is a special casé&X may also have a natural graph structure; yet in gen-
of determinization (Mohri, 1997), but determinization of eral it is not necessary to assume tatndY have the
weighted finite-state machines is not always possible, andame graphical structure, or even tf¥athas any graph-
even when possible, it may lead to combinatorial explo-ical structure at all. However, in this paper we will be
sion. The other solution mentioned is to start with a fully- most concerned with sequencK¥s = (X;,Xos,...,X,)
connected model and let the training procedure figure ouandY = (Y1,Ya2,...,Y,).

a good structure. But that would preclude the use of priofe . o graphG = (V, E) of Y is a tree (of which a chain

structural knowledge that has proven so valuable in infor-iS the simplest example), its cliques are the edges and ver-
mation extraction tasks (Freitag & McCallum, 2000). ; P Pe) d 9
tices. Therefore, by the fundamental theorem of random

Proper solutions require models that account for wholdields (Hammersley & Clifford, 1971), the joint distribu-
state sequences at once by letting some transitions “votdion over the label sequend given X has the form

more strongly than others depending on the corresponding

observations. This implies that score mass will not be con-pa(y | x) o 1)
served, but instead individual transitions can “amplify” or

“dampen” the mass they receive. In the above example, the:xp, Z e fr(e,yle, x) + Z 1 9k (0, Y], %) |
transitions from the start state would have a very weak ef- cCB ok veVk

fect on path score, while the transitions from states 1 and 4

would have much stronger effects, amplifying or dampingwherex is a data sequencg,a label sequence, ands is
depending on the actual observation, and a proportionallyhe set of components of associated with the vertices in
higher contribution to the selection of the Viterbi path. subgraphs.

In the related work section we discuss other heuristic modelyve assume that thfeatures f;, andg;, are given and fixed.
classes that account for state sequences globally rather thgar example, a Boolean vertex featusemight be true if

locally. To the best of our knowledge, CRFs are the onlythe wordX; is upper case and the tag is “proper noun.”
model class that does this in a purely probabilistic setting

with guaranteed global maximum likelihood convergence.xrhe parameter estimation problem is to determine the pa-

rametersd) = (Aq, Ag,...; 1, to,...) from training data
. i D = {(x,y@)}N | with empirical distributiorp(x, y).
3. Conditional Random Fields In Section 4 we describe an iterative scaling algorithm that

In what follows, X is a random variable over data se- maximizes the log-likelihood objective functigh(¢):

guences to be labeled, afd is a random variable over N

corresponding label sequences. All compon&itof Y o) = ZInge(y(Z) |X(z))

are assumed to range over a finite label alph3bdfor ex- P

ample, X might range over natural language sentences and ~

Y range over part-of-speech taggings of those sentences, X ZP(X’Y) log po(y | %) -

with Y the set of possible part-of-speech tags. The ran- xy

dom variableX andY are jointly distributed, but in a dis-

criminative framework we construct a conditional model As a patrticular case, we can construct an HMM-like CRF
p(Y | X) from paired observation and label sequences, antty defining one feature for each state pajf, y), and one
do not explicitly model the marginal(X). feature for each state-observation fairz):

Definition. Let G = (V,E) be a graph such that , / _ /
Y = (Yy)vev, so that Y is indexed by the vertices Jow (<402 ¥l<uw>, %) 0¥uy) 0¥, y)
of G. Then (X,Y) is a conditional random field in 9ya (0¥l %) = 0(yv,y) (%0, 7) -
case, when conditioned on X, the random variables Y,
obey the Markov property with respect to the graph:
(Yo | X, Yy, w # v) = p(Yy | X, Yy, w ~ v), where
w ~ v means that w and v are neighbors in G.

The corresponding parameteXg ,, and, , play a simi-

lar role to the (logarithms of the) usual HMM parameters
p(y' | y) andp(z|y). Boltzmann chain models (Saul & Jor-
dan, 1996; MacKay, 1996) have a similar form but use a
Thus, a CRF is a random field globally conditioned on thesingle normalization constant to yield a joint distribution,
observationX. Throughout the paper we tacitly assume whereas CRFs use the observation-dependent normaliza-
that the graplG is fixed. In the simplest and most impor- tion Z(x) for conditional distributions.

*\Weighted determinization and minimization techniques shiftAlthough it encompasses HMM-like models, the class of

transition weights while preserving overall path weight (Mohri, conditional random fields is much more expressive, be-
2000); their connection to this discussion deserves further study.cause it allows arbitrary dependencies on the observation
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Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.
An open circle indicates that the variable is not generated by the model.

sequence. In addition, the features do not need to specifyf the training data. Both algorithms are based on the im-
completely a state or observation, so one might expect thairoved iterative scaling (11S) algorithm of Della Pietra et al.
the model can be estimated from less training data. Anothg1997); the proof technique based on auxiliary functions
attractive property is the convexity of the loss function; in- can be extended to show convergence of the algorithms for
deed, CRFs share all of the convexity properties of generaCRFs.

maximum entropy models. Iterative scaling algorithms update the weights)\as«

For the remainder of the paper we assume that the depety, + dA, and u, — ur + duy for appropriately chosen
dencies ofY, conditioned onX, form a chain. To sim- 6\, andduy. In particular, the 1IS updaté\; for an edge
plify some expressions, we add special start and stop statésaturef;, is the solution of
Y, = start andY,, ;1 = stop. Thus, we will be using the
graphical structure shown in Figure 2. For a chain struc- ~ def ~ 4
ture, the conditional probability of a label sequence can be Elfi] = 3 b(xy) Z Fr(ei ¥le, %)
expressed concisely in matrix form, which will be useful Y =t
in describing the parameter estimation and inference al- - AT (x.
gorithms in Section 4. Suppose that(Y | X) is a CRF = D ) p(y[x) ka(ei’Y|€“X)e L)
given by (1). For each positiohin the observation se- Y i=1
guencex, we define the))| x || matrix random variable whereT(
M;(x) = [Mi(y',y |x)] by
T dz&f x
Mi(y',ylx) = exp(Ni(y,y|x)) ) ;fk(e Y
Ai(y/7ylx> = Zk)‘kfk(ei7Y€i = (¥, y),x) + ,
Dok bk 9 (i, Yo, = 4,%)

wheree; is the edge with label§Y;_1,Y;) andv; is the
vertex with labelY ;. In contrast to generative models, con-
ditional models like CRFs do not need to enumerate ove

all possible observation sequencesand therefore these cause’(x, y) is a global property ofx, y), and dynamic

matrices can be computed directly as needed from a givegg?gizargjmlpg d\:avgll \Zﬁ{}n thci):etrhgii?:teglcifit\rl\vrlrt]h Arl)o(t)?irgﬂzlly
training or test observation sequencand the parameter ying L - . 9 9

vectord. Then the normalization (partition functiof) (x) tsraglfi? aar?:'(}ktgigltgre' The second, Algorithm T, keeps
is the(start, stop) entry of the product of these matrices: P '

n+1

n+1

x,y) is thetotal feature count

emx) + ng(@zvy
i,k

viy X)

The equations for vertex feature updatgg have similar
form.

However, efficiently computing the exponential sums on
Fhe right-hand sides of these equations is problematic, be-

For Algorithm S, we define thelack feature by
Zy(x) = (Mi(x)Ma(x) - Mpii(x))

start,stop

def
Using this notation, the conditional probability of a label s(x,y) =

sequence is written as SN filen¥lenx) = D> gk, ylv,x)
n+1 i k 4 k
_ II;=7 Mi(yi—1,y:|%) }
poly|x) = il ’ whereS is a constant chosen so thdk("),y) > 0 for all
(Hi:l i(x))stamstop y and all observation vectoss'”) in the training set, thus

makingT'(x,y) = S. Features is “global,” that is, it does

wherey, = start andy1 = stop. not correspond to any particular edge or vertex.

For eachindex = 0,...,n+ 1 we now define théorward
vectors «;(x) with base case

We now describe two iterative scaling algorithms to find 1

the parameter vectdt that maximizes the log-likelihood ao(y|x) = {

4. Parameter Estimation for CRFs

if y = start
0 otherwise



and recurrence
a;(x) = aj—1(x) M;(x) .
Similarly, thebackward vectors (3;(x) are defined by

1 if y = stop
0 otherwise

Brsalylx) = {

and
Bi(x)T = M1 (x) Biza(x) -

With these definitions, the update equations are

0B, and -~y are the unique positive roots to the following
polynomial equations

Tmax Tmax
Z QAf,t ﬁ;i = Ef, Z bt 712 = Egy , 2
=0 =0

which can be easily computed by Newton’s method.

A single iteration of Algorithm S and Algorithm T has
roughly the same time and space complexity as the well
known Baum-Welch algorithm for HMMs. To prove con-
vergence of our algorithms, we can derive an auxiliary
function to bound the change in likelihood from below; this
method is developed in detail by Della Pietra et al. (1997).
The full proof is somewhat detailed; however, here we give

S = L 1OgE7f’€7 Sup = — log Egr , an idea of how to derive the auxiliary function. To simplify
S Efy S Egy notation, we assume only edge featufgsvith parameters
Ak
where
Given two parameter settings= (A1, A2,...) andd’ =
A, . (A +0A1, A2 +0A2,...), we bound from below the change
Efi =Y 5x) D> Y frleiyle, = (4,y),%) X in the objective function with aauxiliary function A(¢', 6)
x i=1y'y as follows
ai—1(y'[x) Mi(y', y %) Bi(y [ %) o (
’ _ ~ o (y | %)
Bge = > )Y > gk(vi,ylo, = y,%) x N T Zy (%)
= = = (0'-0)-Ef ij(x) log 705
ai(y|x) Bi(y[x) Zor(
. ~ ~ 2o (%)
Z@(X) > (9'—9)Ef—2p(x) ZQ(X)
The factors involving the forward and backward vectors in -~ —  s5\. Ff — " 5(x p x) N F(xy)
the above equations have the same meaning as for standard f zx: ( )zy: oy %)
hidden Markov models. For example, B fu(x,y)
> SA-Ef -3 Bx)poly | x) oYl AT

iy | %) Bily | x) T(x)

Z@ (X)

v,k
po(Yi=yl|x) = » i

A(0,9)

is the marginal probability of labeY; = y given that the  where the inequalities follow from the convexity eflog

observation sequencests This algorithm is closely related andexp. Differentiating.4 with respect taj\;, and setting
to the algorithm of Darroch and Ratcliff (1972), and MART the result to zero yields equation (2).
algorithms used in image reconstruction.

The constans in Algorithm S can be quite large, since in 5. Experiments

practice it is proportional to the length of the longest train- i . i ) )

ing observation sequence. As a result, the algorithm ma%Ne first discuss two sets of experiments with synthetic data
converge slowly, taking very small steps toward the maxi-that highlight the differences between CRFs and MEMMs.
mum in each iteration. If the length of the observatigffs The first experiments are a direct verification of the label
and the number of active features varies greatly, a fasteRias problem discussed in Section 2. In the second set of
converging algorithm can be obtained by keeping track ofXPeriments, we generate synthetic data using randomly

feature totals for each observation sequence separately. chosen hidden Markov models, each of which is a mix-
ture of a first-order and second-order model. Competing

Let T'(x) maxy T'(x,y). Algorithm T accumulates first-order models are then trained and compared on test
feature expectations into counters indexed/lfx). More  data. As the data becomes more second-order, the test er-
specifically, we use the forward-backward recurrences justor rates of the trained models increase. This experiment
introduced to compute the expectatians, of feature f, corresponds to the common modeling practice of approxi-
andb,, , of featurey;, given thatl'(x) = ¢t. Then our param- mating complex local and long-range dependencies, as oc-
eter updates aré\;, = log 8x anddu, = log~yk, Where  cur in natural data, by small-order Markov models. Our

def
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Figure 3. Plots of2 x 2 error rates for HMMs, CRFs, and MEMMs on randomly generated synthetic data sets, as described in Section 5.2.
As the data becomes “more second order,” the error rates of the test models increase. As shown in the left plot, the CRF typically
significantly outperforms the MEMM. The center plot shows that the HMM outperforms the MEMM. In the right plot, each open square
represents a data set with< % and a solid circle indicates a data set with> % The plot shows that when the data is mostly second
order @ > %), the discriminatively trained CRF typically outperforms the HMM. These experiments are not designed to demonstrate
the advantages of the additional representational power of CRFs and MEMMs relative to HMMs.

results clearly indicate that even when the models are paef the Bayes error rate for the resulting models, the con-
rameterized in exactly the same way, CRFs are more roditional probability tableg,, are constrained to be sparse.
bust to inaccurate modeling assumptions than MEMMs oiin particular,p, (- | y,y’) can have at most two nonzero en-
HMMs, and resolve the label bias problem, which affectstries, for eachy, 3/, andp, (- | y, #') can have at most three
the performance of MEMMs. To avoid confusion of dif- nonzero entries for each z’. For each randomly gener-
ferent effects, the MEMMs and CRFs in these experimentsited model, a sample of 1,000 sequences of length 25 is
do not use overlapping features of the observations. Fi-generated for training and testing.
e o e eon e2h randorlygenerate raing set, s CRE s ranea
addition of overlapping features to CRFs and MEMMs al-Ys'nd Algorithm S. (Note that since the length of the se-

lows them to perform much better than HMMs, as alread guences and number of active features is constant, Algo-

\A . . . o
shown for MEMMs by McCallum et al. (2000). rithms S and T are identical.) The algorithm is fairly slow

to converge, typically taking approximately 500 iterations
. . for the model to stabilize. On the 500 MHz Pentium PC
5.1 Modeling label bias used in our experiments, each iteration takes approximately

We generate data from a simple HMM which encodes &-2 seconds. On the same data an MEMM is trained using
noisy version of the finite-state network in Figure 1. Eachiterative scaling, which does not require forward-backward
state emits its designated Symbo] with probab|gal/32 CalCUlationS, and is thus more efficient. The MEMM train-
and any of the other symbols with probability32. We  ing converges more quickly, stabilizing after approximately
train both an MEMM and a CRF with the same topologies100 iterations. For each model, the Viterbi algorithm is
on the data generated by the HMM. The observation feased to label a test set; the experimental results do not sig-
tures are simply the identity of the observation symbols hificantly change when using forward-backward decoding
In a typical run using, 000 training and500 test samples, to minimize the per-symbol error rate.

trained to convergence of the iterative scaling algorithm;rne resylts of several runs are presented in Figure 3. Each
the CRF error ist.6% while the MEMM error is427%, plot compares two classes of models, with each point indi-
showing that the MEMM fails to discriminate between the cating the error rate for a single test set.AAmcreases, the
two branches. error rates generally increase, as the first-order models fail
to fit the second-order data. The figure compares models
parameterized as,, A,/ ,, and\, , »; results for models
parameterized ag,, A\, ,, andpu, . are qualitatively the
same. As shown in the first graph, the CRF generally out-
performs the MEMM, often by a wide margin of 10%—-20%
relative error. (The points for very small error rate, with
a < 0.01, where the MEMM does better than the CRF,
are suspected to be the result of an insufficient number of
training iterations for the CRF.)

5.2 Modeling mixed-order sources

For these results, we use five labels; (|| = 5), and 26
observation valuesh-Z (|X| = 26); however, the results
were qualitatively the same over a range of size9fand

X. We generate data from a mixed-order HMM with state
transition probabilities given by, (y;|yi—1,¥i—2)
apa(yilyi-1,yi—2) + (1 — @) p1(y:|yi—1) and, simi-
larly, emission probabilities given by, (x; | y;,x;—1) =
apa(x; |yi, xi—1)+(1—a) p1(x; | y:). Thus, fora. = 0 we
have a standard first-order HMM. In order to limit the size



model | error  oov error 6. Further Aspects of CRFs
HMM | 5.69%  45.99% Many further aspects of CRFs are attractive for applica-
MEMM | 6.37%  54.61% tions and deserve further study. In this section we briefly
CRF | 5.55%  48.05% mention just two.
MEMM™* | 4.81%  26.99% Conditional random fields can be trained using the expo-
CRF" | 4.27%  23.76% nential loss objective function used by the AdaBoost algo-

rithm (Freund & Schapire, 1997). Typically, boosting is
applied to classification problems with a small, fixed hum-
ber of classes; applications of boosting to sequence labeling
Figure 4. Per-word error rates for POS tagging on the Penn treehave treated each label as a separate classification problem
bank, using first-order models trained on 50% of the 1.1 million (Abney et al., 1999). However, it is possible to apply the

T Using spelling features

word corpus. The oov rate is 5.45%. parallel update algorithm of Collins et al. (2000) to op-
) _ timize the per-sequence exponential loss. This requires a
5.3 POS tagging experiments forward-backward algorithm to compute efficiently certain

To confirm our synthetic data results, we also compared€@ture expectations, along the lines of Algorithm T, ex-
HMMs, MEMMSs and CRFs on Penn treebank POS tag_cept that each feature requires a separate set of forward and

ging, where each word in a given input sentence must b@ackward accumulators.

labeled with one of 45 syntactic tags. Another attractive aspect of CRFs is that one can imple-
We carried out two sets of experiments with this naturalment efficient feature selection and feature induction al-

language data. First, we trained first-order HMM, MEMM, 9°rithms for them. That is, rather than specifying in ad-

and CRF models as in the synthetic data experiments, inf2nce which features ¢X, Y) to use, we could start from

troducing parameters, , for each tag-word pair ani, feature-generating rules and evaluate the benefit of gener-
Y,z Y] : H

for each tag-tag pair in the training set. The results are cor@t€d features automatically on data. In particular, the fea-

sistent with what is observed on synthetic data: the HMmmture induction algorithms prgsented in Dglla Pietra et _al.

outperforms the MEMM, as a consequence of the label bia§1997) can be adapted to fit the dynamic programming

problem, while the CRF outperforms the HMM. The er- (€chniques of conditional random fields.

ror rates for training runs using a 50%-50% train-test split

are shown in Figure 5.3; the results are gualitatively sim-7. Related Work and Conclusions

ilar for other splits of the data. The error rates on out-

of-vocabulary (oov) words, which are not observed in theAS far as we know, the present work is the first to combine

. ization of random field models. Other applications of expo-
In the second set of experiments, we take advantage of thgential models in sequence modeling have either attempted
power of conditional models by adding a small set of or-to puild generative models (Rosenfeld, 1997), which in-
thographic features: whether a spelling begins with a numyg|ve a hard normalization problem, or adopted local con-
ber or upper case letter, whether it contains a hyphen, angitional models (Berger et al., 1996; Ratnaparkhi, 1996;
whether it ends in one of the following suffixesing, - McCallum et al., 2000) that may suffer from label bias.
ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies. Here we find, as o o
expected, that both the MEMM and the CRF benefit signif-Non-probabilistic local decision models have also been
icantly from the use of these features, with the overall errowvidely used in segmentation and tagging (Brill, 1995;

rate reduced by around 25%, and the out-of-vocabulary efX0th, 1998; Abney et al., 1999). Because of the computa-
ror rate reduced by around 50%. tional complexity of global training, these models are only

o trained to minimize the error of individual label decisions
One usually starts training from the all zero parameter vecassuming that neighboring labels are correctly chosen. La-
tor, corresponding to the uniform distribution. However, pe| hias would be expected to be a problem here too.
for these datasets, CRF training with that initialization is ) o _
much slower than MEMM training. Fortunately, we can An alternative approach to discriminative modeling of se-
use the optimal MEMM parameter vector as a startingduénce labeling is to use a permissive generative model,
point for training the corresponding CRF. In Figure 5.3, Which can only model local dependencies, to produce a
MEMM * was trained to convergence in around 100 iter-list of candidates, and then use a more global discrimina-
ations. Its parameters were then used to initialize the traintiveé model to rerank those candidates. This approach is
ing of CRE", which converged in 1,000 iterations. In con- standard in large-vocabulary speech recognition (Schwartz

trast, training of the same CRF from the uniform distribu- & Austin, 1993), and has also been proposed for parsing
tion had not converged even after 2,000 iterations. (Collins, 2000). However, these methods fail when the cor-

rect output is pruned away in the first pass.



Closest to our proposal are gradient-descent methods that scaling for log-linear modelsThe Annals of Mathemat-
adjust the parameters of all of the local classifiers to mini- ical Statistics43, 1470-1480.

mize a smooth loss function (e.g., quadratic loss) combinbDella Pietra, S., Della Pietra, V., & Lafferty, J. (1997). In-
ing loss terms for each label. If state dependencies are lo- ducing features of random fieldlEEE Transactions on
cal, this can be done efficiently with dynamic programming Pattern Analysis and Machine Intelligende, 380—393.
(LeCun et al., 1998). Such methods should alleviate labeDurbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998).
bias. However, their loss function is not convex, so they Biological sequence analysis: Probabilistic models of
may get stuck in local minima. proteins and nucleic acid€Cambridge University Press.

Conditional random fields offer a unique combination of Freitag, D., & McCallum, A. (2000). Information extrac-

R : tion with HMM structures learned by stochastic opti-
properties: discriminatively trained models for sequence

segmentation and labeling; combination of arbitrary, over- mization. Proc. AAAI 2000
9 9: Y. Freund, Y., & Schapire, R. (1997). A decision-theoretic

lapping and agglomerative observation features from both generalization of on-line learning and an application to

the past and future; ef_ﬁugnt training and deqodlr)g based boosting.Journal of Computer and System Scienéés
on dynamic programming; and parameter estimation guar- 119-139

ﬁg':iec})iditsotagd;[lg?/vg::%a?/lecr)pgrzr::uemo.f-lztugrtrrgiar:irr11Cuarlgeg:i'ltlr:?r; Hammersley, J., & Clifford, P. (1971). Markov fields on
9 9 alg finite graphs and lattices. Unpublished manuscript.

relative to MEMMSs, let alone to HMMs, for which training LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998)

e o, e o Gradibased leming appl to documen recog
P 9 9 tion. Proceedings of the IEEB6, 2278—-2324.

update methods of Collins et al. (2000) and refinements OR/IacKay D. J. (1996). Equivalence of linear Boltzmann

using a MEMM as starting point as we did in some of'our chains and hidden Markov modelseural Computation
experiments. More general tree-structured random fields, 8 178-181

feature induction methods, and further natural data evalua'\-/Ianning C. D., & Scitze, H. (1999)Foundations of sta-

tions will also be investigated. tistical natural language processingCambridge Mas-
sachusetts: MIT Press.
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